首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Nel-like molecule-1 (Nell-1) is a recently discovered secreted protein that plays an important role in osteoblast differentiation, bone formation, and bone regeneration. However, its expression and distribution during tooth development are largely unknown. The aim of this study was to investigate the expression patterns of Nell-1 during murine molar development by immunohistochemistry. Nell-1 protein was expressed during molar development in embryonic and postnatal Kunming mice, but its expression levels and patterns at various developmental stages differed. At embryonic day 13.5 (E13.5) and E14.5, Nell-1 was found in both the entire enamel organ and the underlying mesenchyme. At E16.5, it was detected in the inner and outer enamel epithelia, stratum intermedium, secondary enamel knot, and dental papilla. At E18.5, Nell-1 was expressed in the differentiating ameloblasts, differentiating odontoblasts, and stratum intermedium. Positive staining was also found in the outer enamel epithelium. At postnatal day 2.5 (P2.5), P5, and P7, Nell-1 appeared in the secretory and mature ameloblasts and odontoblasts (odontoblastic bodies and processes) as well as immature enamel. Hertwig’s epithelial root sheath also stained positively at P7. At P13.5, positive staining was restricted to the reduced dental epithelium and odontoblasts, whereas Nell-1 disappeared in the mature enamel. During tooth eruption, Nell-1 was observed only in the odontoblastic bodies, odontoblastic processes, and endothelial cells of blood vessels. The spatiotemporal expression patterns of Nell-1 during murine tooth development suggest that it might play an important role in ameloblast and odontoblast differentiation, secretion and mineralization of the extracellular enamel matrix, molar crown morphogenesis, as well as root formation.  相似文献   

4.
LIM mineralization protein 1 (LMP-1) is an essential positive regulator of osteoblast differentiation, maturation and bone formation. Our previous investigations on the distribution of LMP-1 in mature human teeth indicated that LMP-1 might play a role in the odontoblast differentiation and dentin matrix mineralization. The aim of the present study was to use immunohistochemistry to determine the expression of LMP-1 during tooth development in mouse molars. In embryonic and postnatal Kunming mice, LMP-1 protein was expressed during molar development, but the expression levels and patterns differed at various developmental stages. At embryonic day 13.5 (E13.5), LMP-1 was found in the enamel organ. At E14.5, LMP-1 was detected in the entire enamel organ and in the underlying mesenchyme. At E16.5, LMP-1 was observed in the inner and outer enamel epithelium and the stratum intermedium. The expression also converged at the cusps in the dental papilla. At E18.5 and postnatal day 2.5 (P2.5), LMP-1 was restricted to the stratum intermedium, in differentiating dental papilla cells at cusps, while it disappeared in terminal differentiated ameloblasts and odontoblasts. At P13.5, no positive staining was detected in the odontoblasts or in the dental pulp cells. Therefore, LMP-1 showed spatiotemporal expression patterns during molar development and might participate in molar crown morphogenesis and odontoblast differentiation at late molar development.  相似文献   

5.
The distribution of the matrix protein fibronectin was studied by indirect immunofluorescence in differentiating mouse molars from bud stage to the stage of dentin and enamel secretion, and compared to that of collagenous proteins procollagen type III and collagen type I. Fibronectin was seen in mesenchymal tissue, basement membranes, and predentin. The dental mesenchyme lost fibronectin staining when differentiating into odontoblasts. Fibronectin was not detected in mineralized dentin. Epithelial tissues were negative except for the stellate reticulum within the enamel organ. Particularly intense staining was seen at the epithelio-mesenchymal interface between the dental epithelium and mesenchyme. Fibronectin may here be involved in anchorage of the mesenchymal cells during their differentiation into odontoblasts. Procollagen type III was lost from the dental mesenchyme during odontoblast differentiation but reappeared with advancing vascularization of the dental papilla. Similarly, procollagen type III present in the dental basement membrane during the bud and cap stages disappeared from the cuspal area along with odontoblast differentiation. Weak staining was seen in predentin but not in mineralized dentin. The staining with anti-collagen type I antibodies was weak in dental mesenchyme but intense in predentin as well as in mineralized dentin.  相似文献   

6.
Sonic hedgehog regulates growth and morphogenesis of the tooth   总被引:28,自引:0,他引:28  
During mammalian tooth development, the oral ectoderm and mesenchyme coordinate their growth and differentiation to give rise to organs with precise shapes, sizes and functions. The initial ingrowth of the dental epithelium and its associated dental mesenchyme gives rise to the tooth bud. Next, the epithelial component folds to give the tooth its shape. Coincident with this process, adjacent epithelial and mesenchymal cells differentiate into enamel-secreting ameloblasts and dentin-secreting odontoblasts, respectively. Growth, morphogenesis and differentiation of the epithelium and mesenchyme are coordinated by secreted signaling proteins. Sonic hedgehog (Shh) encodes a signaling peptide which is present in the oral epithelium prior to invagination and in the tooth epithelium throughout its development. We have addressed the role of Shh in the developing tooth in mouse by using a conditional allele to remove Shh activity shortly after ingrowth of the dental epithelium. Reduction and then loss of Shh function results in a cap stage tooth rudiment in which the morphology is severely disrupted. The overall size of the tooth is reduced and both the lingual epithelial invagination and the dental cord are absent. However, the enamel knot, a putative organizer of crown formation, is present and expresses Fgf4, Wnt10b, Bmp2 and Lef1, as in the wild type. At birth, the size and the shape of the teeth are severely affected and the polarity and organization of the ameloblast and odontoblast layers is disrupted. However, both dentin- and enamel-specific markers are expressed and a large amount of tooth-specific extracellular matrix is produced. This observation was confirmed by grafting studies in which tooth rudiments were cultured for several days under kidney capsules. Under these conditions, both enamel and dentin were deposited even though the enamel and dentin layers remained disorganized. These studies demonstrate that Shh regulates growth and determines the shape of the tooth. However, Shh signaling is not essential for differentiation of ameloblasts or odontoblasts.  相似文献   

7.
8.
We have explored the role of Wnt signaling in dentinogenesis of mouse molar teeth. We found that Wnt10a was specifically associated with the differentiation of odontoblasts and that it showed striking colocalization with dentin sialophosphoprotein (Dspp) expression in secretory odontoblasts. Dspp is a tooth specific non-collagenous matrix protein and regulates dentin mineralization. Transient overexpression of Wnt10 in C3H10T1/2, a pluripotent fibroblast cell line induced Dspp mRNA. Interestingly, this induction occurred only when transfected cells were cultured on Matrigel basement membrane extracts. These findings indicated that Wnt10a is an upstream regulatory molecule for Dspp expression, and that cell-matrix interaction is essential for induction of Dspp expression. Furthermore, Wnt10a was specifically expressed in the epithelial signaling centers regulating tooth development, the primary and secondary enamel knots. The spatial and temporal distribution of Wnt10a mRNA demonstrated that the expression shifts from the secondary enamel knots, to the underlying preodontoblasts in the tips of future cusps. The expression patterns and overexpression studies together indicate that Wnt10a is a key molecule for dentinogenesis and that it is associated with the cell-matrix interactions regulating odontoblast differentiation. We conclude that Wnt10a may link the differentiation of odontoblasts and cusp morphogenesis.  相似文献   

9.
In this study we examined the presence and localization of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity in the dental pulp, periodontal tissues and alveolar bone of the rat. The presence of NADPH-d activity was also examined in cat pulp. The rat histochemical analysis revealed the presence of prominent NADPH-d activity both in cells of the sub-odontoblastic cell layer and in the odontoblasts, in the root as well as in the coronal pulp regions. In the pulpal horns, odontoblasts often had long processes with a high level of labelling indicating NADPH-d activity extending through the predentin and dentin. Moreover, endothelial cells of pulpal blood vessels were positive for NADPH-d in both species. However, no clearcut examples were found of pulpal nerve fibres positive for NADPH-d in the rat or cat and denervation performed in rats did not alter the enzyme staining patterns. In the periodontal tissue, NADPH-d activity was localized to cells on the alveolar bone surface of the periodontal ligament and, in addition, alveolar bone marrow crypts were filled with intensely labelled cells. In the gingival papillae, NADPH-d activity was observed in the basal cell layer of the epithelium. Endothelial cells of periodontal and gingival blood vessels showing positive staining for NADPH-d were occasionally noted.  相似文献   

10.
Dental trigeminal nerve fiber growth and patterning are strictly integrated with tooth morphogenesis, but it is still unknown, how these two developmental processes are coordinated. Here we show that targeted inactivation of the dental epithelium expressed Fgfr2b results in cessation of the mouse mandibular first molar development at the degenerated cap stage and the failure of the trigeminal molar nerve to establish the lingual branch at E13.5 stage while the buccal branch develops properly. This axon patterning defect correlates to the histological absence of the mesenchymal dental follicle and adjacent Semaphorin3A-free dental follicle target field as well as appearance of ectopic Sema3A expression domain in the lingual side of the epithelial bud. Although the mesenchymal ligands for Fgfr2b, Fgf3 and -10 were present in the Fgfr2b(-/)(-) dental mesenchyme, mutant dental epithelium showed dramatically reduced proliferation and the lack of Fgf3. Tgfbeta1, which controls Sema3A was absent from the Fgfr2b(-/-) tooth germ, and Sema3A was specifically downregulated in the dental mesenchyme at the bud and cap stage. In addition, the epithelial primary enamel knot signaling center although being molecularly present neither was histologically detectable nor expressed Bmp4 and Fgf3 as well as Fgf4, which is essential for tooth morphogenesis and stimulates mesenchymal Fgf3 and Tgfbeta1. Fgf4 beads rescued Tgfbeta1 in the Fgfr2b(-/-) dental mesenchyme explants and Tgfbeta1 induced de novo Sema3A expression in the dental mesenchyme. Collectively these results demonstrate that epithelial Fgfr2b controls tooth morphogenesis and dental axon patterning, and suggests that Fgfr2b, by mediating local epithelial-mesenchymal interactions, integrates these two distinct developmental processes during odontogenesis.  相似文献   

11.
12.
The distribution of certain basement membrane (BM) components including type IV collagen, laminin, BM proteoglycan, and fibronectin was studied in developing mouse molar teeth, using antibodies or antisera specific for these substances in indirect immunofluorescence. At the onset of cuspal morphogenesis, type IV collagen, laminin, and BM proteoglycan were found to be present throughout the basement membranes of the tooth. Fibronectin was abundant under the inner enamel epithelium at the region of differentiating odontoblasts and also in the mesenchymal tissues. After the first layer of predentin had been secreted by the odontoblasts at the epithelial-mesenchymal interface, laminin remained in close association with the epithelial cells whereas type IV collagen, BM proteoglycan, and fibronectin were distributed uniformly throughout this area. Later when dentin had been produced and the epithelial cells had differentiated into ameloblasts, basement membrane components disappeared from the cuspal area. These matrix components were not detected in dentin while BM proteoglycan and fibronectin were present in predentin. The observed changes in the collagenous and noncollagenous glycoproteins and the proteoglycan appear to be closely associated with cell differentiation and matrix secretion in the developing tooth.  相似文献   

13.
Changes in the distribution of tenascin during tooth development   总被引:10,自引:0,他引:10  
Tenascin is an extracellular matrix molecule that was earlier shown to be enriched in embryonic mesenchyme surrounding the budding epithelium in various organs including the tooth. In the present study tenascin was localized by immunohistology throughout the course of tooth development in the mouse and rat using polyclonal antibodies against chick tenascin. The results indicate that tenascin is expressed by the lineage of dental mesenchymal cells throughout tooth ontogeny. The intensity of staining with tenascin antibodies in the dental papilla mesenchyme was temporarily reduced at cap stage when the tooth grows rapidly and undergoes extensive morphogenetic changes. During the bell stage of morphogenesis, the staining intensity increased and tenascin was accumulated in the dental pulp even after completion of crown development and eruption. Tenascin was present in the dental basement membrane at the time of odontoblast differentiation. The dental papilla cells ceased to express tenascin upon differentiation into odontoblasts and tenascin was completely absent from dentin. It can be speculated that the remarkable expression of tenascin in the dental mesenchymal cells as compared to other connective tissues is associated with their capacity to differentiate into hard-tissue-forming cells.  相似文献   

14.
We previously performed cDNA subtraction between the mouse mandibles at embryonic day 10.5 (E10.5) and E12.0 to make a profile of the regulator genes for odontogenesis. Fifteen kDa interferon alpha responsive gene (Ifrg15) is one of several highly-expressed genes in the E12.0 mandible. The current study examined the precise expression patterns of Ifrg15 mRNA in the mouse mandibular first molar by in situ hybridization to evaluate the possible functional roles of this gene in odontogenesis. Ifrg15 mRNA was expressed in the epithelial and mesenchymal tissues of the mandible at E10.5 and E12.0. The Ifrg15 in situ signal was detected in the epithelial bud and the surrounding mesenchyme at E14.0, and was present in the enamel organ including the primary enamel knot, and in the underlying mesenchyme at E15.0. The in situ signal was restricted in the inner and outer enamel epithelia and the stratum intermedium at E16.0. The signal of Ifrg15 mRNA was further restricted to the inner enamel epithelium and the adjacent stratum intermedium at E17.0 and E18.0. Consequently, the expression of Ifrg15 mRNA was localized in the ameloblasts and odontoblasts at postnatal days 1.0 to 3.0. However, the in situ signal was markedly weaker than at the embryonic period. The expression of Ifrg15 mRNA was coincidently observed in various craniofacial organs as well as in the tooth germ. These results suggest that Ifrg15 is closely related to odontogenesis, especially the differentiation of the ameloblasts and odontoblasts, and to the morphogenesis of the craniofacial organs.  相似文献   

15.
To elucidate the roles of fibroblast growth factors (FGF) in tooth development, we have analyzed the expression patterns of fibroblast growth factor receptors (FGFR) in mouse teeth by in situ hybridization and studied the effects of FGF-2, -4, -8, and -9 on cell proliferation in vitro by local application with beads on isolated dental mesenchymes. mRNAs of FGFR-1, -2, and -3 were localized by probes specific for the alternative splice variants IIIb and IIIc. The expression patterns of FGFR1, -2, and -3 were completely different, and the two splicing variants of FGFR1 and 2 exhibited different expression domains. FGFR4 was not expressed in the developing teeth. The IIIb splice forms of FGFR1 and -2 were expressed in the dental epithelium during morphogenesis. The IIIc splice form of FGFR1 was expressed both in epithelium and mesenchyme whereas FGFR2 IIIc was confined to the mesenchymal cells of the dental follicle. Both splice forms of FGFR3 were expressed in dental papilla mesenchyme. None of the FGF-receptors was detected in the primary enamel knot, the putative signaling center regulating tooth morphogenesis. This may explain the fact that enamel knot cells do not proliferate, although they express intensely mitogenic FGFs. Beads releasing FGF-2, -4, -8, or -9 proteins stimulated cell proliferation in cultured dental mesenchymes. These data, together with our earlier data on FGF expression [Kettunen and Thesleff (1998): Dev Dyn 211:256–268] suggest that FGF-8 and -9 mediate epithelial-mesenchymal interactions during tooth initiation. During advancing morphogenesis FGF-3, -4, and -9 may act both on mesenchyme and epithelium. Finally, the intense expression of FGFR1 in odontoblasts and ameloblasts, and FGFR2 IIIb in ameloblasts suggests that FGFs participate in regulation of their differentiation and/or secretory functions. Dev. Genet. 22:374–385, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

17.
18.
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.  相似文献   

19.
Tooth morphogenesis and differentiation of the dental cells are guided by interactions between epithelial and mesenchymal tissues. Because the extracellular matrix is involved in these interactions, the expression of matrix receptors located at the cell surface may change during this developmental sequence. We have examined the distribution of an epithelial cell surface proteoglycan antigen, known to behave as a receptor for interstitial matrix, during tooth morphogenesis. Intense staining was seen around the cells of the embryonic oral epithelium as well as the dental epithelium at the early bud stage. With development, expression was greatly reduced in the enamel organ. Differentiation of these cells into ameloblasts was associated with the loss of expression, while the epithelial cells remaining in the stratum intermedium and stellate reticulum regained intense staining. The PG antigen was weakly expressed in the loose neural crest-derived jaw mesenchyme but it became strongly reactive in the condensed dental papilla mesenchyme when extensive morphogenetic movements took place. With development, the PG antigen disappeared from the advanced dental papilla mesenchyme but persisted in the dental sac mesenchyme, which gives rise to periodontal tissues. The PG antigen was not expressed by odontoblasts. Hence, the expression of the PG antigen changes during the epithelial-mesenchymal interactions of tooth development and is lost during terminal cell differentiation. The expression follows morphogenetic rather than histologic boundaries. The acquisition and loss of expression in epithelial and mesenchymal tissues during tooth development suggest that this proteoglycan has specific functions in the epithelial-mesenchymal interactions that guide morphogenesis.  相似文献   

20.
Rodent incisors are capable of growing continuously and the renewal of dental epithelium giving rise to enamel-forming ameloblasts and dental mesenchyme giving rise to dentin-forming odontoblasts and pulp cells is achieved by stem cells residing at their proximal ends. Although the dental epithelial stem cell niche (cervical loop) is well characterized, little is known about the dental mesenchymal stem cell niche. Ring1a/b are the core Polycomb repressive complex1 (PRC1) components that have recently also been found in a protein complex with BcoR (Bcl-6 interacting corepressor) and Fbxl10. During mouse incisor development, we found that genes encoding members of the PRC1 complex are strongly expressed in the incisor apical mesenchyme in an area that contains the cells with the highest proliferation rate in the tooth pulp, consistent with a location for transit amplifying cells. Analysis of Ring1a(-/-);Ring1b(cko/cko) mice showed that loss of Ring1a/b postnatally results in defective cervical loops and disturbances of enamel and dentin formation in continuously growing incisors. To further characterize the defect found in Ring1a(-/-);Ring1b(cko/cko) mice, we demonstrated that cell proliferation is dramatically reduced in the apical mesenchyme and cervical loop epithelium of Ring1a(-/-);Ring1b(cko/cko) incisors in comparison to Ring1a(-/-);Ring1b(fl/fl)cre- incisors. Fgf signaling and downstream targets that have been previously shown to be important in the maintenance of the dental epithelial stem cell compartment in the cervical loop are downregulated in Ring1a(-/-);Ring1b(cko/cko) incisors. In addition, expression of other genes of the PRC1 complex is also altered. We also identified an essential postnatal requirement for Ring1 proteins in molar root formation. These results show that the PRC1 complex regulates the transit amplifying cell compartment of the dental mesenchymal stem cell niche and cell differentiation in developing mouse incisors and is required for molar root formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号