首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The adduction moment about the knee during walking gait has been proposed as an indirect measure of dynamic knee joint load. However, the relative contributions of the variables primarily used to calculate the knee adduction moment have not been investigated. The objectives of this paper were to: (1) describe and compare the magnitude and temporal characteristics of the knee adduction moment, frontal plane lever arm, and frontal plane ground reaction force (GRF) during gait in patients with knee osteoarthritis (OA) and, (2) examine the associations among these variables. Results indicated that both the knee adduction moment and the frontal plane GRF varied considerably throughout stance and exhibited the characteristic "double-hump" pattern, while the frontal plane lever arm magnitude varied only slightly during stance. Knees with OA had significantly greater peak knee adduction moments and frontal plane lever arms, but significantly less peak frontal plane GRF than knees without OA. Pearson product moment correlations indicated a higher association between peak knee adduction moment and peak frontal plane lever arm than between peak knee adduction moment and peak frontal plane GRF, particularly in knees with OA. These results suggest that the frontal plane lever arm assessed during walking is an important variable in the examination of knee OA, and warrants further investigation.  相似文献   

2.
Variable stiffness shoes that have a stiffer lateral than medial sole may reduce the external knee adduction moment (EKAM) and pain during walking in patients with medial compartment knee osteoarthritis (OA). However, the mechanism by which EKAM may be reduced in the OA knee with this intervention remains unclear. Three hypotheses were tested in this study: (1) The reduction in EKAM during walking with the variable stiffness shoe is associated with a reduction in GRF magnitude and/or (2) frontal plane lever arm. (3) A reduction in frontal plane lever arm occurs either by moving the center of pressure laterally under the shoe and/or by dynamically reducing the medial component of GRF. Thirty-two subjects (20 male, 12 female; age: 58.7 ± 9.3 years; height: 1.62 ± 0.08 m; mass: 81.3 ± 14.6 kg) with medial compartment knee osteoarthritis were studied walking in a gait laboratory. The frontal plane lever arm was significantly reduced (1.62%, 0.07%ht, p=0.02) on the affected side while the magnitude of the GRF was not significantly changed. The reduction in the lever arm was weakly correlated with a medial shift in the COP. However, the combined medial shift in the COP and reduction in the medial GRF explained 50% of the change of the frontal plane lever arm. These results suggest that the medial shift in the COP at the foot produced by the intervention shoe stimulates an adaptive dynamic response during gait that reduces the frontal plane lever arm.  相似文献   

3.
Inverse dynamics are the cornerstone of biomechanical assessments to calculate knee moments during walking. In knee osteoarthritis, these outcomes have been used to understand knee pathomechanics, but the complexity of an inverse dynamic model may limit the uptake of joint moments in some clinical and research structures. The objective was to determine whether discrete features of the sagittal and frontal plane knee moments calculated using inverse dynamics compare to knee moments calculated using a cross product function. Knee moments from 74 people with moderate knee osteoarthritis were assessed after ambulating at a self-selected speed on an instrumented dual belt treadmill. Standardized procedures were used for surface marker placement, gait speed determination and data processing. Net external frontal and sagittal plane knee moments were calculated using inverse dynamics and the three-dimensional position of the knee joint center with respect to the center of pressure was crossed with the three-dimensional ground reaction forces in the cross product function. Correlations were high between outcomes of the moment calculations (r > 0.9) and for peak knee adduction moment, knee adduction moment impulse and difference between peak flexion and extension moments, the cross product function resulted in absolute values less than 10% of those calculated using inverse dynamics in this treadmill walking environment. This computational solution may allow the integration of knee moment calculations to understand knee osteoarthritis gait without data collection or computational complexity.  相似文献   

4.
ObjectivesFootwear-generated biomechanical manipulations (e.g., wedge insoles) have been shown to reduce the magnitude of adduction moment about the knee. The theory behind wedged insoles is that a more laterally shifted location of the center of pressure reduces the distance between the ground reaction force and the center of the knee joint, thereby reducing adduction moment during gait. However, the relationship between the center of pressure and the knee adduction moment has not been studied previously. The aim of this study was to examine the association between the location of the center of pressure and the relative magnitude of the knee adduction moment during gait in healthy men.MethodsA novel foot-worn biomechanical device which allows controlled manipulation of the center of pressure location was utilized. Twelve healthy men underwent successive gait analysis testing in a controlled setting and with the device set to convey three different para-sagittal locations of the center of pressure: neutral, medial offset and lateral offset.ResultsThe knee adduction moment during the stance phase significantly correlated with the shift of the center of pressure from the functional neutral sagittal axis in the coronal plane (i.e., from medial to lateral). The moment was reduced with the lateral sagittal axis configuration and augmented with the medial sagittal axis configuration.ConclusionsThe study results confirm the hypothesis of a direct correlation between the coronal location of the center of pressure and the magnitude of the knee adduction moment.  相似文献   

5.
Prominent conservative treatment options for medial-compartment knee osteoarthritis include footwear that reduces knee adduction moment (KAM) correlated with detrimental loads in the medial compartment of the knee, thus providing clinical benefit. The proposed mechanism by which they reduce KAM is a lateral shift in foot center of pressure (COP) and a consequent shortening of the knee lever arm (KLA), thereby reducing KAM, which can be simply calculated as KLA multiplied by the frontal plane ground reaction force (FP-GRF). The present study investigated this mechanism for a unique biomechanical device capable of shifting COP by means of moveable convex elements attached to the shoe. Fourteen healthy young male subjects underwent gait analysis in two COP configurations of the device for comparison: (1) laterally and (2) medially deviated. Average midstance KLA and KAM were decreased by 8.2% and 8.7%, respectively, in the lateral COP compared to medial. Ground reaction force parameters, frontal plane knee angle (FP-KA), and spine lateral flexion angle (SLF) did not differ between COP configurations. No study parameters differed for terminal stance. Linear mixed effects models showed that COP and FP-GRF components, but not FP-KA and SLF, were significant predictors of KLA. In addition, KLA and FP-GRF were significant predictors of KAM; although, FP-GRF did not change significantly with medio-lateral COP shift, while KLA did. This suggests that the mechanism by which the study device reduces KAM is primarily through shortening of KLA brought on by a lateral shift in COP.  相似文献   

6.
The primary objective was to examine mechanisms behind previously observed changes in the knee adduction moment (KAM) with rocker-soled shoes, in participants sub-grouped according to whether they experienced an immediate decrease, or increase, in peak KAM. In subgroups where frontal plane knee ground reaction force (GRF) lever-arm emerged as a significant predictor, a secondary aim was to examine biomechanical factors that contributed to change in this parameter. Thirty individuals with symptomatic, radiographic knee osteoarthritis (OA) underwent 3D gait analysis in unstable rocker-soled shoes and non-rocker-soled shoes. Multiple regression analyses, within each subgroup, examined relationships between changes in frontal plane knee-GRF lever arm and frontal plane resultant GRF magnitude and changes in peak KAM and KAM impulse between shoe conditions. In the subgroup that decreased peak KAM with rocker-soled shoes (n = 23), change in knee-GRF lever arm and frontal plane GRF magnitude at peak KAM together were significant predictors of change in peak KAM; however, only change in mean knee-GRF lever arm significantly predicted change in KAM impulse. Decreased medial GRF magnitude, increased lateral trunk lean towards the stance limb and reduced varus/increased valgus hip-knee-ankle angle were associated with a lower knee-GRF lever arm in this group, with rocker-soled shoes. In contrast, none of the independent variables predicted changes in KAM in the subgroup who increased peak KAM with rocker-soled shoes (n = 7).  相似文献   

7.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   

8.
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee–ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients.  相似文献   

9.
The purpose of this study was to evaluate the effectiveness of variable-stiffness shoes in lowering the peak external knee adduction moment during walking in subjects with symptomatic medial compartment knee osteoarthritis. The influence on other lower extremity joints was also investigated. The following hypotheses were tested: (1) variable-stiffness shoes will lower the knee adduction moment in the symptomatic knee compared to control shoes; (2) reductions in knee adduction moment will be greater at faster speeds; (3) subjects with higher initial knee adduction moments in control shoes will have greater reductions in knee adduction moment with the intervention shoes; and (4) variable-stiffness shoes will cause secondary changes in the hip and ankle frontal plane moments. Seventy-nine individuals were tested at self-selected slow, normal, and fast speeds with a constant-stiffness control shoe and a variable-stiffness intervention shoe. Peak moments for each condition were assessed using a motion capture system and force plate. The intervention shoes reduced the peak knee adduction moment compared to control at all walking speeds, and reductions increased with increasing walking speed. The magnitude of the knee adduction moment prior to intervention explained only 11.9% of the variance in the absolute change in maximum knee adduction moment. Secondary changes in frontal plane moments showed primarily reductions in other lower extremity joints. This study showed that the variable-stiffness shoe reduced the knee adduction moment in subjects with medial compartment knee osteoarthritis without the discomfort of a fixed wedge or overloading other joints, and thus can potentially slow the progression of knee osteoarthritis.  相似文献   

10.
Large knee adduction moments during gait have been implicated as a mechanical factor related to the progression and severity of tibiofemoral osteoarthritis and it has been proposed that these moments increase the load on the medial compartment of the knee joint. However, this mechanism cannot be validated without taking into account the internal forces and moments generated by the muscles and ligaments, which cannot be easily measured. Previous musculoskeletal models suggest that the medial compartment of the tibiofemoral joint bears the majority of the tibiofemoral load, with the lateral compartment unloaded at times during stance. Yet these models did not utilise explicitly measured muscle activation patterns and measurements from an instrumented prosthesis which do not portray lateral compartment unloading. This paper utilised an EMG-driven model to estimate muscle forces and knee joint contact forces during healthy gait. Results indicate that while the medial compartment does bear the majority of the load during stance, muscles provide sufficient stability to counter the tendency of the external adduction moment to unload the lateral compartment. This stability was predominantly provided by the quadriceps, hamstrings, and gastrocnemii muscles, although the contribution from the tensor fascia latae was also significant. Lateral compartment unloading was not predicted by the EMG-driven model, suggesting that muscle activity patterns provide useful input to estimate muscle and joint contact forces.  相似文献   

11.
To investigate the biomechanical strategy adopted by older adults with medial compartment knee osteoarthritis (OA) for successful obstacle crossing with the trailing limb, and to discuss its implications for fall-prevention, 15 older adults with bilateral medial compartment knee OA and 15 healthy controls were recruited to walk and cross obstacles of heights of 10%, 20%, and 30% of their leg lengths. Kinematic and kinetic data were obtained using a three-dimensional (3D) motion analysis system and forceplates. The OA group had higher trailing toe clearance than the controls. When the trailing toe was above the obstacle, the OA group showed greater swing hip abduction, yet smaller stance hip adduction, knee flexion, and ankle eversion. They showed greater pelvic anterior tilt and toe-out angle. They also exhibited greater peak knee abductor moments during early stance and at the instant when the swing toe was above the obstacle, while a greater peak hip abductor moment was found during late stance. Smaller knee extensor, yet greater hip extensor moments, were found in the OA group throughout the stance phase. In order to achieve higher toe clearance with knee OA, particular joint kinematic and kinetic strategies have been adopted by the OA group. Weakness in the hip abductors and extensors in individuals with OA may be risk factors for tripping owing to the greater demands on these muscle groups during obstacle crossing by these individuals.  相似文献   

12.
We investigated the simple and multivariate associations between knee pain and gait biomechanics. 279 patients with medial knee osteoarthritis (OA) and discordant changes in pain between limbs after walking completed bilateral three-dimensional gait analysis. For each limb, patients rated their pain before and after a 6-min walk and the change in pain was recorded as an increase (≥1 points) or not (≤0 points). Among paired limbs, the simple and multivariate associations between an increase in pain and the external moments in each orthogonal plane were evaluated using conditional logistic regression. The analyses were then repeated for knee angles. Univariate analyses demonstrated associations in each plane that varied in both magnitude and direction, with larger associations for the knee moments [Odds Ratio (95% confidence interval) = first peak adduction moment: 2.80 (2.02, 3.88), second peak adduction moment: 2.36 (1.73, 3.24), adduction impulse: 6.65 (3.50, 12.62), flexion moment: 0.46 (0.36, 0.60), extension moment: 0.56 (0.44, 0.71), internal rotation moment: 7.54 (3.32, 17.13), external rotation moment: 0.001 (0.00, 0.04)]. Multivariate analyses with backward elimination resulted in a model including only the adduction impulse [5.35 (2.51, 11.42)], flexion moment [0.32 (0.22, 0.46)] and extension moment [0.28 (0.19, 0.42)]. The varus, flexion and extension angles were included in the final multivariate model for the knee angles. When between-person confounding is lessened by comparing limbs within patients, there are strong independent associations between knee pain and multiple external knee moments that vary in magnitude and direction. While controlling for other knee moments, a greater adduction impulse and lower flexion and extension moments were independently associated with greater odds of an increase in pain.  相似文献   

13.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

14.
The purposes of this study was to test a mechanism to reduce the knee adduction moment by testing the hypothesis that increased medio-lateral trunk sway can reduce the knee adduction moment during ambulation in healthy subjects, and to examine the possibility that increasing medio-lateral trunk sway can produce similar potentially adverse secondary gait changes previously associated with reduced knee adduction moments in patients with knee osteoarthritis. Nineteen healthy adults performed walking trials with normal and increased medio-lateral trunk sway at a self-selected normal walking speed. Standard gait analysis was used to calculate three-dimensional lower extremity joint kinematics and kinetics. Knee and hip adduction moments were lower (-65.0% and -57.1%, respectively) for the increased medio-lateral trunk sway trials than for the normal trunk sway trials. Knee flexion angle at heel-strike was 3 degrees higher for the increased than for the normal trunk sway trials. Knee and hip abduction moments were higher for the increased medio-lateral trunk sway trials, and none of the other variables differed between the two conditions. Walking with increased medio-lateral trunk sway substantially reduces the knee adduction moment during walking in healthy subjects without some of the adverse secondary effects such as increased axial loading rates at the major joints of the lower extremity. This result supports the potential of using gait retraining for walking with increased medio-lateral trunk sway as treatment for patients with degenerative joint disease such as medial compartment knee osteoarthritis.  相似文献   

15.
Biomechanical non-invasive interventions have been previously reported to reduce pain and facilitate superior levels of function in patients with medial knee osteoarthritis [OA]. One such treatment is the AposTherapy, a customized program utilizing a foot-worn biomechanical device allowing center of pressure modification and continuous perturbation during gait. The influence of this intervention on objective gait metrics has yet to be determined. The aim of the current study was to prospectively examine changes in kinetic and kinematic parameters in patients enrolled in this treatment program. Twenty-five females with symptomatic bilateral medial compartment knee OA were enrolled in the customized daily treatment program. All patients underwent barefoot gait analysis testing and completed subjective questionnaires prior to treatment initiation and on two follow-up visits. Significantly reduced knee adduction moment (KAM) magnitude was noted during barefoot walking after three and nine months of treatment. On average, the knee adduction impulse and the 1st and 2nd KAM peaks were reduced by 13%, 8.4%, and 12.7%, respectively. Furthermore, moment reduction was accompanied by elevated walking velocity, significant pain reduction, and increased functional activity. In addition to symptomatic improvement, our results suggest that this treatment program can alter kinetic gait parameters in this population. We speculate that these adaptations account for the symptomatic and functional improvement reported for this intervention.  相似文献   

16.
Clarifying proximal gait adaptations as a strategy to reduce knee joint loading and pain for individuals with knee osteoarthritis (OA) contributes to understanding the pathogenesis of multi-articular OA changes and musculoskeletal pain in other joints. We aimed to determine whether biomechanical alterations in knee OA patients during level walking is increased upper trunk lean in the frontal and sagittal planes, and subsequent alteration in external hip adduction moment (EHAM) and external hip flexion moment (EHFM). A literature search was conducted in PubMed, PEDro, CINAHL, and Cochrane CENTRAL through May 2018. Where possible, data were combined into a meta-analysis; pooled standardized mean differences (SMD) of between knee OA patients and healthy adults were calculated using a random-effect model. In total, 32 articles (2037 participants, mean age, 63.0 years) met inclusion criteria. Individuals with knee OA had significantly increased lateral trunk lean toward the ipsilateral limb (pooled SMD: 1.18; 95% CI: 0.59, 1.77) along with significantly decreased EHAM. These subjects also displayed a non-significantly increased trunk/pelvic flexion angle and EHFM. The GRADE approach judged all measures as “very low.” These results may indicate that biomechanical alterations accompanying knee OA are associated with increased lateral trunk lean and ensuing alterations in EHAM. Biomechanical alterations in the sagittal plane were not evident. Biomechanical adaptations might have negative sequelae, such as secondary hip abductor muscle weakness and low back pain. Thus, investigations of negative sequelae due to proximal gait adaptations are warranted.  相似文献   

17.
Accurate knowledge of the dynamic knee motion in-vivo is instrumental for understanding normal and pathological function of the knee joint. However, interpreting motion of the knee joint during gait in other than the sagittal plane remains controversial. In this study, we utilized the dual fluoroscopic imaging technique to investigate the six-degree-of-freedom kinematics and condylar motion of the knee during the stance phase of treadmill gait in eight healthy volunteers at a speed of 0.67 m/s. We hypothesized that the 6DOF knee kinematics measured during gait will be different from those reported for non-weightbearing activities, especially with regards to the phenomenon of femoral rollback. In addition, we hypothesized that motion of the medial femoral condyle in the transverse plane is greater than that of the lateral femoral condyle during the stance phase of treadmill gait. The rotational motion and the anterior–posterior translation of the femur with respect to the tibia showed a clear relationship with the flexion–extension path of the knee during the stance phase. Additionally, we observed that the phenomenon of femoral rollback was reversed, with the femur noted to move posteriorly with extension and anteriorly with flexion. Furthermore, we noted that motion of the medial femoral condyle in the transverse plane was greater than that of the lateral femoral condyle during the stance phase of gait (17.4±2.0 mm vs. 7.4±6.1 mm, respectively; p<0.01). The trend was opposite to what has been observed during non-weightbearing flexion or single-leg lunge in previous studies. These data provide baseline knowledge for the understanding of normal physiology and for the analysis of pathological function of the knee joint during walking. These findings further demonstrate that knee kinematics is activity-dependent and motion patterns of one activity (non-weightbearing flexion or lunge) cannot be generalized to interpret a different one (gait).  相似文献   

18.
Varus knee alignment is a risk factor for medial knee osteoarthritis and is associated with high knee adduction moments. Therefore, reducing the knee adduction moment in varus-aligned individuals with otherwise healthy knees may reduce their risk for developing osteoarthritis. A gait modification that improves dynamic knee alignment may reduce the adduction moment, and systematic training may lead to more natural-feeling and less effortful execution of this pattern. To test these hypotheses, eight healthy, varus-aligned individuals underwent a gait modification protocol. Real-time feedback of dynamic knee alignment was provided over eight training sessions, using a fading paradigm. Natural and modified gait were assessed post-training and after 1 month, and compared to pre-training natural gait. The knee adduction moment, as well as hip adduction, hip internal rotation and knee adduction angles were evaluated. At each training session, subjects rated how effortful and natural-feeling the modified pattern was to execute. Post-training, the modified pattern demonstrated an 8° increase in hip internal rotation and 3° increase in hip adduction. Knee adduction decreased 2°, and the knee adduction moment decreased 19%. Natural gait did not differ between the three visits, nor did the modified gait pattern between the post-training and 1 month visits. The modified pattern felt more natural and required less effort after training. Based on these results, gait retraining to improve dynamic knee alignment resulted in significant reductions in the knee adduction moment, primarily through hip internal rotation. Further, systematic training led to more natural-feeling and less effortful execution of the gait pattern.  相似文献   

19.
Previous authors have questioned the practice of normalizing the external knee adduction moment during gait to body size when investigating dynamic joint loading in knee osteoarthritis (OA). The purpose of this study was to compare the abilities of non-normalized and normalized external knee adduction moments during gait in discriminating between patients with least and greatest severity of radiographic medial compartment knee OA. Subjects with mild (n=118) and severe (n=115) medial compartment knee OA underwent three-dimensional gait analysis. The peak external knee adduction moment was calculated and kept in its original units (Nm), normalized to body mass (Nm/kg) and normalized to body weight and height (%BW × Ht). Receiver Operating Characteristic (ROC) curve analysis indicated that non-normalized values better discriminated between patients with mild and severe knee OA. The area under the ROC curve for non-normalized peak knee adduction moments (0.63) was significantly (p<0.05) greater than when normalized to body mass (0.58), or to body weight times height (0.57). Post-hoc analysis of covariance indicated the mean difference in peak knee adduction moment between OA severity groups (7.23 Nm, p=0.003) was reduced by approximately 50% (3.60 Nm, p=0.09) when adjusted for mass. These findings are consistent with the suggestion that non-normalized values are more sensitive to radiographic disease progression. We suggest including knee adduction moment values that are not normalized to body size when investigating knee OA.  相似文献   

20.
Accurate knowledge of the isolated contributions of joint movements to the three-dimensional displacement of the center of mass (COM) is fundamental for understanding the kinematics of normal walking and for improving the treatment of gait disabilities. Saunders et al. (1953) identified six kinematic mechanisms to explain the efficient progression of the whole-body COM in the sagittal, transverse, and coronal planes. These mechanisms, referred to as the major determinants of gait, were pelvic rotation, pelvic list, stance knee flexion, foot and knee mechanisms, and hip adduction. The aim of the present study was to quantitatively assess the contribution of each major gait determinant to the anteroposterior, vertical, and mediolateral displacements of the COM over one gait cycle. The contribution of each gait determinant was found by applying the concept of an ‘influence coefficient’, wherein the partial derivative of the COM displacement with respect to a prescribed determinant was calculated. The analysis was based on three-dimensional measurements of joint angular displacements obtained from 23 healthy young adults walking at slow, normal and fast speeds. We found that hip flexion, stance knee flexion, and ankle-foot interaction (comprised of ankle plantarflexion, toe flexion and the displacement of the center of pressure) are the major determinants of the displacements of the COM in the sagittal plane, while hip adduction and pelvic list contribute most significantly to the mediolateral displacement of the COM in the coronal plane. Pelvic rotation and pelvic list contribute little to the vertical displacement of the COM at all walking speeds. Pelvic tilt, hip rotation, subtalar inversion, and back extension, abduction and rotation make negligible contributions to the displacements of the COM in all three anatomical planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号