首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
One of the major constituents of the synovial fluid that is thought to be responsible for chondroprotection and boundary lubrication is the glycoprotein lubricin (PRG4); however, the molecular mechanisms by which lubricin carries out its critical functions still remain largely unknown. We hypothesized that the interaction of lubricin with type II collagen, the main component of the cartilage extracellular matrix, results in enhanced tribological and wear properties. In this study, we examined: (i) the molecular details by which lubricin interacts with type II collagen and how binding is related to boundary lubrication and adhesive interactions; and (ii) whether collagen structure can affect lubricin adsorption and its chondroprotective properties. We found that lubricin adsorbs strongly onto denatured, amorphous, and fibrillar collagen surfaces. Furthermore, we found large repulsive interactions between the collagen surfaces in presence of lubricin, which increased with increasing lubricin concentration. Lubricin attenuated the large friction and also the long-range adhesion between fibrillar collagen surfaces. Interestingly, lubricin adsorbed onto and mediated the frictional response between the denatured and native amorphous collagen surfaces equally and showed no preference on the supramolecular architecture of collagen. However, the coefficient of friction was lowest on fibrillar collagen in the presence of lubricin. We speculate that an important role of lubricin in mediating interactions at the cartilage surface is to attach to the cartilage surface and provide a protective coating that maintains the contacting surfaces in a sterically repulsive state.  相似文献   

2.
A major challenge in cartilage tissue engineering is the need to recreate the native tissue's anisotropic extracellular matrix structure. This anisotropy has important mechanical and biological consequences and could be crucial for integrative repair. Here, we report that hydrodynamic conditions that mimic the motion‐induced flow fields in between the articular surfaces in the synovial joint induce the formation of a distinct superficial layer in tissue engineered cartilage hydrogels, with enhanced production of cartilage matrix proteoglycan and Type II collagen. Moreover, the flow stimulation at the surface induces the production of the surface zone protein Proteoglycan 4 (aka PRG4 or lubricin). Analysis of second harmonic generation signature of collagen in this superficial layer reveals a highly aligned fibrillar matrix that resembles the alignment pattern in native tissue's surface zone, suggesting that mimicking synovial fluid flow at the cartilage surface in hydrodynamic bioreactors could be key to creating engineered cartilage with superficial zone features. Biotechnol. Bioeng. 2013; 110: 1476–1486. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Using a surface force apparatus, we have measured the normal and friction forces between layers of the human glycoprotein lubricin, the major boundary lubricant in articular joints, adsorbed from buffered saline solution on various hydrophilic and hydrophobic surfaces: i), negatively charged mica, ii), positively charged poly-lysine and aminothiol, and iii), hydrophobic alkanethiol monolayers. On all these surfaces lubricin forms dense adsorbed layers of thickness 60–100 nm. The normal force between two surfaces is always repulsive and resembles the steric entropic force measured between layers of end-grafted polymer brushes. This is the microscopic mechanism behind the antiadhesive properties showed by lubricin in clinical tests. For pressures up to ~6 atm, lubricin lubricates hydrophilic surfaces, in particular negatively charged mica (friction coefficient μ = 0.02–0.04), much better than hydrophobic surfaces (μ > 0.3). At higher pressures, the friction coefficient is higher (μ > 0.2) for all surfaces considered and the lubricin layers rearrange under shear. However, the glycoprotein still protects the underlying substrate from damage up to much higher pressures. These results support recent suggestions that boundary lubrication and wear protection in articular joints are due to the presence of a biological polyelectrolyte on the cartilage surfaces.  相似文献   

4.
Although post-traumatic osteoarthritis accounts for a significant proportion of all osteoarthritis, the understanding of both biological and mechanical phenomena that lead to cartilage degeneration in the years to decades after trauma is still lacking. In this study, we evaluate how cartilage lubrication is altered after a sub-critical impact (i.e., an impact to the cartilage surface that produces surface cracking but not full thickness fissuring). Through utilizing a Stribeck-like framework, the elastoviscous transition, we evaluated changes to both the innate boundary lubricating ability of cartilage after impact and also the effectiveness of high viscosity lubricants to lower friction after impact. Increases in boundary friction coincided with changes in lubricin localization after impact. However, larger increases in friction coefficient were observed in mixed-mode lubrication which can be predicted by increases in surface roughness due to cartilage fissuring. The data here reveal distinct mechanisms of cartilage lubrication that can fail after traumatic impact and may explain a key mechanical phenomenon that predisposes cartilage to development of osteoarthritis after injury.  相似文献   

5.
The reconstruction of the external ear to correct congenital deformities or repair following trauma remains a significant challenge in reconstructive surgery. Previously, we have developed a novel approach to create scaffold-free, tissue engineering elastic cartilage constructs directly from a small population of donor cells. Although the developed constructs appeared to adopt the structural appearance of native auricular cartilage, the constructs displayed limited expression and poor localization of elastin. In the present study, the effect of growth factor supplementation (insulin, IGF-1, or TGF-β1) was investigated to stimulate elastogenesis as well as to improve overall tissue formation. Using rabbit auricular chondrocytes, bioreactor-cultivated constructs supplemented with either insulin or IGF-1 displayed increased deposition of cartilaginous ECM, improved mechanical properties, and thicknesses comparable to native auricular cartilage after 4 weeks of growth. Similarly, growth factor supplementation resulted in increased expression and improved localization of elastin, primarily restricted within the cartilaginous region of the tissue construct. Additional studies were conducted to determine whether scaffold-free engineered auricular cartilage constructs could be developed in the 3D shape of the external ear. Isolated auricular chondrocytes were grown in rapid-prototyped tissue culture molds with additional insulin or IGF-1 supplementation during bioreactor cultivation. Using this approach, the developed tissue constructs were flexible and had a 3D shape in very good agreement to the culture mold (average error <400 µm). While scaffold-free, engineered auricular cartilage constructs can be created with both the appropriate tissue structure and 3D shape of the external ear, future studies will be aimed assessing potential changes in construct shape and properties after subcutaneous implantation.  相似文献   

6.
A model system for the in vitro generation of cartilaginous constructs was used to study a tissue engineering paradigm whereby sequentially applied growth factors promoted chondrocytes to first de-differentiate into a proliferative state and then re-differentiate and undergo chondrogenesis. Early cultivation in medium with supplemental TGF-β1/FGF-2 doubled cell fractions in 2-week constructs compared to unsupplemented controls. Subsequent culture with supplemental IGF-I yielded large 4-week constructs with high fractions of cartilaginous extracellular matrix (ECM) and high compressive moduli, whereas prolonged culture with supplemental FGF-2 yielded small 4-week constructs with low ECM fractions and moduli. Sequential supplementation with TGF-β1/FGF-2 and then IGF-I yielded 4-week constructs with type-specific mRNA expression and protein levels that were high for type II and negligible for type I collagen, in contrast to other growth factor regimens studied. The data demonstrate that structural, functional, and molecular properties of engineered cartilage can be modulated by sequential application of growth factors.  相似文献   

7.
When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.  相似文献   

8.
Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.  相似文献   

9.
A concentric cylinder bioreactor has been developed to culture tissue engineered cartilage constructs under hydrodynamic loading. This bioreactor operates in a low shear stress environment, has a large growth area for construct production, allows for dynamic seeding of constructs, and provides for a uniform loading environment. Porous poly-lactic acid constructs, seeded dynamically in the bioreactor using isolated bovine chondrocytes, were cultured for 4 weeks at three seeding densities (60, 80, 100 x 10(6) cells per bioreactor) and three different shear stresses (imposed at 19, 38, and 76 rpm) to characterize the effect of chondrocyte density and hydrodynamic loading on construct growth. Construct seeding efficiency with chondrocytes is greater than 95% within 24 h. Extensive chondrocyte proliferation and matrix deposition are achieved so that after 28 days in culture, constructs from bioreactors seeded at the highest cell densities contain up to 15 x 10(6) cells, 2 mg GAG, and 3.5 mg collagen per construct and exhibit morphology similar to that of native cartilage. Bioreactors seeded with 60 million chondrocytes do not exhibit robust proliferation or matrix deposition and do not achieve morphology similar to that of native cartilage. In cultures under different steady hydrodynamic loading, the data demonstrate that higher shear stress suppresses matrix GAG deposition and encourages collagen incorporation. In contrast, under dynamic hydrodynamic loading conditions, cartilage constructs exhibit robust matrix collagen and GAG deposition. The data demonstrate that the concentric cylinder bioreactor provides a favorable hydrodynamic environment for cartilage construct growth and differentiation. Notably, construct matrix accumulation can be manipulated by hydrodynamic loading. This bioreactor is useful for fundamental studies of construct growth and to assess the significance of cell density, nutrients, and hydrodynamic loading on cartilage development. In addition, studies of cartilage tissue engineering in the well-characterized, uniform environment of the concentric cylinder bioreactor will develop important knowledge of bioprocessing parameters critical for large-scale production of engineered tissues.  相似文献   

10.
We used a pin-on-disc tribometer to measure the friction coefficient of both pristine and mechanically damaged cartilage samples in the presence of different lubricant solutions. The experimental set up maximizes the lubrication mechanism due to interstitial fluid pressurization. In phosphate buffer solution (PBS), the measured friction coefficient increases with the level of damage. The main result is that when poly(ethylene oxide) (PEO) or hyaluronic acid (HA) are dissolved in PBS, or when synovial fluid (SF) is used as lubricant, the friction coefficients measured for damaged cartilage samples are only slightly larger than those obtained for pristine cartilage samples, indicating that the surface damage is in part alleviated by the presence of the various lubricants. Among the lubricants considered, 100 mg/mL of 100,000 Da MW PEO in PBS appears to be as effective as SF. We attempted to discriminate the lubrication mechanism enhanced by the various compounds. The lubricants viscosity was measured at shear rates comparable to those employed in the friction experiments, and a quartz crystal microbalance with dissipation monitoring was used to study the adsorption of PEO, HA, and SF components on collagen type II adlayers pre-formed on hydroxyapatite. Under the shear rates considered the viscosity of SF is slightly larger than that of PBS, but lower than that of lubricant formulations containing HA or PEO. Neither PEO nor HA showed strong adsorption on collagen adlayers, while evidence of adsorption was found for SF. Combined, these results suggest that synovial fluid is likely to enhance boundary lubrication. It is possible that all three formulations enhance lubrication via the interstitial fluid pressurization mechanism, maximized by the experimental set up adopted in our friction tests.  相似文献   

11.
The limited ability to vascularize and perfuse thick, cell-laden tissue constructs has hindered efforts to engineer complex tissues and organs, including liver, heart and kidney. The emerging field of modular tissue engineering aims to address this limitation by fabricating constructs from the bottom up, with the objective of recreating native tissue architecture and promoting extensive vascularization. In this paper, we report the elements of a simple yet efficient method for fabricating vascularized tissue constructs by fusing biodegradable microcapsules with tunable interior environments. Parenchymal cells of various types, (i.e. trophoblasts, vascular smooth muscle cells, hepatocytes) were suspended in glycosaminoglycan (GAG) solutions (4%/1.5% chondroitin sulfate/carboxymethyl cellulose, or 1.5 wt% hyaluronan) and encapsulated by forming chitosan-GAG polyelectrolyte complex membranes around droplets of the cell suspension. The interior capsule environment could be further tuned by blending collagen with or suspending microcarriers in the GAG solution These capsule modules were seeded externally with vascular endothelial cells (VEC), and subsequently fused into tissue constructs possessing VEC-lined, inter-capsule channels. The microcapsules supported high density growth achieving clinically significant cell densities. Fusion of the endothelialized, capsules generated three dimensional constructs with an embedded network of interconnected channels that enabled long-term perfusion culture of the construct. A prototype, engineered liver tissue, formed by fusion of hepatocyte-containing capsules exhibited urea synthesis rates and albumin synthesis rates comparable to standard collagen sandwich hepatocyte cultures. The capsule based, modular approach described here has the potential to allow rapid assembly of tissue constructs with clinically significant cell densities, uniform cell distribution, and endothelialized, perfusable channels.  相似文献   

12.
This study investigated the hypothesis that dynamic compression loading enhances tissue formation and increases mechanical properties of anatomically shaped tissue engineered menisci. Bovine meniscal fibrochondrocytes were seeded in 2%w/v alginate, crosslinked with CaSO(4), injected into μCT based molds, and post crosslinked with CaCl(2). Samples were loaded via a custom bioreactor with loading platens specifically designed to load anatomically shaped constructs in unconfined compression. Based on the results of finite element simulations, constructs were loaded under sinusoidal displacement to yield physiological strain levels. Constructs were loaded 3 times a week for 1 h followed by 1 h of rest and loaded again for 1 h. Constructs were dynamically loaded for up to 6 weeks. After 2 weeks of culture, loaded samples had 2-3.2 fold increases in the extracellular matrix (ECM) content and 1.8-2.5 fold increases in the compressive modulus compared with static controls. After 6 weeks of loading, glycosaminoglycan (GAG) content and compressive modulus both decreased compared with 2 week cultures by 2.3-2.7 and 1.5-1.7 fold, respectively, whereas collagen content increased by 1.8-2.2 fold. Prolonged loading of engineered constructs could have altered alginate scaffold degradation rate and/or initiated a catabolic cellular response, indicated by significantly decreased ECM retention at 6 weeks compared with 2 weeks. However, the data indicates that dynamic loading had a strikingly positive effect on ECM accumulation and mechanical properties in short term culture.  相似文献   

13.
Human mesenchymal stem cells tissue development in 3D PET matrices   总被引:5,自引:0,他引:5  
Human mesenchymal stem cells (hMSCs) are attractive cell sources for engineered tissue constructs with broad therapeutic potential. Three-dimensional (3D) hMSC tissue development in nonwoven poly(ethylene terephthalate) (PET) fibrous matrices was investigated. HMSCs were seeded onto 3D PET scaffolds and were cultured for over 1 month. Their proliferation rates were affected by seeding density but remained much lower than those of 2D controls. Compared to 2D surfaces, hMSCs grown in 3D scaffolds secreted and embedded themselves in an extensive ECM network composed of collagen I, collagen IV, fibronectin, and laminin. HMSCs were influenced by the orientation of adjacent PET fibers to organize the ECM proteins into highly aligned fibrils. We observed the increased expressions of alpha(2)beta(1) integrin but a slight decrease in the expression of alpha(5)beta(1) integrin in 3D compared to 2D culture and found that alpha(V)beta(3) was expressed only in 2D. Paxillin expression was down-regulated in 3D culture with a concomitant change in its localization patterns. We demonstrated the multi-lineage potentials of the 3D tissue constructs by differentiating the cells grown in the scaffolds into osteoblasts and adipocytes. Taken together, these results showed that hMSCs grown in 3D scaffolds display tissue development patterns distinct from their 2D counterparts and provide important clues for designing 3D scaffolds for developing tissue engineered constructs.  相似文献   

14.
Angiogenesis, a morphogenic event endothelial cells (ECs) undergo in response to 3-D environmental triggers, is critical to the survival and ultimate functional capacity of engineered tissue constructs. Here we present a new collagen mimetic peptide (CMP) architecture consisting of multiple anionic charges at the peptide's N-terminus designed to attract growth factors by charge-charge interactions and bind to collagen by CMP-collagen interaction. The anionic CMPs exhibited specific binding affinity to type I collagen substrates while attracting vascular endothelial growth factors (VEGFs), which led to enhanced morphological features of ECs, indicative of tubulogenesis. The results show that these new CMPs could be used to direct proliferation and differentiation of cells in collagen scaffolds by localization and sustained delivery of growth factors and other morphogens.  相似文献   

15.
Bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured for four weeks using in vitro systems providing different mechanical environments (static and mixed Petri dishes, static and mixed flasks, and rotating vessels) and different biochemical environments (medium with and without supplemental insulin-like growth factor I, IGF-I). Under all conditions, the resulting engineered tissue histologically resembled cartilage and contained its major constituents: glycosaminoglycans, collagen, and cells. The mechanical environment and supplemental IGF-I (a) independently modulated tissue morphology, growth, biochemical composition, and mechanical properties (equilibrium modulus) of engineered cartilage as previously reported; (b) interacted additively or in some cases nonadditively producing results not suggested by the independent responses, and (c) in combination produced tissue superior to that obtained by modifying these factors individually.  相似文献   

16.
Efficient cell seeding and subsequent support from a substrate ensure optimal cell growth and neotissue development during tissue engineering, including heart valve tissue engineering. Fibrin gel as a cell carrier may provide high cell seeding efficiency and adhesion property, improved cellular interaction, and structural support to enhance cellular growth in trilayer polycaprolactone (PCL) substrates that mimic the structure of native heart valve leaflets. This cell carrier gel coupled with a trilayer PCL substrate may enable the production of native-like cell-cultured leaflet constructs suitable for heart valve tissue engineering. In this study, we seeded valvular interstitial cells onto trilayer PCL substrates with fibrin gel as a cell carrier and cultured them for 1 month in vitro to determine if this gel can improve cell proliferation and production of extracellular matrix within the trilayer cell-cultured constructs. We observed that the fibrin gel enhanced cellular proliferation, their vimentin expression, and collagen and glycosaminoglycan production, leading to improved structure and mechanical properties of the developing PCL cell-cultured constructs. Fibrin gel as a cell carrier significantly improved the orientations of the cells and their produced tissue materials within trilayer PCL substrates that mimic the structure of native heart valve leaflets and, thus, may be highly beneficial for developing functional tissue-engineered leaflet constructs.  相似文献   

17.
Lubricin is a surface-active mucinous glycoprotein secreted in the synovial joint that plays an important role in cartilage integrity. In healthy joints, lubricin molecules coat the cartilage surface, providing boundary lubrication and preventing cell and protein adhesion. Arthropathy occurring in patients with joint trauma, inflammatory arthritis or genetically mediated lubricin deficiencies have insufficient lubricin to prevent damage to articular cartilage. Recent studies in lubricin null joints indicate that lubricin (Prg4) plays a role in preventing damage to the superficial zone and preservation of chondrocytes. Progress in the production of recombinant forms of lubricin and the successes of lubricin supplementation in small animal models identify rhPRG4 as a potential therapeutic for patients with transient lubricin deficiency in the setting of trauma or autoimmune arthritis.  相似文献   

18.
Three-dimensional cell culture and conditioning is an effective means to guide cell distribution and patterning for tissue engineered constructs such as vascular grafts. Polyacrylic acid is known as an electroresponsive polymer, capable of transforming environmental stimuli like electrical energy to mechanical forces. In this study, we developed an electrosensitive and biocompatible hydrogel-based smart device composed of acrylic acid and fibrin as a tissue engineered construct to mechanically stimulate cells. Structural properties of the hydrogel were assessed by FTIR-ATR, scanning electron microscopy, prosimetry, and swelling measurement. Distribution and alignment of porcine smooth muscle cells (pSMCs) seeded on the surface of lyophilized hydrogels were evaluated and quantified by two-photon laser scanning microscopy. Smooth muscle cell tissue constructs exposed to 2 h of pulsatile electrical stimulation showed significantly enhanced cell penetration and alignment due to dynamic changes produced by alternative swelling and deswelling, in comparison with static samples. On the basis of the results, this hydrogel under electrical stimulation works as a mechanical pump, which can direct SMC alignment and facilitate infiltration and distribution of cells throughout the structure.  相似文献   

19.
Boundary lubrication of articular cartilage by conformal, molecularly thin films reduces friction and adhesion between asperities at the cartilage-cartilage contact interface when the contact conditions are not conducive to fluid film lubrication. In this study, the nanoscale friction and adhesion properties of articular cartilage from typical load-bearing and non-load-bearing joint regions were studied in the boundary lubrication regime under a range of physiological contact pressures using an atomic force microscope (AFM). Adhesion of load-bearing cartilage was found to be much lower than that of non-load-bearing cartilage. In addition, load-bearing cartilage demonstrated steady and low friction coefficient through the entire load range examined, whereas non-load-bearing cartilage showed higher friction coefficient that decreased nonlinearly with increasing normal load. AFM imaging and roughness calculations indicated that the above trends in the nanotribological properties of cartilage are not due to topographical (roughness) differences. However, immunohistochemistry revealed consistently higher surface concentration of boundary lubricant at load-bearing joint regions. The results of this study suggest that under contact conditions leading to joint starvation from fluid lubrication, the higher content of boundary lubricant at load-bearing cartilage sites preserves synovial joint function by minimizing adhesion and wear at asperity microcontacts, which are precursors for tissue degeneration.  相似文献   

20.
In this study, we aimed at validating a rotary cell culture system (RCCS) bioreactor with medium recirculation and external oxygenation, for cartilage tissue engineering. Primary bovine and human culture-expanded chondrocytes were seeded into non-woven meshes of esterified hyaluronan (HYAFF-11), and the resulting constructs were cultured statically or in the RCCS, in the presence of insulin and TGFbeta3, for up to 4 weeks. Culture in the RCCS did not induce significant differences in the contents of glycosaminoglycans (GAG) and collagen deposited, but markedly affected their distribution. In contrast to statically grown tissues, engineered cartilage cultured in the RCCS had a bi-zonal structure, consisting of an outgrowing fibrous capsule deficient in GAG and rich in collagen, and an inner region more positively stained for GAG. Structurally, trends were similar using primary bovine or expanded human chondrocytes, although the human cells deposited inferior amounts of matrix. The use of the presented RCCS, in conjunction with the described medium composition, has the potential to generate bi-zonal tissues with features qualitatively resembling the native meniscus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号