首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以无锡市河埒口休闲广场街头绿地为对象,研究了典型天气条件(晴天、多云、雨后阴天)下绿地内4种粒径颗粒物(TSP、PM10、PM2.5和PM1)的质量浓度变化规律及其影响因素。结果表明:(1)绿地内TSP、PM10、PM2.5和PM1质量浓度日均值均为:晴天多云雨后阴天。雨后阴天的PM10、PM2.5和PM1浓度均极显著高于晴天和多云,多云天气的PM2.5和PM1浓度极显著高于晴天。多云和阴天天气下PM2.5和PM1质量浓度的增幅远高于TSP和PM10。(2)在观测时段内,晴天和多云4种粒径颗粒物的日变化曲线基本一致,上午浓度高于下午,7:00和13:00—15:00分别出现峰值和低谷;雨后阴天时,随时间推进颗粒物浓度呈递增趋势。晴天时小粒径颗粒物所占比例日变化与其浓度协同变化,多云和雨后阴天时则基本呈相悖状态。(3)3种天气条件下,街头绿地内仅晴天时PM2.5浓度达到国家二类功能区质量要求,其他均超出二级浓度限值。(4)晴天街头绿地内主要为粒径2.5~10μm的PM10污染,污染较轻;而多云和雨后阴天时TSP、PM10和PM2.5污染均较严重,TSP污染以粒径10μm的颗粒物为主,PM10以粒径2.5μm的为主,PM2.5主要为1~2.5μm范围内的颗粒物污染。(5)空气相对湿度是无锡高湿环境下影响颗粒物浓度的最主要因子。晴天,颗粒物浓度与风速、气温、光照强度呈显著负相关,与相对湿度、车流量呈显著正相关;多云天气大气颗粒物浓度与湿度呈显著正相关,与其他因素相关性均未达显著水平;雨后阴天时大气颗粒物浓度与湿度呈负相关,与其他指标相关性不显著。  相似文献   

2.
北京西山典型城市森林内PM_(2.5)动态变化规律   总被引:11,自引:0,他引:11  
王成  郭二果  郄光发 《生态学报》2014,34(19):5650-5658
城市森林内PM2.5浓度的状况可以直接反映城市森林对PM2.5的净化效果,也是居民休闲游憩关心的森林环境问题。选择北京西山3种典型的游憩型城市森林,通过对林内PM2.5浓度一年四季昼夜24h内变化的同步观测,分析了不同类型城市森林内PM2.5浓度的季节变化、日变化以及影响因素,结果表明:(1)北京西山3种游憩林内PM2.5浓度多数时候远低于城区对照值,在春、夏、秋三季都达到了国家城市化地区的标准,甚至在春季、秋季还达到了国家一类地区的标准。(2)城市森林在不同季节对PM2.5的净化效果存在差异,林内PM2.5浓度总体上呈现冬季夏季秋季春季的规律。(3)林内PM2.5浓度在一天24h内有很大变化波动,夜间浓度总体上高于白天,日变化曲线近似呈"双峰双谷"型,两个高峰出现在夜晚和早上,两个低谷出现在凌晨和中午前后。一年四季白天低谷出现时间有所不同,春季15:00左右、夏季13:00—17:00、秋季13:00—15:00、冬季9:00—11:00。(4)PM2.5在不同类型游憩林内的变化趋势和浓度值存在一定差异。郁闭度较大的侧柏林夜间PM2.5浓度总体上高于其它两种林型,其高峰和低谷出现时间延迟,高峰值大,高峰期持续时间长,且这种规律在秋季表现得更明显。(5)基于上述研究认为,北京西山城市森林为居民在PM2.5污染比较突出的都市背景下提供了一个相对清洁、健康的森林游憩环境,春季、夏季、秋季全天以及冬季9:00—11:00均是森林中PM2.5状况健康而适宜外出游憩的时段。  相似文献   

3.
园林植物具有显著消减空气颗粒物(PM)污染的作用,能有效地改善城市环境质量。但迄今为止,国内外的大量研究都集中在园林植物对总悬浮颗粒物(TSP)或者粗颗粒物(PM10)的阻滞效应上,植物吸附空气细颗粒物(PM2.5)的研究尚处于探索阶段。本文概述了植物叶片吸附空气PM的方式,叶片PM2.5化学物质的转移过程以及植物吸附PM2.5的周期性,探讨了植物叶片对空气不同粒径颗粒物的吸附特征,园林植物吸附空气PM2.5的能力与机制,并从植物吸附PM2.5的测定方法、园林植物吸附PM2.5能力的测定和评价、高吸附PM2.5能力的园林植物筛选、园林植物吸附PM2.5的机制与影响因素等方面提出了园林植物吸附PM2.5的研究重点与趋势,以期为深化植物吸附PM2.5的机制研究及高吸附PM2.5能力的园林植物筛选提供依据。  相似文献   

4.
对北京南海子公园PM2.5 和PM10 的浓度水平进行了研究, 并讨论了PM2.5 和PM10 的时间变化特征及其受气象因素的影响, 分析了南海子公园空气质量浓度差异。结果表明: 南海子公园PM2.5 和PM10 平均质量浓度分别为(110.22±19.19) μg·m3和(125.58±3.62) μg·m3, 南海子公园大气颗粒物主要是以细粒子为主, PM2.5 超标46.96 %, PM10 未超标; 南海子公园PM2.5 和PM10质量浓度的日变化以夜间低, 白天高为主, 呈现明显的双峰型, 南海子公园的PM2.5和PM10质量浓度变化幅度较大; 从不同月份来看, 南海子公园PM2.5 质量浓度6 月最大、8 月最低; 温度、风和降水与PM2.5 和PM10 质量浓度呈负相关关系, 湿度与PM2.5 和PM10 质量浓度呈正相关关系, 大风和降雨能有效的清除颗粒物, 特别是细颗粒物。  相似文献   

5.
以2017年1—12月宁夏沙坡头自然保护区PM_(10)和气象要素的监测数据为基础,采用逐步回归分析研究了不同月份和季节PM_(10)浓度分布特征,并探讨气象要素对PM_(10)浓度的影响。结果表明:PM_(10)浓度存在明显的时间变化特征,就月份而言,5月PM_(10)浓度最高,4月和6月次之,8月和9月最低,季节尺度上春季冬季夏季秋季; PM_(10)浓度受到气象因素影响,风速低于1.5 m·s~(-1)时,PM_(10)浓度随风速的增加而逐渐降低,大于1.5 m·s~(-1)以后,PM_(10)浓度开始逐渐升高;北风对PM_(10)污染有较明显的驱散作用,东风则对PM_(10)污染起累积作用;降水对空气颗粒物有明显的清除和冲刷作用,降水日PM_(10)浓度比无降水日减少46.5%;相对湿度为50%左右,PM_(10)浓度达到最高,此后随相对湿度的增加而逐渐降低;不同时间下,影响PM_(10)浓度的气象因子有所差异。  相似文献   

6.
基于野外观测与遥感反演相结合的方法,在点位和区域尺度上研究北京城区湿地在削减大气细颗粒物PM2.5中的作用。结果表明,北京城区湿地能够显著削减周边大气环境中的细颗粒物浓度,其中翠湖湿地附近的PM2.5浓度显著低于周边裸地(P0.05),可削减空气中17%的PM2.5,降低幅度最高可达50%。而且,湖库湿地在削减PM2.5浓度方面作用更加显著,优于河流湿地(P0.05)。北京市PM2.5浓度的空间分布格局表现出西北东南、郊区城区的空间分布规律。因此,在未来的湿地建设中应合理选择湿地类型,更多地考虑紧凑型湿地如湖库湿地的建设,科学配置湿地和植物资源,使湿地更加有效地发挥其增湿、促使局地流场发生变化的作用,最终改善局地微气象条件,削减大气细颗粒物,缓解城市雾霾天气。研究结果为北京市湿地保护管理、规划和布局以及及时制定控制PM2.5的政策和措施提供了科学依据。  相似文献   

7.
细颗粒物(PM2.5)与植被关系的研究综述   总被引:5,自引:0,他引:5  
细颗粒物即PM,2.5,粒径小,沉降困难,危害严重,植被在一定程度上有助于减轻颗粒物污染.本文从阐述PM2.5的沉降机理出发,分析PM2.5与植被之间的相互作用.植被的阻滞吸收作用对大气颗粒物移除存在积极影响,而过多的空气颗粒物滞留对植物生长起到一定的负面作用,但以植被对大气颗粒物的移除为主导作用.以此为基础,从林分尺度-环境特性、单木尺度-树种特性和叶片尺度-颗粒物种类和分布特性这3个角度出发,结合外界影响因素(气象学要素、空气动力学要素、大气颗粒浓度水平、植物物候变化)、气室实验以及滞留颗粒物特征等阐述植被林冠、枝干及叶片等对移除PM2.5的影响.最后,文章指出今后的研究应当向定量化方向发展,注重不同树种移除PM2.5能力的对比分析及系统研究,并针对研究区域确定防治大气PM2.5污染的优势树种.  相似文献   

8.
奥运期间北京PM_(2.5)、NO_X、CO的动态特征及影响因素   总被引:3,自引:0,他引:3  
为了成功举办第29届奥运会,确保北京奥运期间空气质量良好,采取交通管制和工厂停工等临时减排措施改善北京空气环境,希望通过这些措施使大气污染物排放量大幅度降低。在奥运前的综合治理措施中,已经对北京市的烟尘和粉尘排放控制起到了明显效果。在奥运期间更是执行了严格的燃煤污染控制和工业污染控制措施。奥运期间19家重点排污企业和4家燃煤电厂,采取压缩产量、调整运行方式、加强污染设施运行管理等措施,在确保达标基础上,减排30%。并从2008年7月1日起执行世界上最严格的燃煤锅炉排放标准限值。为控制工业污染,150多家重污染企业停产减产限产。这些举措使得奥运期间烟尘和粉尘的排放量大大减少,对PM2.5、NOX、CO的浓度下降起重要作用。此外,奥运期间城区工地停止土石方工程和混凝土浇注工程,对减少施工扬尘、建筑扬尘有明显效果。机关单位、商场、居民实行了错峰上下班措施和公交出行等绿色出行方式,进一步减少了PM2.5、NOX、CO的来源和积累。利用北京城市系统生态研究站的空气环境质量监测数据,对奥运期间北京可吸入颗粒物(PM2.5)、氮氧化物(NOX)、一氧化碳(CO)的日平均浓度的动态特征及其气象因素的关系进行了分析。结果表明:北京奥运期间PM2.5、NOX、CO在生态中心观测点与教学植物园观测点的平均浓度分别为0.060和0.070、0.065mg/m3和0.03、0.65和1.10mg/m3,显著低于奥运后PM2.5、NOX、CO日平均浓度。奥运后PM2.5日平均浓度与奥运期间比较,生态中心站与教学植物园站分别升高3.3%与58.8%,NOX日平均浓度与奥运期间比较2个站分别升高76.9%和56.7%,CO日平均浓度与奥运期间比较2个站分别升高56.5%和163%。奥运期间PM2.5、NOX、CO质量浓度的日变化都呈双峰现象,一个峰出现在7:00—10:00之间,另一个峰出现在18:00—23:00之间,这一特征与通常的北京空气污染物日变化过程一致,污染物浓度日变化双峰现象,虽与气象条件有关,但汽车尾气排放也是一个重要影响因素。主要是由于上班、上学、交通运输的高峰期,车流量大,尾气排放量也大,从而可能对形成上午与夜间的两个PM2.5、NOX、CO浓度高峰起了重要作用。奥运期间污染物除了生态中心监测点的PM2.5小时平均浓度与小时平均温度、风速有显著相关性,与其他气象因素并无相关性。研究表明奥运期间实施的临时空气环境污染控制措施有明显的效果。  相似文献   

9.
李贺  王道涵 《生态科学》2017,36(1):201-208
运用阜新市2014 年PM2.5 质量浓度和气象数据, 经过整理分析及量化计算, 得到阜新市的PM2.5 污染时空分布特征及影响因素。结果表明, 阜新市PM2.5 污染在时间序列上呈季节性变化, 冬季均值最高为76.4 μg·m–3, 夏季最低为41.8 μg·m–3, 春季和秋季分别为53.6 μg·m–3 和52.9 μg·m–3, 一天中9 点、20 点为PM2.5 浓度值高峰时段。空间上, 阜新市自东向西PM2.5 污染逐渐加重, 但位于主城区的“长青街”点位附近PM2.5 质量浓度值均较高; 通过多因素相关分析可知PM2.5 污染分布及变化趋势是污染源排放及气象因素共同作用的结果, 在影响PM2.5 质量浓度的气象因素中, 相对湿度和气压与PM2.5 质量浓度正相关, 气温、风速和降水与PM2.5 质量浓度负相关。偏相关分析结果显示除气压外, 各气象要素间相互影响, 因此可通过建立气象要素与PM2.5 质量浓度估算模型在低浓度区估算PM2.5 质量浓度。  相似文献   

10.
为研究风景游憩林中PM2.5浓度的变化规律及其对气象因子的响应,并分析不同林分对PM2.5浓度的调控作用,在2013年夏、秋、冬季于北京市奥林匹克森林公园内对北京4种典型结构风景游憩林(华山松-银杏混交林、毛白杨-白蜡混交林、毛白杨纯林、多树种复层混交林)中的PM2.5浓度及相关气象因子进行实时测定(共28个观测日).结果表明: 在不同空气污染级别下林分内PM2.5浓度的日变化无统一规律,但在同一污染级别下4种林分的PM2.5浓度日变化规律基本一致.当风力为0~2级时,在各污染级别下4片林分内PM2.5浓度的日均值\[观测时段内(9: 00—15: 00)PM2.5浓度平均值\]无显著差异.林内PM2.5浓度与空气相对湿度呈显著正相关(P<0.01),与气温呈显著负相关(P<0.05),与风速不相关.相对于林分外空地,林分内PM2.5浓度变化比例在-21.4%~33.2%,其与空气相对湿度呈显著负相关(P<0.05),与风速和气温不相关.林分对PM2.5浓度的调控作用包含增加和降低两种效应,本研究中,这种调控作用发生转变的空气相对湿度临界值为67%.  相似文献   

11.
为研究风景游憩林中PM2.5浓度的变化规律及其对气象因子的响应,并分析不同林分对PM2.5浓度的调控作用,在2013年夏、秋、冬季于北京市奥林匹克森林公园内对北京4种典型结构风景游憩林(华山松-银杏混交林、毛白杨-白蜡混交林、毛白杨纯林、多树种复层混交林)中的PM2.5浓度及相关气象因子进行实时测定(共28个观测日).结果表明: 在不同空气污染级别下林分内PM2.5浓度的日变化无统一规律,但在同一污染级别下4种林分的PM2.5浓度日变化规律基本一致.当风力为0~2级时,在各污染级别下4片林分内PM2.5浓度的日均值\[观测时段内(9: 00—15: 00)PM2.5浓度平均值\]无显著差异.林内PM2.5浓度与空气相对湿度呈显著正相关(P<0.01),与气温呈显著负相关(P<0.05),与风速不相关.相对于林分外空地,林分内PM2.5浓度变化比例在-21.4%~33.2%,其与空气相对湿度呈显著负相关(P<0.05),与风速和气温不相关.林分对PM2.5浓度的调控作用包含增加和降低两种效应,本研究中,这种调控作用发生转变的空气相对湿度临界值为67%.  相似文献   

12.
闫珊珊  洪波 《生物信息学》2019,26(7):101-106
研究选取城市公园中6个由不同景观要素构成的空间,通过监测不同空间内PM2.5浓度、空气温度、相对湿度及风速风向,分析不同空间景观要素组成与PM2.5浓度之间的关系,探讨不同空间气象因子变化与PM2.5浓度的相关性。研究结论如下,1)不同景观要素构成的空间中PM2.5浓度存在显著差异(P< 0.05)。2)PM2.5浓度与绿量(D)呈显著负相关(R=-0.966), 当113.57 m2相似文献   

13.
2013年6月—2014年5月在贵阳市以每24 h为一个混合样连续采集了357个大气PM2.5样品,采用Lumex测汞仪(RA-915塞曼效应汞分析仪和配套PYRO-915热解装置),分析了颗粒物PM2.5汞浓度,并结合HOBO U30气象仪同步记录气象数据分析汞的浓度变化。结果表明,贵阳市全年大气颗粒物PM2.5汞日浓度在11~2560 pg·m-3,平均值为104±85 pg·m-3,其中12、1月份颗粒态汞浓度较高,7月份最低,全年有164 d超过全球背景值。以季节划分来看,全年季节平均值为107±60 pg·m-3,存在季节性差异,表现为:夏季秋季春季冬季,明显受风向、风速和降雨等气象参数影响,春、秋、冬季节以东北风为主风向,存在明显污染源,同时冬季降雨量小,污染物聚集,导致冬季污染最高,夏季以南风为主风向,风速大,降雨量大,因此汞浓度夏季最低。结合气象因素初步分析得出,颗粒态汞主要来源于燃煤与工业排放,与国内现有报道数据相比较,处于轻度污染水平。  相似文献   

14.
以杭州西湖风景区花港观鱼公园为研究对象,对比分析节假日与非节假日公园内大气颗粒物(PM2.5、PM10)浓度与游客量、气象因子、植物群落类型的相关性,并从宏观—中观—微观3个层次探究花港观鱼公园大气颗粒物浓度的节假日特征,为城市公园的科学建设提供参考和依据。研究发现:大气颗粒物浓度有明显的节假日效应。宏观方面,杭州主城区元旦节期间大气污染物主要是PM2.5和PM10,节日期间的平均浓度分别为102±41.51μg.m-3、155±64.86μg.m-3,分别是非节日的1.6倍、1.7倍。杭州主城各区受节日影响较大的是余杭区、萧山区和下城区。中观方面,花港观鱼公园节日期间PM2.5和PM10有波峰现象且振幅剧烈呈锯齿状;非节日期间午后出现波谷,上下振幅较小,其影响因子特征表现为:节日期间游客量与大气颗粒物浓度相关性较高,游客游览观光活动对PM10的贡献率更大;气象因子对PM10的影响比PM2.5显著。微观方面,公园内3种不同植物群落类型绿地的PM2.5浓度表现为:密林>纯林>草坪。  相似文献   

15.
以毛白杨为例,提出一种利用激光粒度仪和天平定量评估植物叶片吸滞细颗粒物(PM2.5,直径d≤2.5μm)等大气颗粒物能力的方法——洗脱称量粒度分析法(EWPA),实现了对植物叶片吸滞大气颗粒物质量和粒径分布的直接、准确测定,可操作性强.首先,进行预试验对试验方法的稳定性进行检验;其次,通过对叶片进行清洗、离心洗液、烘干等步骤收集其吸滞的颗粒物,然后对颗粒物称量,并采用激光粒度仪测定颗粒物的粒径分布;最后,利用叶面积和林分叶面积指数数据换算得到单位面积叶片和林分的各径级颗粒物吸滞量.在北京市奥林匹克森林公园内一片毛白杨林分(27 d未经历降雨)中应用该法,测得毛白杨叶片吸滞大气颗粒物的粒径均值为17.8μm,吸滞PM2.5、可吸入颗粒物(PM10,d≤10μm)和总悬浮颗粒物(TSP,d≤100μm)的体积百分比分别为13.7%、47.2%和99.9%;叶片的PM2.5、PM10、TSP和总颗粒物吸滞量分别为8.88×10-6、30.6×10-6、64.7×10-6和64.8×10-6g·cm-2;林分的PM2.5、PM10、TSP和总颗粒物吸滞量分别为0.963、3.32、7.01和7.02 kg·hm-2.  相似文献   

16.
随着城市化进程的加快,城市规模逐渐扩大并产生了一系列的生态环境问题,公园绿地作为城市绿化重要的拓展途径,能够有效缓解和改善城市及其周边的空气质量。本研究以东陵公园为对象,分析了公园内不同功能分区空气颗粒物和空气负离子浓度变化,探究了颗粒物与负离子的关系。结果表明:东陵公园不同功能分区内颗粒物浓度(TSP、PM_(10)、PM_(2.5)和PM_(1.0))日变化中最低值出现在山林生态区13:00—16:00,最高值出现在文化景观区07:00—10:00;月变化中最低值出现在湖畔游憩区,时间为9月,最高值出现在文化景观区,时间为7月;不同功能分区内颗粒物浓度存在显著差异,文化景观区内颗粒物浓度显著高于其他功能分区,不同功能区内负离子浓度无显著性差异,负离子日变化中最低值出现在文化景观区07:00—10:00,最高值出现在山林生态区13:00—16:00;月变化中最低值出现在文化景观区,时间为7月,最高值出现在湖畔游憩区,时间为9月,不同功能分区内空气颗粒物与负离子浓度呈显著负相关(P0.05),TSP、PM_(10)与负离子相关性较高;山林生态区内颗粒物与负离子浓度相关性最强,相关系数分别为-0.698、-0.647、-0.525和-0.485。  相似文献   

17.
针对PM2.5中重金属铅污染的日益加重问题,本文利用气溶胶发生系统模拟PM2.5含铅颗粒的发生,研究欧美杨107(Populus euramericana‘Neva’)叶片在不同浓度含铅颗粒物污染处理下对铅的吸附、吸收和转运,以及叶片气孔和相应生理指标的变化。结果表明:欧美杨叶片表面能够吸附含铅颗粒物,重度污染处理的叶片吸附的颗粒物数量多于轻度污染处理。2种铅污染浓度处理的欧美杨均是叶片中的铅含量最高,茎和根中的铅含量较少。但不同污染处理下叶中的铅向茎和根中的运输存在差异。轻度污染处理第3天时,叶中的铅仅运输至茎部,到第7天时运输至根,而在重度污染处理的第3天,叶中的铅已运输至根部。超微结构观察显示,叶片表皮细胞中的铅仅在细胞壁中出现,通过质外体向内运输至叶肉细胞,而叶肉细胞中的铅主要分布在细胞壁和细胞质,液泡中有少量分布。2种污染浓度处理后,随处理时间的延长,欧美杨叶片气孔的开度变小,叶片中的丙二醛(MDA)和脯氨酸(Pro)含量逐渐升高以及超氧化物歧化酶(SOD)活性逐渐增强。研究表明,欧美杨叶片具有吸附、吸收PM2.5中铅的能力,同时通过降低气孔开度、渗透调节、提高抗氧化能力等生理过程来应对大气中的铅污染。  相似文献   

18.
PM2.5和PM10已成为我国大部分城市空气的首要污染物.本文通过分析南昌市2013—2015年的空气PM2.5和PM10质量浓度、气象因素、交通流量的监测数据,探讨了空气颗粒物污染的时空动态规律以及气象、交通对颗粒物浓度变化的影响.结果表明: 2013、2014、2015年,南昌市PM2.5浓度(70.92 μg·m-3>53.70 μg·m-3>43.65 μg·m-3)、PM10浓度(119.72 μg·m-3>86.11 μg·m-3>73.32 μg·m-3)逐年降低,并呈现出夏季低(PM2.5和PM10平均浓度分别为36.74、69.20 μg·m-3)、冬季高(PM2.5和PM10平均浓度分别为74.29、111.64 μg·m-3)的季节动态和由城市中心向郊区递减的城乡梯度变化; PM2.5/PM10值(0.595>0.584>0.557)逐年降低,并且表现出城市中心高、城市边缘低的空间分布格局;PM2.5、PM10浓度受到多种气象因素的影响,与气压、温度、相对湿度、风速、降水量、日照时数显著相关,各种气象因子对PM2.5、PM10浓度的影响存在差异;车流量会显著提高周边PM2.5浓度,但对PM10浓度影响不明显.  相似文献   

19.
PM2.5和PM10已成为我国大部分城市空气的首要污染物.本文通过分析南昌市2013—2015年的空气PM2.5和PM10质量浓度、气象因素、交通流量的监测数据,探讨了空气颗粒物污染的时空动态规律以及气象、交通对颗粒物浓度变化的影响.结果表明: 2013、2014、2015年,南昌市PM2.5浓度(70.92 μg·m-3>53.70 μg·m-3>43.65 μg·m-3)、PM10浓度(119.72 μg·m-3>86.11 μg·m-3>73.32 μg·m-3)逐年降低,并呈现出夏季低(PM2.5和PM10平均浓度分别为36.74、69.20 μg·m-3)、冬季高(PM2.5和PM10平均浓度分别为74.29、111.64 μg·m-3)的季节动态和由城市中心向郊区递减的城乡梯度变化; PM2.5/PM10值(0.595>0.584>0.557)逐年降低,并且表现出城市中心高、城市边缘低的空间分布格局;PM2.5、PM10浓度受到多种气象因素的影响,与气压、温度、相对湿度、风速、降水量、日照时数显著相关,各种气象因子对PM2.5、PM10浓度的影响存在差异;车流量会显著提高周边PM2.5浓度,但对PM10浓度影响不明显.  相似文献   

20.
大气细颗粒物(PM2.5)能够深入下呼吸道,直达肺泡,并且能透过肺呼吸道屏障,进入循环系统,随血流而到达全身各靶器官,对其组织细胞造成伤害。除诱发呼吸系统疾病外,PM2.5还能致心血管疾病、糖尿病、恶性肿瘤等多种疾病的发生和发展。PM2.5致局部组织或系统的急性或慢性炎症、炎症细胞的浸润、炎症因子的异常表达与释放等,被认为是致人体健康损伤的重要机制。在综述PM2.5与炎症细胞的相互作用、炎症因子的表达与释放等致炎症效应新成果的基础上,概述了近年来人们对于PM2.5致炎症作用机制的新认识。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号