首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper we discuss the constraints and combinatorial problems of folding long RNA and single stranded DNA molecules into base paired structures. A computer code FOLD-A was designed to perform base pairing foldings of very long sequence chains and search for low energy configurations. The logic of the FOLD-A algorithm is described in some detail. The applications of FOLD-A to the A-protein gene of MS2 and the whole genome of the phi X 174 phage with over 5300 bases are discussed in the accompanying paper.  相似文献   

2.
The A* protein of phi X174 is an inhibitor of DNA replication   总被引:6,自引:1,他引:5       下载免费PDF全文
Extracts prepared from phi X174 infected E. coli cells inhibited in vitro RF replication The inhibition was dependent upon the presence of A* protein in the reaction and served as an assay to highly purify the A* protein. Purified A* protein bound tightly to duplex DNA as well as single-stranded DNA. The binding of the A* protein to duplex DNA inhibited (I) its single-stranded DNA specific endonucleolytic activity; (II) in vitro synthesis of viral (+) single stranded DNA on an A-RFII DNA complex template; (III) ATP hydrolysis by rep protein and unwinding of the strands of RF DNA. We propose that this inhibitory activity is responsible in vivo for the shut off of E. coli chromosome replication during phi X174 infection, and has a role in the transition from semiconservative RF DNA replication to single-stranded DNA synthesis in the life cycle of phi X174.  相似文献   

3.
The purified A protein and A* protein of bacteriophage phi X174 have been tested for endonuclease activity on single stranded viral phi X174 DNA. The A protein (55.000 daltons) nicks single-stranded DNA in the same way and at the same place as it does superhelical RFI DNA, at the origin of DNA replication. The A* protein (37.000 daltons) can cleave the single-stranded viral DNA at many different sites. It has however a strong preference for the origin of replication. Both proteins generate 3'OH ends and blocked 5' termini at the nick site.  相似文献   

4.
The efficiency of Weigle reactivation of ultraviolet light-irradiated single and double-stranded phi X174 DNA by wild-type and excision repair-defective E. coli hosts was determined. After limited exposure to ultraviolet light, the efficiency of Weigle reactivation by an ultraviolet light-irradiated wild-type host was greater for double-stranded phi X174 DNA than for its single-stranded counterpart. However, the efficiency of inducible recovery of the double-stranded DNA molecule decreased as its exposure to ultraviolet light increased until it became constant at a value 1.5 times less than that for single-stranded form of phi X174 DNA. The efficiency of Weigle reactivation of the single-stranded DNA molecule by the same host, however, was independent of the dose to the DNA, as were the efficiencies of reactivation for both forms of phi X174 DNA by ultraviolet light-irradiated excision repair-deficient hosts. In excision repair-defective hosts the efficiency of Weigle reactivation of double-stranded phi X174 DNA was also 1.5 times less than that for the single-stranded molecule. These results suggest that the Weigle reactivation of double-stranded phi X174 DNA is mediated in part by an excision repair process, and that this component of Weigle reactivation eventually can be saturated by ultraviolet light-induced DNA damage leaving other repair processes, such as trans-damage synthesis, responsible for the remaining inducible reactivation.  相似文献   

5.
An M13 phage deletion mutant, M13 delta E101, developed as a vector for selecting DNA sequences that direct DNA strand initiation on a single-stranded template, has been used for cloning restriction enzyme digests of phi X174 replicative-form DNA. Initiation determinants, detected on the basis of clear-plaque formation by the chimeric phage, were found only in restriction fragments containing the unique effector site in phi X174 DNA for the Escherichia coli protein n' dATPase (ATPase). Furthermore, these sequences were functional only when cloned in the orientation in which the phi X174 viral strand was joined to the M13 viral strand. A 181-nucleotide viral strand fragment containing this initiation determinant confers a phi X174-type complementary-strand replication mechanism on M13 chimeras. The chimeric phage is converted to the parental replicative form in vivo by a mechanism resistant to rifampin, a specific inhibitor of the normal RNA polymerase-dependent mechanism of M13. In vitro, the chimeric single-stranded DNA promotes the assembly of a functional multiprotein priming complex, or primosome, identical to that utilized by intact phi X174 viral strand DNA. Chimeric phage containing the sequence complementary to the 181-nucleotide viral strand sequence shows no initiation capability, either in vivo or in vitro.  相似文献   

6.
The dnaZ protein has been purified to near-homogeneity using an in vitro complementation assay that measures the restoration of activity in a crude enzyme fraction from the dnaZ mutant deficient in the replication of phi X174 DNA. Over 70-fold overproduction of the protein was obtained with a bacteriophage lambda lysogen carrying the dnaZ gene. The purified protein, under reducing and denaturing conditions, has a molecular weight of 52,000 and appears to be a dimer in its native form. The dnaZ protein is judged to be th 52,000-dalton gamma subunit of DNA polymerase III holoenzyme (McHenry, C., and Kornberg, A. (1977) J. Biol. Chem. 252, 6478-6484) for the following reasons: (i) highly purified DNA polymerase III holoenzyme contains a 52,000-dalton polypeptide and has dnaZ-complementing activity; (ii) the 52,000-dalton polypeptide is associated tightly with the DNA polymerase III holoenzyme and can be separated from the DNA polymerase III core only with severe measures; (iii) no other purified replication protein, among 14 tested, contains dnaZ protein activity; and (iv) the abundance of dnaZ protein, estimated at about 10 dimer molecules per Escherichia coli cell, is similar to that of the DNA polymerase III core. Among several circular templates tested in vitro (i.e. single stranded phi X174, G4 and M13 DNAs, and duplex phi X174 DNA), all rely on dnaZ protein for elongation by DNA polymerase III holoenzyme. The protein acts catalytically at a stoichiometry of one dimer per template.  相似文献   

7.
Three simian virus (SV40)-phi X174 recombinant genomes were isolated from single BSC-1 monkey cells cotransfected with SV40 and phi X174 RF1 DNAs. The individual cell progenies were amplified, cloned, and mapped by a combination of restriction endonuclease and heteroduplex analyses. In each case, the 600 to 1,000 base pairs of phi X174 DNA (derived from different regions of the phi X174 genome) were present as single inserts, located in either the early or late SV40 regions; the deletion of SV40 DNA was greater than the size of the insert; and the remaining portions of the hybrid genome were indistinguishable from wild-type SV40 DNA, as judged by both mapping and biological tests. Hence, apart from the deletion which accommodates the phi X174 DNA insert, no other rearrangements of SV40 DNA were detected. The restriction map of a SV40-phi X174 recombinant DNA isolate before molecular cloning was indistinguishable from those of two separate cloned derivatives of that isolate, indicating that the species cloned was the major amplifiable recombinant structure generated by a single recombinant-producing cell. The relative simplicity of the SV40-phi X174 recombinant DNA examined is consistent with the notion that most recombinant-producing BSC-1 cells support single recombination events generating only one amplifiable recombinant structure.  相似文献   

8.
We have characterized a region in the streptococcal plasmid pLS1 located between nucleotides 4103 and 4218 which is a signal involved in the conversion of single stranded intermediates of replication to double stranded plasmid forms. This region has a large axis of dyad symmetry resulting in the formation of a secondary structure as revealed by the location of endonuclease S1-cleavage sites in supercoiled covalently closed circular pLS1 DNA. Deletions affecting this region caused a fivefold reduction in plasmid copy number, plasmid instability and the accumulation of single-stranded DNA intermediates. The conversion signal of pLS1 has homologues in other staphylococcal plasmids, sharing a consensus sequence located in the loop of the signal. Computer assisted analysis showed that the signal detected in pLS1 has a high degree of homology with the complementary strand origin of the Escherichia coli single stranded bacteriophages phi X174 and M13.  相似文献   

9.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

10.
1. We have mapped by electron microscopy the DNA-fragments formed by the action of the restriction endonuclease from Arthrobacter luteus of phi X 174 replicative form DNA. These fragments were separated by polyacrylamide gel electrophoresis and hybridized to phiX 174 single stranded DNA. The partial duplex molecules were inspected in the electron microscope. In this way the relative order of eleven fragments ranging in size from approximately 100 to 1000 nucleotide pairs has been established and compared with that deduced from reciprocal digestion studies. 2. The measured lengths of the fragments agreed well with the lengths found by gel electrophoresis. 3. The purity of the isolated fragments was checked. Most of the contaminating fragments derive from nearest neighbours in the preparative polyacrylamide gels.  相似文献   

11.
J G Atherton 《Gene》1979,6(4):367-376
Double infection of Escherichia coli by two DNA phages (phi X174 and T5) resulted in encapsidation into T5 particles of T5 DNA containing linked fragments of phi X174 DNA. The phi X474 sequences in T5 "hybrid" DNA were detected by RNA-DNA hybridization.  相似文献   

12.
Synthetic oligonucleotides, DNA ligase and DNA polymerase were used to construct double-stranded DNA fragments homologous to the first 25, 27 or 30 b.p. of the origin of replication of bacteriophage phi X174 (nucleotides 4299-4328 of the phi X174 DNA sequence). The double-stranded DNA fragments were cloned into the unique SmaI or HindIII restriction sites in the kanamycin-resistance gene of pACYC177 (AmpR, KmR). Recombinant plasmids were picked up by colony hybridization. DNA sequencing showed that not only recombinant plasmids with the expected insert were formed, but also recombinant plasmids with a shorter insert. Recombinant plasmids with an insert homologous to the first 24, 25, 26, 27, 28 or all 30 b.p. of the phi X174 origin region were thus obtained. Supercoiled plasmids containing a sequence homologous to the first 27, 28 or 30 b.p. of the phi X174 origin region are nicked by the phi X174 gene A protein. However, the other supercoiled plasmids are not nicked by the phi X174 gene A protein. These results show that the first 27 b.p. of the phi X174 origin region are sufficient as well as required for the initiation step in phi X174 RF DNA replication, i.e. the cleavage by gene A protein.  相似文献   

13.
The nuclease specificity of the bacteriophage phi X174 A* protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
The A* protein of bacteriophage phi X174 is a single-stranded DNA specific nuclease. It can cleave phi X viral ss DNA in many different places. The position of these sites have been determined within the known phi X174 nucleotide sequence (1). From the sequences at these sites it is clear that the A* protein recognizes and cleaves at sites that show only partial homology with the origin of RF DNA replication in the phi X DNA. Different parts of the origin sequence can be deduced that function as a signal for recognition and cleavage by the A* protein. We conclude that different parts within the DNA recognition domain of the A* protein are functional in the recognition of the origin sequence in single-stranded DNA. The existence of different DNA recognition domains in the A* protein, and therefore also in the A protein, leads to a model that can explain how the A protein performs its multiple function in the phi X174 DNA replication process (2).  相似文献   

14.
The phosphoform of the type II regulatory subunit (phospho-RII-cAMP) of cAMP-dependent protein kinase from rat liver was found to possess intrinsic topoisomerase activity towards several DNA substrates such as phi X174, pBR322, SV40, and M13. Like the type I topoisomerases from several eukaryotic cells, phospho-RII X cAMP can relax both positive and negative superhelical turns of phi X174 DNA. Topological isomers with a decreasing number of superhelical turns can be identified as transient products. Conditions under which phospho-RII X cAMP relaxes superhelical phi X174 DNA lead to transient formation of a DNA-phospho-RII X cAMP complex via DNA strand breakage and covalent attachment of the DNA to a tyrosine residue of phospho-RII X cAMP via a phospho-RII X cAMP depends on the presence of cAMP and is altered by changes in the degree of phosphorylation of RII. Both dephosphorylation and removal of cAMP from phospho-RII X cAMP abolish its topoisomerase activity.  相似文献   

15.
We describe an infectious-center in situ plaque hybridization procedure which quantitates simian virus 40 (SV40) nonhomologous recombination in terms of the number of recombinant-producing cells in the DNA transfected cell population. Using this assay to measure the efficiency of recombination with SV40 DNA in permissive monkey BSC-1 cells, we found that: (i) over a range of DNA concentrations, polyomavirus DNA (which is partially homologous to SV40 DNA) cannot be distinguished from nonhomologous phi X174 RF1 DNA with respect to its ability to recombine with SV40 DNA; (ii) at defined DNA concentrations, polyomavirus and phi X174 RF1 DNA compete with each other for recombination with SV40 DNA; (iii) virtually all segments of the phi X174 genome recombine, apparently at random, with SV40 DNA; (iv) the frequency of recombinant-producing cells, among the successfully transfected (virion-producing) cells, depends upon the input SV40 DNA concentration in the transfection solution; and (v) replication-defective SV40 mutant DNAs compete with wild-type SV40 DNA for recombination with phi X174 RF1 DNA. From these observations, we conclude that the efficiency of recombination with SV40, in the system under study, is unaffected by nucleotide sequence homology and that a limiting stage in the recombination pathway occurs before SV40 DNA replication. Comparison of the dependency of recombination on initial SV40 DNA concentration with the dependency on initial phi X174 RF1 DNA concentration indicates that SV40 DNA sequences are a controlling factor in the nonhomologous recombination pathway.  相似文献   

16.
Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs are shown to be A* protein-DNA complexes by electron microscopy using the protein labeling technique of Wu and Davidson (1). The linear double-stranded RFIII DNA molecule carries at one end a covalently attached A* protein whereas at the other end of the molecule the single-stranded termini are covalently linked to each other. The structure of the RFIII DNA shows its way of formation. The described properties of the A* protein indicate the way the larger A protein functions in the termination step of the rolling-circle type of phi X174 DNA replication.  相似文献   

17.
Circular and linear simian virus 40 DNAs differ in recombination.   总被引:8,自引:5,他引:3       下载免费PDF全文
Linear forms of simian virus 40 (SV40) DNA, when added to transfection mixtures containing circular SV40 and phi X174 RFI DNAs, enhanced the frequency of SV40/phi X174 recombination, as measured by infectious center in situ plaque hybridization in monkey BSC-1 cells. The sequences required for the enhancement of recombination by linear DNA reside within the SV40 replication origin/regulatory region (nucleotides 5,171 to 5,243/0 to 128). Linearization of phi X174 RFI DNA did not increase the recombination frequency. The SV40/phi X174 recombinant structures arising from transfections supplemented with linear forms of origin-containing SV40 DNA contained phi X174 DNA sequences interspersed within tandem head-to-tail repeats derived from the recombination-enhancing linear DNA. Evidence is presented that the tandem repeats are not formed by homologous recombination and that linear forms of SV40 DNA must compete with circular SV40 DNA for the available T antigen to enhance recombination. We propose that the enhancement of recombination by linear SV40 DNA results from the entry of that DNA into a rolling circle type of replication pathway which generates highly recombinogenic intermediates.  相似文献   

18.
N L Incardona  J K Tuech  G Murti 《Biochemistry》1985,24(23):6439-6446
At 37 degrees C, binding of phi X174 to the lipopolysaccharide receptors in the outer membrane of Escherichia coli C is followed by an irreversible ejection of its DNA. DNA ejection marks the beginning of the eclipse period in the infection cycle. Binding data with a phi X mutant Fcs70 at 15 degrees C, where the DNA ejection, or eclipse, rate is essentially zero, do not follow the law of mass action. This rules out a simple mechanism of reversible binding followed by irreversible DNA ejection. A more complex reaction model was devised to fit the data [Incardona, N. L. (1983) J. Theor. Biol. 105, 631-645]. It takes into account the fact that lipopolysaccharide-containing outer membrane fragments are continually released from infected E. coli cells, some of which have phi X bound to them. In this paper the model is shown to fit the binding data for wild-type virus at 15 degrees C and to account for the nonlinearity observed at 37 degrees C in the pseudo-first-order binding kinetics and first-order eclipse kinetics for both mutant and wild-type virus. This leads to the conclusion that phi X174 binding to cell-bound receptors is irreversible but binding to released receptors is reversible. The release of virus-receptor complexes from infected cells and the dissociation of these complexes were confirmed by electron microscopy. We propose that initially a single phi X174 vertex interacts reversibly with E. coli lipopolysaccharide but dissociation from the cell is prevented by the subsequent interaction of additional vertices with adjacent receptor molecules.  相似文献   

19.
Process of attachment of phi X174 parental DNA to the host cell membrane   总被引:2,自引:0,他引:2  
The phi X174-DNA membrane complex was isolated from Escherichia coli infected with phi X174 am3 by isopycnic sucrose gradient centrifugation followed by zone electrophoresis. The phi X174 DNA-membrane complex banded at two positions, intermediate density membrane fraction and cytoplasmic membrane fraction, having bouyant densities of 1.195 and 1.150 g/ml, respectively. Immediately after infection with phi X147, replicating DNA was pulse-labeled and then the incorporated label was chased. The radioactivity initially recovered in the intermediate density membrane fraction migrated to the cytoplasmic membrane fraction. The DNAs from both complexes sedimented mainly at the position of parental replicative form I (RFI). The phi X174 DNA-membrane complex contained a speficic membrane-bound protein having a molecular weigth of 80,000 which is accumulated in the host DNA-membrane complex. These results suggest that when phi X174 DNA penetrated into cells in the early phase of infection, single-stranded circular DNA was converted to parental RFI at a wall/membrane adhesion region and migrated to the cytoplasmic membrane fraction, where the parental RF could serve as a template in the replication of progeny RF.  相似文献   

20.
It is already known that phi X gene A protein converts besides phi X RFI DNA also the RFI DNAs of the single-stranded bacteriophages G4, St-1, alpha 3 and phi K into RFII DNA. We have extended this observations for bacteriophages G14 and U3. Restriction enzyme analysis placed the phi X gene A protein cleavage site in St-1 RF DNA in the HinfI restriction DNA fragment F10 and in the overlapping HaeIII restriction DNA fragment Z7. The exact position and the nucleotide sequence at the 3'-OH end of the nick were determined by DNA sequence analysis of the single-stranded DNA subfragment of the nicked DNA fragment F10 obtained by gelelectrophoresis in denaturing conditions. A stretch of 85 nucleotides of St-1 DNA around the position of the phi X gene A protein cleavage site was established by DNA sequence analysis of the restriction DNA fragment Z7F1. Comparison of this nucleotide sequence with the previously determined nucleotide sequence around the cleavage site of phi X gene A protein in phi X174 RF DNA and G4 RF DNA revealed an identical sequence of only 10 nucleotides. The results suggest that the recognition sequence of the phi X174 gene A protein lies within these 10 nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号