首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 167 毫秒
1.
In Parkinson’s and Alzheimer’s diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates. In contrast, ceruloplasmin levels were strikingly higher in neocortex at all ages and rose linearly until middle age. PA28 levels rose with age and were higher in allocortex in vivo, also paralleling in vitro data. These neo- and allocortical differences have implications for the many studies that treat the telencephalic mantle as a single unit. Our observations suggest that the topographic progression of protein aggregations through the cerebrum may reflect differential responses to low level protein-misfolding stress but also reveal impressive compensatory adaptations in allocortex.  相似文献   

2.
An accumulation in cells of unfolded proteins is believed to be the common signal triggering the induction of heat shock proteins (hsps). Accordingly, in Saccharomyces cerevisiae, inhibition of protein breakdown at 30°C with the proteasome inhibitor MG132 caused a coordinate induction of many heat shock proteins within 1 to 2 h. Concomitantly, MG132, at concentrations that had little or no effect on growth rate, caused a dramatic increase in the cells’ resistance to very high temperature. The magnitude of this effect depended on the extent and duration of the inhibition of proteolysis. A similar induction of hsps and thermotolerance was seen with another proteasome inhibitor, clasto-lactacystin β-lactone, but not with an inhibitor of vacuolar proteases. Surprisingly, when the reversible inhibitor MG132 was removed, thermotolerance decreased rapidly, while synthesis of hsps continued to increase. In addition, exposure to MG132 and 37°C together had synergistic effects in promoting thermotolerance but did not increase hsp expression beyond that seen with either stimulus alone. Although thermotolerance did not correlate with hsp content, another thermoprotectant trehalose accumulated upon exposure of cells to MG132, and the cellular content of this disaccharide, unlike that of hsps, quickly decreased upon removal of MG132. Also, MG132 and 37°C had additive effects in causing trehalose accumulation. Thus, the resistance to heat induced by proteasome inhibitors is not just due to induction of hsps but also requires a short-lived metabolite, probably trehalose, which accumulates when proteolysis is reduced.  相似文献   

3.
Sheng X  Hu Z  Lü H  Wang X  Baluska F  Samaj J  Lin J 《Plant physiology》2006,141(4):1578-1590
The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and beta-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.  相似文献   

4.
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G2, and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.  相似文献   

5.
6.
泛素/蛋白酶体系统(UPP)是真核细胞内蛋白质选择性降解的主要途径,而蛋白酶体是UPP中蛋白质降解的场所。本文应用细胞学、统计学方法以及FTIR技术研究了蛋白酶体抑制剂MG132对青扦(Peceawilsonii)花粉萌发、花粉管生长的影响。结果表明:MG132显著抑制青扦花粉萌发和花粉管生长,并导致花粉管形态异常,主要表现为花粉管亚顶端出现液泡化,并且液泡随着培养时间的延长而扩大到整个花粉管,花粉管濒临死亡;而DMSO以及非蛋白酶体抑制剂E-64不产生类似结果;半薄切片结果表明,MG132处理后不仅花粉管细胞质发生液泡化,生殖细胞也发生液泡化;FTIR分析进一步表明,MG132处理后,花粉管顶端的细胞壁蛋白和果胶质含量大幅度下降。上述结果表明:MG132通过抑制蛋白酶体活性显著影响青扦花粉萌发及花粉管生长;UPP在青扦花粉萌发、花粉管极性生长模式的建立和维持过程中起重要作用;抑制蛋白酶体活性将导致青扦花粉管的程序性死亡。  相似文献   

7.
泛素/蛋白酶体系统(UPP)是真核细胞内蛋白质选择性降解的主要途径,而蛋白酶体是UPP中蛋白质降解的场所。本文应用细胞学、统计学方法以及FTIR技术研究了蛋白酶体抑制剂MG132对青扦(Pecea wilsonii)花粉萌发、花粉管生长的影响。结果表明:MG132显著抑制青扦花粉萌发和花粉管生长,并导致花粉管形态异常,主要表现为花粉管亚顶端出现液泡化,并且液泡随着培养时间的延长而扩大到整个花粉管,花粉管濒临死亡;而DMSO以及非蛋白酶体抑制剂E-64不产生类似结果;半薄切片结果表明,MG132处理后不仅花粉管细胞质发生液泡化,生殖细胞也发生液泡化;FTIR分析进一步表明,MG132处理后,花粉管顶端的细胞壁蛋白和果胶质含量大幅度下降。上述结果表明:MG132通过抑制蛋白酶体活性显著影响青扦花粉萌发及花粉管生长;UPP在青扦花粉萌发、花粉管极性生长模式的建立和维持过程中起重要作用;抑制蛋白酶体活性将导致青扦花粉管的程序性死亡。  相似文献   

8.
Cardiomyocyte loss is the main cause of myocardial dysfunction following an ischemia-reperfusion (IR) injury. Mitochondrial dysfunction and altered mitochondrial network dynamics play central roles in cardiomyocyte death. Proteasome inhibition is cardioprotective in the setting of IR; however, the mechanisms underlying this protection are not well-understood. Several proteins that regulate mitochondrial dynamics and energy metabolism, including Mitofusin-2 (Mfn2), are degraded by the proteasome. The aim of this study was to evaluate whether proteasome inhibition can protect cardiomyocytes from IR damage by maintaining Mfn2 levels and preserving mitochondrial network integrity. Using ex vivo Langendorff-perfused rat hearts and in vitro neonatal rat ventricular myocytes, we showed that the proteasome inhibitor MG132 reduced IR-induced cardiomyocyte death. Moreover, MG132 preserved mitochondrial mass, prevented mitochondrial network fragmentation, and abolished IR-induced reductions in Mfn2 levels in heart tissue and cultured cardiomyocytes. Interestingly, Mfn2 overexpression also prevented cardiomyocyte death. This effect was apparently specific to Mfn2, as overexpression of Miro1, another protein implicated in mitochondrial dynamics, did not confer the same protection. Our results suggest that proteasome inhibition protects cardiomyocytes from IR damage. This effect could be partly mediated by preservation of Mfn2 and therefore mitochondrial integrity.  相似文献   

9.
Protein polyubiquitination is a significant regulator of diverse physiological functions, including sexual reproduction, in plants. Chemical hybridizing agents (CHA) SQ-1 has been shown to induce male sterility in wheat (Triticum aestivum L.) through inhibition of pollen development. This mechanism by which CHA induces male sterility in wheat is unclear. In this study, differential proteomic analysis of polyubiquitinated proteins associated with wheat male sterility was investigated. Wheat plants of the same genetic background were treated with or without CHA. Ubiquitinated proteins were then extracted and enriched for proteomic analysis. Differentially expressed polyubiquitinated proteins in trinuclear stage anther were identified by nanospray liquid chromatography/tandem mass spectrometry. A total of 127 and 131 differentially expressed polyubiquitinated proteins, including heat shock protein 70, ATPase subunit, glycosyltransferase, ubiquitin-related enzyme, and 20S proteasome subunit, were successfully identified by searching against wheat protein database and NCBInr database, respectively. Most of these proteins are related to photosynthesis, carbohydrate and energy metabolism, and multiple metabolic processes. These findings show that alteration of polyubiquitinated proteins is associated with male sterility in wheat.  相似文献   

10.
BACKGROUND: The voltage-gated potassium channel Kv1.5 plays a critical role in the maintenance of the membrane potential. While protein degradation is one of the major mechanisms for the regulation of channel functions, little is known on the degradation mechanism of Kv1.5. METHODS AND RESULTS: Kv1.5 was expressed in COS cells and its degradation, intracellular localization, and channel activities were assessed by pulse-chase analysis, immunofluorescence, and patch clamp techniques, respectively. Expressed Kv1.5 had a half-life time of approximately 6.7 h, which was prolonged by the proteasome inhibitors of MG132, ALLN, proteasomal inhibitor 1, or lactacystine, but not by a lysosomal inhibitor chloroquine. MG132 increased the protein level of Kv1.5, as well as the level of its ubiquitinated form in a dose-dependent manner. Similar effects of MG132 on endogenous Kv1.5 were seen in cultured rat atrial cells. Within a cell, Kv1.5 was mainly localized in both the endoplasmic reticulum and Golgi apparatus. MG132 increased the immunoreactivity of Kv1.5 in these compartments and also increased Ik(ur) currents through the cell-surface Kv1.5. Pretreatment with either brefeldin A or colchicine abolished MG132-induced increase in Ik(ur) currents. CONCLUSION: Kv1.5 is degraded by the proteasome. The inhibition of the proteasome increased Ik(ur) currents secondary to stabilization of the channel protein in the endoplasmic reticulum/Golgi apparatus.  相似文献   

11.
Evidence has accumulated showing that pharmacological inhibition of proteasome activity can both induce and prevent neuronal apoptosis. We tested the hypothesis that these paradoxical effects of proteasome inhibitors depend on the degree of reduced proteasome activity and investigated underlying mechanisms. Murine cortical cell cultures exposed to 0.1 microM MG132 underwent widespread neuronal apoptosis and showed partial inhibition of proteasome activity down to 30-50%. Interestingly, administration of 1-10 microM MG132 almost completely blocked proteasome activity but resulted in reduced neuronal apoptosis. Similar results were produced in cortical cultures exposed to other proteasome inhibitors, proteasome inhibitor I and lactacystin. Administration of 0.1 microM MG132 led to activation of a mitochondria-dependent apoptotic signaling cascade involving cytochrome c, caspase-9, caspase-3 and degradation of tau protein; such activation was markedly reduced with 10 microM MG132. High doses of MG132 prevented the degradation of inhibitor of apoptosis proteins (IAPs) cIAP and X chromosome-linked IAP, suggesting that complete blockade of proteasome activity interferes with progression of apoptosis. In support of this, addition of high doses of proteasome inhibitors attenuated apoptosis of cortical neurons deprived of serum. Taken together, the present results indicate that inhibition of proteasome activity can induce or prevent neuronal cell apoptosis through regulation of mitochondria-mediated apoptotic pathways and IAPs.  相似文献   

12.
13.
14.
The proteasome system restricts lentiviral transduction of stem cells. We exploited proteasome inhibition as a strategy to enhance transduction of both hematopoietic stem cells (HSC) and T lymphocytes with low dose or large-size lentiviral vectors (LV). HSC showed higher transduction efficiency if transiently exposed to proteasome inhibitor MG132 (41.8% vs 10.7%, p < 0.0001). Treatment with MG132 (0.5 μM) retained its beneficial effect with 3 different LV of increasing size up to 10.9 Kb (p < 0.01). We extended, for the first time, the application of proteasome inhibition to the transduction of T lymphocytes. A transient exposure to MG132 significantly improved lentiviral T-cell transduction. The mean percentage of transduced T cells progressively increased from 13.5% of untreated cells, to 21% (p = 0.3), 30% (p = 0.03) and 37% (p = 0.01) of T lymphocytes that were pre-treated with MG132 at 0.1, 0.5 and 1 μM, respectively. MG132 did not affect viability or functionality of HSC or T cells, nor significantly increased the number of integrated vector copies. Transient proteasome inhibition appears as a new procedure to safely enhance lentiviral transduction of HSC and T lymphocytes with low viral doses. This approach could be useful in settings where the use of large size vectors may impair optimal viral production.  相似文献   

15.
The proteasome inhibitor MG132 has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we evaluated the effects of MG132 on the growth and death of As4.1 juxtaglomerular cells in relation to ROS and glutathione (GSH) levels. MG132 inhibited the growth of As4.1 cells with an IC50 of approximately 0.3–0.4 μM at 48 h and induced cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm), Bcl-2 decrease, activation of caspase-3 and -8, and PARP cleavage. MG132 increased intracellular ROS levels including O2? and GSH depleted cell numbers. N-acetyl cysteine (NAC, a well-known antioxidant) significantly decreased ROS level and GSH depleted cell numbers in MG132-treated As4.1 cells, along with the prevention of cell growth inhibition, cell death and MMP (ΔΨm) loss. NAC also decreased the caspase-3 activity of MG132. l-Buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) or diethyldithiocarbamate (DDC; an inhibitor of Cu/Zn-SOD) did not affect cell growth, death, ROS and GSH levels in MG132-treated As4.1 cells. Conclusively, MG132 reduced the growth of As4.1 cells via apoptosis. The changes of ROS and GSH by MG132 were involved in As4.1 cell growth and death.  相似文献   

16.
Luo ZF  Qi W  Feng B  Mu J  Zeng W  Guo YH  Pang Q  Ye ZL  Liu L  Yuan FH 《Life sciences》2011,88(11-12):512-520
AimsOxidative stress may play an important role in the pathogenesis of diabetic nephropathy (DN). Recent studies have shown that the ubiquitin–proteasome pathway (UPP) and oxidative stress have interaction. We aimed to investigate whether inhibiting the proteasome has a preventive effect on DN through suppression of renal oxidative stress.Main methodsMale Sprague–Dawley rats were randomly divided into three groups: a normal control (NC) group, a streptozotocin-induced DN model group, and a DN plus MG132 (10 μg/kg) treatment group.Key findingsIncreased 24-h urinary protein excretion rate (UPER) and renal pathological changes were all improved after MG132 administration. Furthermore, enhanced renal 26S proteasome activity and concentration in DN rats were effectively reduced after MG132 administration. Increased p47phox and nitrotyrosine (NT) expressions in kidneys of DN rats were decreased after MG132 treatment. Renal mRNA and protein expressions of NF-E2 related factor 2 (Nrf2) were up-regulated by MG132 in comparison to DN alone. Decreased renal mRNA expression of superoxide dismutase 1 (SOD1), catalase (CAT) and glutathione peroxidase (GPx) in DN rats was heightened after MG132 intervention. Depressed activities of renal SOD, CAT and GPx in DN rats were also improved by MG132 treatment. Increased renal nuclear factor κB (NF-κB) activity was inhibited after MG132 administration in DN rats at the end of 12 weeks.SignificanceOur present data suggest that inhibition of the proteasome by low-dose MG132 has a preventive effect on DN development and progression in rats through the up-regulation of antioxidant genes.  相似文献   

17.
18.
Proteasome impairment has been shown to be involved in neuronal degeneration. Antiepileptic lamotrigine has been demonstrated to have a neuroprotective effect. However, the effect of lamotrigine on the proteasome inhibition-induced neuronal cell death has not been studied. Therefore, we assessed the effect of lamotrigine on the proteasome inhibition-induced neuronal cell apoptosis in relation to cell death process using differentiated PC12 cells and SH-SY5Y cells. The proteasome inhibitors MG132 and MG115 induced a decrease in the levels of Bid and Bcl-2 proteins, an increase in the levels of Bax and p53, loss of the mitochondrial transmembrane potential, cytochrome c release and activation of caspases (-8, -9 and -3). The addition of lamotrigine reduced the proteasome inhibitor-induced changes in the apoptosis-related protein levels, production of reactive oxygen species, depletion and oxidation of glutathione (GSH), and cell death in both cell lines. Lamotrigine and N-acetylcysteine alone did not affect the levels of 26S proteasome and activity of 20S proteasome. MG132 did not alter the levels of 26S proteasome but decreased activity of 20S proteasome. Lamotrigine and N-acetylcysteine attenuated MG132-induced decrease in the activity of 20S proteasome. The results show that lamotrigine appears to suppress the proteasome inhibitor-induced apoptosis in PC12 cells by suppressing the activation of the mitochondrial pathway and the caspase-8- and Bid-dependent pathways. The suppressive effect of lamotrigine appears to be associated with its inhibitory effect on the production of reactive oxygen species, the depletion and oxidation of GSH and the activity reduction of 20S proteasome.  相似文献   

19.
Proteasomes are known to degrade proteins involved in various processes like metabolism, signal transduction, cell-cycle regulation, inflammation, and apoptosis. Evidence showed that protein degradation has a strong influence on developing neurons as well as synaptic plasticity. Here, we have shown that sulforaphane (SFN) could prevent the deleterious effects of postnatal proteasomal inhibition on spatial reference and working memory of adult mice. One day old Balb/c mice received intracerebroventricular injections of MG132 and SFN. Sham received an equal volume of aCSF. We observed that SFN pre-administration could attenuate MG132 mediated decrease in proteasome and calpain activities. In vitro findings revealed that SFN could induce proteasomal activity by enhancing the expression of catalytic subunit-β5. SFN pre-administration prevented the hippocampus based spatial memory impairments during adulthood, mediated by postnatal MG132 exposure. Histological examination showed deleterious effects of MG132 on pyramidal neurons and granule cell neurons in DG and CA3 sub-regions respectively. Furthermore, SFN pre-administration has shown to attenuate the effect of MG132 on proteasome subunit-β5 expression and also induce the Nrf2 nuclear translocation. In addition, SFN pre-administered mice have also shown to induce expression of pCaMKII, pCreb, and mature/pro-Bdnf, molecules which play a crucial role in spatial learning and memory consolidation. Our findings have shown that proteasomes play an important role in hippocampal synaptic plasticity during the early postnatal period and SFN pre-administration could enhance the proteasomal activity as well as improve spatial learning and memory consolidation.  相似文献   

20.
Proteasomes are highly expressed in rapidly growing neoplastic cells and essential for controlling the cell cycle process and mitochondrial homeostasis. Pharmacological inhibition of the proteasome shows a significant anticancer effect on hematopoietic malignancies that is usually associated with the generation of reactive oxygen species. In this study, we comprehensively investigated the role of endogenous oxidants in various cellular events of K562 leukemic cells in response to treatment with MG132, a proteasome inhibitor. MG132 at 1.4 µM potently triggered G2/M arrest, mitochondrial depolarization, and apoptosis. By such treatment, the protein level of inducible nitric oxide synthase (iNOS) was doubled and cellular oxidants, including nitric oxide, superoxide, and their derivatives, were increasingly produced. In MG132-treated cells, the increase in iNOS-derived oxidants was responsible for mitochondrial depolarization and caspase-dependent apoptosis, but was insignificant in G2/M arrest. The amount of iNOS was negatively correlated with that of manganese superoxide dismutase (MnSOD). Whereas iNOS activity was inhibited by aminoguanidine, cellular MnSOD levels as well as mitochondrial membrane potentials were upregulated, and consequentially G2/M arrest and apoptosis were thoroughly reversed. It is suggested that cells rich in functional mitochondria possess improved proteasome activity, which antagonizes the cytotoxic and cytostatic effects of MG132. In contrast to iNOS, endothelial NOS-driven cGMP-dependent signaling promoted mitochondrial function and survival of MG132-stressed cells. In conclusion, the functional interplay of proteasomes and mitochondria is crucial for leukemic cell growth, wherein iNOS plays a key role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号