首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 165 毫秒
1.
泛素/蛋白酶体系统(UPP)是真核细胞内蛋白质选择性降解的主要途径,而蛋白酶体是UPP中蛋白质降解的场所。本文应用细胞学、统计学方法以及FTIR技术研究了蛋白酶体抑制剂MG132对青扦(Pecea wilsonii)花粉萌发、花粉管生长的影响。结果表明:MG132显著抑制青扦花粉萌发和花粉管生长,并导致花粉管形态异常,主要表现为花粉管亚顶端出现液泡化,并且液泡随着培养时间的延长而扩大到整个花粉管,花粉管濒临死亡;而DMSO以及非蛋白酶体抑制剂E-64不产生类似结果;半薄切片结果表明,MG132处理后不仅花粉管细胞质发生液泡化,生殖细胞也发生液泡化;FTIR分析进一步表明,MG132处理后,花粉管顶端的细胞壁蛋白和果胶质含量大幅度下降。上述结果表明:MG132通过抑制蛋白酶体活性显著影响青扦花粉萌发及花粉管生长;UPP在青扦花粉萌发、花粉管极性生长模式的建立和维持过程中起重要作用;抑制蛋白酶体活性将导致青扦花粉管的程序性死亡。  相似文献   

2.
以拟南芥根为材料,运用光学和透射电子显微镜分析了蛋白酶体抑制剂MG132对拟南芥根尖伸长区细胞的显微及超微结构的影响。结果发现:(1)微分干涉显微镜观察结果表明,MG132处理将导致拟南芥根部伸长区细胞的细胞质液泡化,并且抑制剂浓度越高细胞质液泡化越明显。(2)半薄切片结合考马斯亮蓝染色结果表明,MG132诱导的液泡中富含蛋白质。(3)免疫荧光标记结合共聚焦显微镜观察结果表明,液泡中的蛋白质主要为泛素缀合蛋白,暗示泛素化蛋白质的积累诱导细胞质自体吞噬的发生。(4)透射电镜观察结果表明,MG132处理的确诱导了自体吞噬作用的发生以及随后发生的自噬起源的细胞质液泡化。该研究结果为泛素/蛋白酶体途径与自体吞噬依赖的蛋白降解系统之间的联系提供了线索。  相似文献   

3.
G蛋白调节剂对梨花粉萌发及花粉胞内Ca2+浓度变化的影响   总被引:1,自引:0,他引:1  
用激光共聚焦技术研究了异三聚体G蛋白活性调节剂对梨花粉萌发、花粉管生长及花粉细胞内游离钙离子浓度动态的影响。结果表明:异三聚体G蛋白激活剂霍乱毒素(CTX)可促进梨花粉萌发与花粉管生长,而其抑制剂百日咳毒素(PTX)则抑制花粉萌发与花粉管生长;霍乱毒素处理后,花粉细胞内产生特异性的“钙瞬变”信号,而百日咳毒素处理后则引起花粉细胞内游离钙离子浓度的持续下降。这表明:异三聚体G蛋白可能参与了梨花粉萌发与花粉管生长的调控过程,G蛋白的活性变化对花粉萌发的效应可能是通过调控花粉细胞内游离Ca^2 浓度的动态变化产生特异性的钙信号来实现的。  相似文献   

4.
蛋白酶体抑制剂MG132诱导人白血病细胞K562和宫颈癌细胞HeLa凋亡,用3个不同浓度的蛋白酶体抑制剂MG132处理人白血病细胞K562和宫颈癌细胞HeLa,通过MTT检测、annexin Ⅴ/ PI 双染法、流式细胞术、酶标仪和Western 印迹分别检测MG132对K562细胞和HeLa细胞的生长效应、细胞凋亡率、细胞内活性氧(ROS)水平和caspase-3活性变化的影响.蛋白酶体抑制剂MG132诱导K562细胞凋亡明显,对HeLa细胞诱导凋亡不明显.结果表明,蛋白酶体抑制剂MG132特异性诱导不同肿瘤细胞凋亡的程度存在明显差异.  相似文献   

5.
宁夏枸杞柱头和萌发花粉中钙分布特征   总被引:1,自引:0,他引:1  
用焦锑酸钾沉淀法对宁夏枸杞柱头和花粉中的钙离子分布进行了研究.结果显示,宁夏枸杞柱头表皮有一覆盖层,其中有许多含钙沉淀颗粒的小泡,当花粉落到柱头后从覆盖层中吸水,在萌发孔的表面上聚集了较多的钙沉淀颗粒.同时,花粉内部出现许多含钙的小液泡,使花粉体积增大,内部产生膨压,花粉萌发;生长在覆盖层中的花粉管顶端穿过覆盖层小泡时,附近聚集了较多的钙沉淀颗粒,在花粉管壁上也附着较多的细小钙沉淀颗粒.萌发的花粉粒中由大液泡占据,在其亚顶端的细胞质中,聚集较多钙沉淀颗粒的线粒体膨大形成了一些含钙沉淀颗粒的小液泡,由这些小液泡融合形成的大液泡,将花粉管细胞质挤到其顶端,使其极性生长.这是首次发现在植物柱头覆盖层中有钙离子的现象,从体内证明了钙离子在花粉萌发过程中的现象.讨论了枸杞柱头组织中钙的分布和花粉管的萌发与生长的关系.  相似文献   

6.
探讨蛋白酶体抑制剂MG132 在诱导人白血病K562细胞凋亡过程中作用.分别以不同浓度的蛋白酶体抑制剂MG132 处理人白血病细胞K562,通过MTT法检测K562细胞活力,应用Annexin Ⅴ和PI 双染的细胞流式法检测K562细胞凋亡率和细胞内活性氧(ROS) 水平,应用酶标仪法检测K562细胞内Caspase- 3活性变化的情况.结果表明,随着MG132浓度的增加,各个指标与对照组比较差异均有显著性(P<0.05):K562细胞增殖明显受到抑制;细胞凋亡率明显增加,且当MG132浓度为900 nmol/L时,细胞凋亡率达36.5 %;同时,ROS 水平和caspase- 3活性明显升高.因次,蛋白酶体抑制剂MG132可显著抑制人白血病细胞K562增殖并促进其凋亡.  相似文献   

7.
本文研究了动物整合素VnR抗血清及动物整合素专一性抑制剂含RGD的多肽对体外及半体内培养条件下烟草花粉萌发及花粉管生长的影响。结果表明在体外培养条件下,VnR抗血清及GRGDSP肽对花粉的萌发及花粉管的生长没有明显的抑制作用,但可抑制钙调素促进的花粉萌发和花粉管的生长;两者对柱头上进行的花粉萌发及在花柱里进行的花粉管生长也有一定程度的抑制。对类整合素在花粉萌发及花粉管生长中的作用进行了讨论。  相似文献   

8.
以砂梨(Pyrus pyrifoliaNakai)品种今村秋(Imamuraaki)和丰水(Hosui)为材料,分别用光学显微镜和荧光显微镜观察了离体和半活体条件下微丝骨架解聚剂细胞松弛素B(cytochalasin B,CB)和稳定剂鬼笔环肽(phalloidin)对梨花粉萌发和花粉管生长的影响.结果表明:(1)低浓度(10μg/mL)鬼笔环肽能促进花粉萌发和花粉管生长,但高浓度对花粉萌发和花粉管的生长具有抑制作用;CB抑制花粉萌发和花粉管生长,且抑制效应随其浓度的增加而增强.(2)鬼笔环肽处理柱头后进行自花授粉,可明显促进自花花粉萌发和花粉管的生长,而CB处理柱头后异花授粉则抑制异花花粉萌发及其花粉管生长.可见,微丝骨架参与了梨花粉萌发和花粉管生长过程,并参与了梨自交不亲和反应的调节.  相似文献   

9.
钙调素对花粉萌发和花粉管生长的效应   总被引:1,自引:0,他引:1  
牛脑和玉米胚CaM能显著促进花粉萌发和花粉管生长(图1),而CaM抑制剂TFP、CPZ及另外两个专一性更强的抑制剂Compound48/80和W7均严重抑制甚至阻止花粉的萌发(图2,3)。用对CaM亲和性较低的W7同系物W5,在与W7同样浓度下,对花粉萌发和花粉管生长无明显影响。此外,W7对花粉萌发和花粉管生长的抑制效应可被外源CaM所消除(图4)。在花粉萌发过程中,其内源CaM含量显著上升,在花粉萌发率接近最大值时,花粉CaM含量达最高水平(图5)。上述结果表明CaM对花粉萌发和花粉管生长的调控起重要作用。  相似文献   

10.
钙和硼对蓝猪耳花粉萌发及花粉管生长的影响   总被引:32,自引:1,他引:31  
研究了钙(Ca^2 )和硼(H3BO3)对蓝猪耳花粉萌发和花粉管生长的影响。结果表明:(1)在一定范围内Ca^2 几乎不影响花粉萌发频率,而主要影响花粉萌发速度和花粉管生长速度;低Ca^2 不利于花粉管生长,而高Ca^2 抑制花粉萌发速度和花粉管生长;在稍高于最适Ca^2 浓度的条件下,花粉管生长早期呈现波浪形。(2)硼明显影响花粉萌发频率及花粉管形态;花粉管生长必需硼,但不同浓度的硼对花粉管生长速度影响不明显;在高浓度硼条件下,较长时间内花粉管均呈现出波浪形。(3)Cooled-CCD动态跟踪观察进一步证实Ca^2 影响花粉管生长速度,而硼则不明显。  相似文献   

11.
Sheng X  Hu Z  Lü H  Wang X  Baluska F  Samaj J  Lin J 《Plant physiology》2006,141(4):1578-1590
The ubiquitin/proteasome pathway represents one of the most important proteolytic systems in eukaryotes and has been proposed as being involved in pollen tube growth, but the mechanism of this involvement is still unclear. Here, we report that proteasome inhibitors MG132 and epoxomicin significantly prevented Picea wilsonii pollen tube development and markedly altered tube morphology in a dose- and time-dependent manner, while hardly similar effects were detected when cysteine-protease inhibitor E-64 was used. Fluorogenic kinetic assays using fluorogenic substrate sLLVY-AMC confirmed MG132-induced inhibition of proteasome activity. The inhibitor-induced accumulation of ubiquitinated proteins (UbPs) was also observed using immunoblotting. Transmission electron microscopy revealed that MG132 induces endoplasmic reticulum (ER)-derived cytoplasmic vacuolization. Immunogold-labeling analysis demonstrated a significant accumulation of UbPs in degraded cytosol and dilated ER in MG132-treated pollen tubes. Fluorescence labeling with fluorescein isothiocyanate-phalloidin and beta-tubulin antibody revealed that MG132 disrupts the organization of F-actin and microtubules and consequently affects cytoplasmic streaming in pollen tubes. However, tip-focused Ca2+ gradient, albeit reduced, seemingly persists after MG132 treatment. Finally, fluorescence labeling with antipectin antibodies and calcofluor indicated that MG132 treatment induces a sharp decline in pectins and cellulose. This result was confirmed by Fourier transform infrared analysis, thus demonstrating for the first time the inhibitor-induced weakening of tube walls. Taken together, these findings suggest that MG132 treatment promotes the accumulation of UbPs in pollen tubes, which induces ER-derived cytoplasmic vacuolization and depolymerization of cytoskeleton and consequently strongly affects the deposition of cell wall components, providing a mechanistic framework for the functions of proteasome in the tip growth of pollen tubes.  相似文献   

12.
Scoccianti  V.  Ovidi  E.  Taddei  A. R.  Tiezzi  A.  Crinelli  R.  Gentilini  L.  Speranza  A. 《Sexual plant reproduction》2003,16(3):123-133
We recently reported the involvement of the ubiquitin pathway in microgametophyte development, and a direct role for the 26S proteasome in regulating pollen tube emergence in kiwifruit. Here we show that the ubiquitin/proteasome proteolytic pathway is involved not only in early kiwifruit pollen tube organisation, but also in maintaining polarised growth of tubes. By immunofluorescence analysis we show that ubiquitin and ubiquitin-protein conjugates are distributed mainly at the apex of emerging tubes, in both untreated pollen grains and pollen grains treated with MG132, an inhibitor of proteasome function. In the latter case, polysiphonous germination occurred and all the emerging areas were highly fluorescent. By adding MG132 to pollen when normal tube growth had already been established, accumulation of ubiquitin-protein conjugates, as well as a drastic reduction in tube growth and dramatic modifications of tube tip morphology were observed. Significantly, differential interference contrast microscopy analysis demonstrated that the clear zone was largely reduced or absent, and the nuclei were disconnected in their movements, reaching, in some cases, the extreme apex of the tip. These findings provide evidence that the ubiquitin- and proteasome-dependent proteolytic system could modulate the abundance and/or activity of key regulatory proteins involved in pollen tube emergence and polarised growth.  相似文献   

13.
Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.  相似文献   

14.
Tip growth of pollen tubes is essential for higher plant sexual reproduction and has been proposed to be highly regulated by the ubiquitin/proteasome pathway (UPP). The dynamics of mitochondria and the functions of the UPP on mitochondrial dynamics during pollen tube development are still poorly understood. In the present study, using real‐time laser scanning and transmission electron microscope, it was revealed that mitochondria in Picea wilsonii, are either ellipsoid or filamentous with various lengths. Time‐lapse images indicated that the two forms of mitochondria interconvert frequently through opposite process of fusion and fission. Examination of mitochondrial morphology during four key stages of in vitro pollen tube development revealed a link between mitochondrial remodeling and the process of pollen tube elongation. We also report that MG132, a specific proteasome inhibitor, not only strongly disturbed the mitochondrial remodeling but also significantly reduced mitochondrial membrane potential during pollen tube development. This finding provides new insight into the function of the proteasome in tip growth of pollen tubes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The 26S proteasome is a multicatalytic complex that acts as primary protease of the ubiquitin-mediated proteolytic pathway in eukaryotes. We provide here the first evidence that the proteasome plays a key role in regulating pollen tube growth. Immunoblotting experiments revealed the presence of high levels of free ubiquitin and ubiquitin conjugates in rehydrated and germinating pollen of kiwifruit [Actinidia deliciosa var. deliciosa (A. Chev) C. F. Liang et A. R. Ferguson]. Proteasome activity, assayed fluorometrically, accompanied the progression of germination. Specific inhibitors of proteasome function such as benzyloxycarbonyl-leucinyl-leucinyl-leucinal (MG-132), clasto-lactacystin beta-lactone, and epoxomicin significantly decreased tube growth or altered tube morphology. High-molecular mass, ubiquitinated proteins accumulated in MG-132- and beta-lactone-treated pollen, indicating that proteasome function was effectively impaired. The inhibitors were also able to decrease in vitro proteasome activity in pollen extracts. Because MG-132 can inhibit calpains, as well as the proteasome, trans-epoxy succinyl-L-leucylamido-(4-guanidino) butane (E-64), an inhibitor of cysteine proteases, was investigated. Some reduction in tube growth rate was observed, but only at 80 microM E-64, and no abnormal tubes were produced. Furthermore, no inhibition of tube growth was observed when another inhibitor of cysteine proteases, leupeptin, or inhibitors of serine and aspartic proteases (phenylmethylsulfonyl fluoride and pepstatin) were used. Our results indicate that protein turnover during tube organization and elongation in kiwifruit pollen is important, and our results also implicate the ubiquitin/26S proteasome as the major proteolytic pathway involved.  相似文献   

16.
One- and two-dimensional electrophoresis of Nicotiana tabacum pollen and pollen tube proteins confirmed that a new protein is preferentially synthesized during pollen germination and tube growth and becomes the most abundant protein in pollen tubes. Analysis of proteins extracted with sodium dodecyl sulfate (SDS) from different pollen tube fractions showed that it is the most abundant non-covalently bound wall protein, characterized by molecular mass of 69 kDa, pI between 7.9 and 8.2, and glycosylation with glucose and/or mannose. Amino acid analysis revealed relative abundance of serine, glutamic acid and glycine, but did not show the presence of hydroxyproline. According to all these characteristics, it cannot be classified as an extensin-like protein. Another prominent wall-bound glycoprotein has a molecular mass of 66 kDa and the same pI as the 69 kDa glycoprotein. These two glycoproteins are similar also in ConA binding, rate of synthesis, and rapid incorporation into pollen tube walls. Their synthesis is strongly reduced by tunicamycin and this inhibition results in the occurrence of new polypeptides in the range of 57–61 kDa. Tunicamycin also inhibited pollen tube growth. At 10 ng ml-1 and 50 ng ml-1 the inhibitor reduced pollen tube mass after 24 h of culture by 30% and 85%, respectively. This indicates that tobacco pollen presents a system highly sensitive to tunicamycin and that cotranslational N-linked glycosylation on the rough endoplasmic reticulum is required for 66 and 69 kDa glycoprotein formation and for pollen tube growth. Although other proteins appear during pollen germination and tube growth, the new proteins occur at low levels and seem to originate through modifications of preexisting polypeptides. In contrast to 69 and 66 kDa proteins, most proteins detected by [14C]amino acid incorporation and fluorography of gels were not revealed by Coomassie blue staining.  相似文献   

17.
An accumulation in cells of unfolded proteins is believed to be the common signal triggering the induction of heat shock proteins (hsps). Accordingly, in Saccharomyces cerevisiae, inhibition of protein breakdown at 30°C with the proteasome inhibitor MG132 caused a coordinate induction of many heat shock proteins within 1 to 2 h. Concomitantly, MG132, at concentrations that had little or no effect on growth rate, caused a dramatic increase in the cells’ resistance to very high temperature. The magnitude of this effect depended on the extent and duration of the inhibition of proteolysis. A similar induction of hsps and thermotolerance was seen with another proteasome inhibitor, clasto-lactacystin β-lactone, but not with an inhibitor of vacuolar proteases. Surprisingly, when the reversible inhibitor MG132 was removed, thermotolerance decreased rapidly, while synthesis of hsps continued to increase. In addition, exposure to MG132 and 37°C together had synergistic effects in promoting thermotolerance but did not increase hsp expression beyond that seen with either stimulus alone. Although thermotolerance did not correlate with hsp content, another thermoprotectant trehalose accumulated upon exposure of cells to MG132, and the cellular content of this disaccharide, unlike that of hsps, quickly decreased upon removal of MG132. Also, MG132 and 37°C had additive effects in causing trehalose accumulation. Thus, the resistance to heat induced by proteasome inhibitors is not just due to induction of hsps but also requires a short-lived metabolite, probably trehalose, which accumulates when proteolysis is reduced.  相似文献   

18.
Hao H  Li Y  Hu Y  Lin J 《The New phytologist》2005,165(3):721-730
* The effects of actinomycin D and cycloheximide on RNA and protein synthesis were investigated during pollen tube development of Pinus bungeana. * RNA and protein contents, protein expression patterns, cell wall components and ultrastructural changes of pollen tubes were studied using spectrophotometry, SDS-PAGE electrophoresis, Fourier transformed infrared (FTIR) microspectroscopy and transmission electron microscopy (TEM). * Pollen grains germinated in the presence of actinomycin D, but tube elongation and RNA synthesis were inhibited. By contrast, cycloheximide inhibited pollen germination and protein synthesis, induced abnormal tube morphology, and retarded the tube growth rate. SDS-PAGE analysis showed that protein expression patterns changed distinctly, with some proteins being specific for each phase. FTIR microspectroscopy established significant changes in the chemical composition of pollen tube walls. TEM analysis revealed the inhibitors caused disintegration of organelles involved in the secretory system. * These results suggested RNA necessary for pollen germination and early tube growth were present already in the pollen grains before germination, while the initiation of germination and the maintenance of pollen tube elongation depended on continuous protein synthesis.  相似文献   

19.
The polycomb group (PcG) proteins, Bmi-1 and Ezh2, are important epigenetic regulators that enhance skin cancer cell survival. We recently showed that Bmi-1 and Ezh2 protein level is reduced by treatment with the dietary chemopreventive agents, sulforaphane and green tea polyphenol, and that this reduction involves ubiquitination of Bmi-1 and Ezh2, suggesting a key role of the proteasome. In the present study, we observe a surprising outcome that Bmi-1 and Ezh2 levels are reduced by treatment with the proteasome inhibitor, MG132. We show that this is associated with a compensatory increase in the level of mRNA encoding proteasome protein subunits in response to MG132 treatment and an increase in proteasome activity. The increase in proteasome subunit level is associated with increased Nrf1 and Nrf2 level. Moreover, knockdown of Nrf1 attenuates the MG132-dependent increase in proteasome subunit expression and restores Bmi-1 and Ezh2 expression. The MG132-dependent loss of Bmi-1 and Ezh2 is associated with reduced cell proliferation, accumulation of cells in G2, and increased apoptosis. These effects are attenuated by forced expression of Bmi-1, suggesting that PcG proteins, consistent with a prosurvival action, may antagonize the action of MG132. These studies describe a compensatory Nrf1-dependent, and to a lesser extent Nrf2-dependent, increase in proteasome subunit level in proteasome inhibitor-treated cells and confirm that PcG protein levels are regulated by proteasome activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号