首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

2.
The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems.  相似文献   

3.
4.
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode‐derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxDA in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near‐total loss of cranial sensory neurons. Taken together, our cell‐lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.  相似文献   

5.
Neural crest cells represent a unique link between axial and peripheral regions of the developing vertebrate head. Although their fates are well catalogued, the issue of their role in spatial organization is less certain. Recent data, particularly on patterns of expression of Hox genes in the hindbrain and crest cells, have raised anew the debate whether a segmental arrangement is the basis for positional specification of craniofacial epithelial and mesenchymal tissues or is but one manifestation of underlying spatial programming processes. The mechanisms of positional specification of sensory neurons derived from the neural crest and placodes are unknown. This review examines the spatial organization of cells and tissues that develop in proximity to sensory neurons; some of these tissues share a common ancestry, others are targets of cranial sensory and motor nerves. All share the necessity of acquiring and expressing site-specific properties in a functionally integrated manner. This integration occurs in part by coordinating patterns of cell migration, as occurs between migrating crest cells and branchial arch myoblasts. Constant rostro-caudal relations are maintained among these precursors as they move dorsoventrally from the hindbrain–paraxial regions to establish branchial arches. During this period the interactions among these and other mesenchymal cells are hierarchical; each cell population differentially integrates its past with cues emanating from new microenvironments. Analyses of tissue interactions indicate that neural crest cells play a dominant role in this scenario. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
The olfactory placodes generate the primary sensory neurons of the olfactory sensory system. Additionally, the olfactory placodes have been proposed to generate a class of neuroendocrine cells containing gonadotropin-releasing hormone (GnRH). GnRH is a multifunctional decapeptide essential for the development of secondary sex characteristics in vertebrates as well as a neuromodulator within the central nervous system. Here, we show that endocrine and neuromodulatory GnRH cells arise from two separate, nonolfactory regions in the developing neural plate. Specifically, the neuromodulatory GnRH cells of the terminal nerve arise from the cranial neural crest, and the endocrine GnRH cells of the hypothalamus arise from the adenohypophyseal region of the developing anterior neural plate. Our findings are consistent with cell types generated by the adenohypophysis, a source of endocrine tissue in vertebrate animals, and by neural crest, a source of cells contributing to the cranial nerves. The adenohypophysis arises from a region of the anterior neural plate flanked by the olfactory placode fields at early stages of development, and premigratory cranial neural crest lies adjacent to the caudal edge of the olfactory placode domain [Development 127 (2000), 3645]. Thus, the GnRH cells arise from tissue closely associated with the developing olfactory placode, and their different developmental origins reflect their different functional roles in the adult animal.  相似文献   

7.
8.
9.
In vertebrates, cranial placodes form crucial parts of the sensory nervous system in the head. All cranial placodes arise from a common territory, the preplacodal region, and are identified by the expression of Six1/4 and Eya1/2 genes, which control different aspects of sensory development in invertebrates as well as vertebrates. While So and Eya can induce ectopic eyes in Drosophila, the ability of their vertebrate homologues to induce placodes in non-placodal ectoderm has not been explored. Here we show that Six1 and Eya2 are involved in ectodermal patterning and cooperate to induce preplacodal gene expression, while repressing neural plate and neural crest fates. However, they are not sufficient to induce ectopic sensory placodes in future epidermis. Activation of Six1 target genes is required for expression of preplacodal genes, for normal placode morphology and for placode-specific Pax protein expression. These findings suggest that unlike in the fly where the Pax6 homologue Eyeless acts upstream of Six and Eya, the regulatory relationships between these genes are reversed in early vertebrate placode development.  相似文献   

10.
Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the “ectodermal placodes,” together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFβ superfamily members, and Wnts are discussed.  相似文献   

11.
Vertebrates have evolved electrosensory receptors that detect electrical stimuli on the surface of the skin and transmit them somatotopically to the brain. In chondrichthyans, the electrosensory system is composed of a cephalic network of ampullary organs, known as the ampullae of Lorenzini, that can detect extremely weak electric fields during hunting and navigation. Each ampullary organ consists of a gel-filled epidermal pit containing sensory hair cells, and synaptic connections with primary afferent neurons at the base of the pit that facilitate detection of voltage gradients over large regions of the body. The developmental origin of electroreceptors and the mechanisms that determine their spatial arrangement in the vertebrate head are not well understood. We have analyzed electroreceptor development in the lesser spotted catshark (Scyliorhinus canicula) and show that Sox8 and HNK1, two markers of the neural crest lineage, selectively mark sensory cells in ampullary organs. This represents the first evidence that the neural crest gives rise to electrosensory cells. We also show that pathfinding by cephalic mechanosensory and electrosensory axons follows the expression pattern of EphA4, a well-known guidance cue for axons and neural crest cells in osteichthyans. Expression of EphrinB2, which encodes a ligand for EphA4, marks the positions at which ampullary placodes are initiated in the epidermis, and EphA4 is expressed in surrounding mesenchyme. These results suggest that Eph-Ephrin signaling may establish an early molecular map for neural crest migration, axon guidance and placodal morphogenesis during development of the shark electrosensory system.  相似文献   

12.
13.
Two embryonic tissues-the neural crest and the cranial placodes-give rise to most evolutionary novelties of the vertebrate head. These two tissues develop similarly in several respects: they originate from ectoderm at the neural plate border, give rise to migratory cells and develop into multiple cell fates including sensory neurons. These similarities, and the joint appearance of both tissues in the vertebrate lineage, may point to a common evolutionary origin of neural crest and placodes from a specialized population of neural plate border cells. However, a review of the developmental mechanisms underlying the induction, specification, migration and cytodifferentiation of neural crest and placodes reveals fundamental differences between the tissues. Taken together with insights from recent studies in tunicates and amphioxus, this suggests that neural crest and placodes have an independent evolutionary origin and that they evolved from the neural and non-neural side of the neural plate border, respectively.  相似文献   

14.
The primary olfactory sensory system is part of the PNS that develops from ectodermal placodes. Several cell types, including sensory neurons and support cells, differentiate within the olfactory placode to form the mature olfactory organ. The olfactory placodes are thought to arise from lateral regions of the anterior neural plate, which separate from the plate through differential cell movements. We determined the origins of the olfactory placodes in zebrafish by labeling cells along the anterior-lateral edge of the neural plate at times preceding the formation of the olfactory placodes and examining the later fates of the labeled cells. Surprisingly, we found that the olfactory placode arises from a field of cells, not from a discrete region of the anterior neural plate. This field extends posteriorly to the anterior limits of cranial neural crest and is bordered medially by telencephalic precursors. Cells giving rise to progeny in both the olfactory organ and telencephalon express the distal-less 3 gene. Furthermore, we found no localized pockets of cell division in the anterior-lateral neural plate cells preceding the appearance of the olfactory placode. We suggest that the olfactory placodes arise by anterior convergence of a field of lateral neural plate cells, rather than by localized separation and proliferation of a discrete group of cells.  相似文献   

15.
Vertebrate cranial ectodermal placodes are transient, paired thickenings of embryonic head ectoderm that are crucial for the formation of the peripheral sensory nervous system: they give rise to the paired peripheral sense organs (olfactory organs, inner ears and anamniote lateral line system), as well as the eye lenses, and most cranial sensory neurons. Here, we present the first detailed spatiotemporal fate-maps in any vertebrate for the ophthalmic trigeminal (opV) and maxillomandibular trigeminal (mmV) placodes, which give rise to cutaneous sensory neurons in the ophthalmic and maxillomandibular lobes of the trigeminal ganglion. We used focal DiI and DiO labelling to produce eight detailed fate-maps of chick embryonic head ectoderm over approximately 24 h of development, from 0-16 somites. OpV and mmV placode precursors arise from a partially overlapping territory; indeed, some individual dyespots labelled both opV and mmV placode-derived cells. OpV and mmV placode precursors are initially scattered within a relatively large region of ectoderm adjacent to the neural folds, intermingled both with each other and with future epidermal cells, and with geniculate and otic placode precursors. Although the degree of segregation increases with time, there is no clear border between the opV and mmV placodes even at the 16-somite stage, long after neurogenesis has begun in the opV placode, and when neurogenesis is just beginning in the mmV placode. Finally, we find that occasional cells in the border region between the opV placode and mmV placode express both Pax3 (an opV placode specific marker) and Neurogenin1 (an mmV placode specific marker), suggesting that a few cells are responding to both opV and mmV placode-inducing signals. Overall, our results fill a large gap in our knowledge of the early stages of development of both the opV and mmV placodes, providing an essential framework for subsequent studies of the molecular control of their development.  相似文献   

16.
The sense organs of the vertebrate head comprise structures as varied as the eye, inner ear, and olfactory epithelium. In the early embryo, these assorted structures share a common developmental origin within the preplacodal region and acquire specific characteristics only later. Here we demonstrate a fundamental similarity in placodal precursors: in the chick all are specified as lens prior to acquiring features of specific sensory or neurogenic placodes. Lens specification becomes progressively restricted in the head ectoderm, initially by FGF and subsequently by signals derived from migrating neural crest cells. We show that FGF8 from the anterior neural ridge is both necessary and sufficient to promote olfactory fate in adjacent ectoderm. Our results reveal that placode precursors share a common ground state as lens and progressive restriction allows the full range of placodal derivatives to form.  相似文献   

17.
I evaluate the lines of evidence—cell types, genes, gene pathways, fossils—in putative chordate ancestors—cephalochordates and ascidians—pertaining to the evolutionary origin of the vertebrate neural crest. Given the intimate relationship between the neural crest and the dorsal nervous system during development, I discuss the dorsal nervous system in living (extant) members of the two groups, especially the nature, and genes, and gene regulatory networks of the brain to determine whether any cellular and/or molecular precursors (latent homologues) of the neural may have been present in ancestral cephalochordates or urochordates. I then examine those fossils that have been interpreted as basal chordates or cephalochordates to determine whether they shed any light on the origins of neural crest cell (NCC) derivatives. Do they have, for example, elements of a head skeleton or pharyngeal arches, two fundamental vertebrate characters (synapomorphies)? The third topic recognizes that the origin of the neural crest in the first vertebrates accompanied the evolution of a brain, a muscular pharynx, and paired sensory organs. In a paradigm-breaking hypothesis—often known as the ‘new head hypothesis’—Carl Gans and Glen Northcutt linked these evolutionary innovations to the evolution of the neural crest and ectodermal placodes (Gans and Northcutt Science 220:268-274, 1983. doi:10.1126/science.220.4594.268; Northcutt and Gans The Quarterly Review of Biology 58:1–28, 1983. doi:10.1086/413055). I outline the rationale behind the new head hypothesis before turning to an examination of the pivotal role played by NCCs in the evolution of pharyngeal arches, in the context of the craniofacial skeleton. Integrations between the evolving vertebrate brain, muscular pharynx and paired sensory organs may have necessitated that the pharyngeal arch skeletal system—and subsequently, the skeleton of the jaws and much of the skull (the first vertebrates being jawless)—evolved from NCCs whose developmental connections were to neural ectoderm and neurons rather than to mesoderm and connective tissue; mesoderm produces much of the vertebrate skeleton, including virtually all the skeleton outside the head. The origination of the pharyngeal arch skeleton raises the issue of the group of organisms in which and how cartilage arose as a skeletal tissue. Did cartilage arise in the basal proto-vertebrate from a single germ layer, cell layer or tissue, or were cells and/or genes co-opted from several layers or tissues? Two recent studies utilizing comparative genomics, bioinformatics, molecular fingerprinting, genetic labeling/cell selection, and GeneChip Microarray technologies are introduced as powerful ways to approach the questions that are central to this review.  相似文献   

18.
19.
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号