首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parental decisions in animals are often context‐dependent and shaped by fitness trade‐offs between parents and offspring. For example, the selection of breeding habitats can considerably impact the fitness of both offspring and parents, and therefore, parents should carefully weigh the costs and benefits of available options for their current and future reproductive success. Here, we show that resource‐use preferences are shaped by a trade‐off between parental effort and offspring safety in a tadpole‐transporting frog. In a large‐scale in situ experiment, we investigated decision strategies across an entire population of poison frogs that distribute their tadpoles across multiple water bodies. Pool use followed a dynamic and sequential selection process, and transportation became more efficient over time. Our results point to a complex suite of environmental variables that are considered during offspring deposition, which necessitates a highly dynamic and flexible decision‐making process in tadpole‐transporting frogs.  相似文献   

2.
Fitness trade‐offs across episodes of selection and environments influence life‐history evolution and adaptive population divergence. Documenting these trade‐offs remains challenging as selection can vary in magnitude and direction through time and space. Here, we evaluate fitness trade‐offs at the levels of the whole organism and the quantitative trait locus (QTL) in a multiyear field study of Boechera stricta (Brassicaceae), a genetically tractable mustard native to the Rocky Mountains. Reciprocal local adaptation was pronounced for viability, but not for reproductive components of fitness. Instead, local genomes had a fecundity advantage only in the high latitude garden. By estimating realized selection coefficients from individual‐level data on viability and reproductive success and permuting the data to infer significance, we examined the genetic basis of fitness trade‐offs. This analytical approach (Conditional Neutrality‐Antagonistic Pleiotropy, CNAP) identified genetic trade‐offs at a flowering phenology QTL (costs of adaptation) and revealed genetic trade‐offs across fitness components (costs of reproduction). These patterns would not have emerged from traditional ANOVA‐based QTL mapping. Our analytical framework can be applied to other systems to investigate fitness trade‐offs. This task is becoming increasingly important as climate change may alter fitness landscapes, potentially disrupting fitness trade‐offs that took many generations to evolve.  相似文献   

3.
Allocation of resources to competing processes of growth, maintenance, or reproduction is arguably a key process driving the physiology of life history trade‐offs and has been shown to affect immune defenses, the evolution of aging, and the evolutionary ecology of offspring quality. Here, we develop a framework to investigate the evolutionary consequences of physiological dynamics by developing theory linking reproductive cell dynamics and components of fitness associated with costly resource allocation decisions to broader life history consequences. We scale these reproductive cell allocation decisions to population‐level survival and fecundity using a life history approach and explore the effects of investment in reproduction or tissue‐specific repair (somatic or reproductive) on the force of selection, reproductive effort, and resource allocation decisions. At the cellular level, we show that investment in protecting reproductive cells increases fitness when reproductive cell maturation rate is high or reproductive cell death is high. At the population level, life history fitness measures show that cellular protection increases reproductive value by differential investment in somatic or reproductive cells and the optimal allocation of resources to reproduction is moulded by this level of investment. Our model provides a framework to understand the evolutionary consequences of physiological processes underlying trade‐offs and highlights the insights to be gained from considering fitness at multiple levels, from cell dynamics through to population growth.  相似文献   

4.
  • 1 Trade‐off theory has been extensively used to further our understanding of animal behaviour. In mammalian herbivores, it has been used to advance our understanding of their reproductive, parental care and foraging strategies. Here, we detail how trade‐off theory can be applied to herbivore–parasite interactions, especially in foraging environments.
  • 2 Foraging is a common mode of uptake of parasites that represent the most pervasive challenge to mammalian fitness and survival. Hosts are hypothesized to alter their foraging behaviour in the presence of parasites in three ways: (i) hosts avoid foraging in areas that are contaminated with parasites; (ii) hosts select diets that increase their resistance and resilience to parasites; and (iii) hosts select for foods with direct anti‐parasitic properties (self‐medication). We concentrate on the mammalian herbivore literature to detail the recent advances made using trade‐off frameworks to understand the mechanisms behind host–parasite interactions in relation to these three hypotheses.
  • 3 In natural systems, animals often face complex foraging decisions including nutrient intake vs. predation risk, nutrient intake vs. sheltering and nutrient intake vs. parasite risk trade‐offs. A trade‐off framework is detailed that can be used to interpret mammal behaviour in complex environments, and may be used to advance the self‐medication hypothesis.
  • 4 The use of trade‐off theory has advanced our understanding of the contact process between grazing mammalian hosts and their parasites transmitted via the faecal–oral route. Experimental manipulation of the costs and benefits of a nutrient intake vs. parasite risk trade‐off has shown that environmental conditions (forage quality and quantity) and the physiological state (parasitic and immune status) of a mammalian host can both affect the behavioural decisions of foraging animals.
  • 5 Naturally occurring trade‐offs and the potential to manipulate their costs and benefits enables us to identify the abilities and behavioural rules used by mammals when making decisions in complex environments and thus predict animal behaviour.
  相似文献   

5.
Costs of reproduction are expected to vary with environmental conditions thus influencing selection on life‐history traits. Yet, the effects of habitat conditions and climate on trade‐offs among fitness components remain poorly understood. For 2–5 years, we quantified costs of experimentally increased reproduction in two populations (coastal long‐season vs. inland short‐season) of two long‐lived orchids that differ in natural reproductive effort (RE; 30 vs. 75% fruit set). In both species, survival costs were found only at the short‐season site, whereas growth and fecundity costs were evident at both sites, and both survival and fecundity costs declined with increasing growing season length and/or summer temperature. The results suggest that the expression of costs of reproduction depend on the local climate, and that climate warming could result in selection favouring increased RE in both study species.  相似文献   

6.
When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human‐induced environmental change are often maladaptive or insufficient to overcome novel selection pressures. Anthropogenic noise is a ubiquitous and expanding disturbance with demonstrated effects on fitness‐related traits of animals like stress responses, foraging, vigilance, and pairing success. Elucidating the lifetime fitness effects of noise has been challenging because longer‐lived vertebrate systems are typically studied in this context. Here, we follow noise‐stressed invertebrates throughout their lives, assessing a comprehensive suite of life history traits, and ultimately, lifetime number of surviving offspring. We reared field crickets, Teleogryllus oceanicus, in masking traffic noise, traffic noise from which we removed frequencies that spectrally overlap with the crickets’ mate location song and peak hearing (nonmasking), or silence. We found that exposure to masking noise delayed maturity and reduced adult lifespan; crickets exposed to masking noise spent 23% more time in juvenile stages and 13% less time as reproductive adults than those exposed to no traffic noise. Chronic lifetime exposure to noise, however, did not affect lifetime reproductive output (number of eggs or surviving offspring), perhaps because mating provided females a substantial longevity benefit. Nevertheless, these results are concerning as they highlight multiple ways in which traffic noise may reduce invertebrate fitness. We encourage researchers to consider effects of anthropogenic disturbance on growth, survival, and reproductive traits simultaneously because changes in these traits may amplify or nullify one another.  相似文献   

7.
A trait must genetically correlate with fitness in order to evolve in response to natural selection, but theory suggests that strong directional selection should erode additive genetic variance in fitness and limit future evolutionary potential. Balancing selection has been proposed as a mechanism that could maintain genetic variance if fitness components trade off with one another and has been invoked to account for empirical observations of higher levels of additive genetic variance in fitness components than would be expected from mutation–selection balance. Here, we used a long‐term study of an individually marked population of North American red squirrels (Tamiasciurus hudsonicus) to look for evidence of (1) additive genetic variance in lifetime reproductive success and (2) fitness trade‐offs between fitness components, such as male and female fitness or fitness in high‐ and low‐resource environments. “Animal model” analyses of a multigenerational pedigree revealed modest maternal effects on fitness, but very low levels of additive genetic variance in lifetime reproductive success overall as well as fitness measures within each sex and environment. It therefore appears that there are very low levels of direct genetic variance in fitness and fitness components in red squirrels to facilitate contemporary adaptation in this population.  相似文献   

8.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components.  相似文献   

9.
Reduced body size and accelerated life cycle due to warming are considered major ecological responses to climate change with fitness costs at the individual level. Surprisingly, we know little about how relevant ecological factors can alter these life history trade‐offs and their consequences for individual fitness. Here, we show that food modulates temperature‐dependent effects on body size in the water flea Daphnia magna and interacts with temperature to affect life history parameters. We exposed 412 individuals to a factorial manipulation of food abundance and temperature, tracked each reproductive event, and took daily measurements of body size from each individual. High temperature caused a reduction in maximum body size in both food treatments, but this effect was mediated by food abundance, such that low food conditions resulted in a reduction of 20% in maximum body size, compared with a reduction of 4% under high food conditions. High temperature resulted in an accelerated life cycle, with pronounced fitness cost at low levels of food where only a few individuals produced a clutch. These results suggest that the mechanisms affecting the trade‐off between fast growth and final body size are food‐dependent, and that the combination of low levels of food and high temperature could potentially threaten viability of ectotherms.  相似文献   

10.
Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30‐year‐old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short‐term (tiller population growth rates) and long‐term (17‐year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum. Analyzing the transplant study as a climate transfer experiment, we showed that the climate optimum for plant performance was displaced ca. 140 km north of home sites, although plants were not generally declining in size at home sites. Adaptational lag is expected to be widespread globally for long‐lived, ecotypically specialized plants, with disruptive consequences for communities and ecosystems.  相似文献   

11.
  • Trade‐offs between reproduction, growth and survival arise from limited resource availability in plants. Environmental stress is expected to exacerbate these negative correlations, but no studies have evaluated variation in life‐history trade‐offs throughout species geographic ranges. Here we analyse the costs of growth and reproduction across the latitudinal range of the widespread herb Plantago coronopus in Europe.
  • We monitored the performance of thousands of individuals in 11 populations of P. coronopus, and tested whether the effects of growth and reproduction on a set of vital rates (growth, probability of survival, probability of reproduction and fecundity) varied with local precipitation and soil fertility. To account for variation in internal resources among individuals, we analysed trade‐offs correcting for differences in size.
  • Growth was negatively affected by previous growth and reproduction. We also found costs of growth and reproduction on survival, reproduction probability and fecundity, but only in populations with low soil fertility. Costs also increased with precipitation, possibly due to flooding‐related stress. In contrast, growth was positively correlated with subsequent survival, and there was a positive covariation in reproduction between consecutive years under certain environments, a potential strategy to exploit temporary benign conditions.
  • Overall, we found both negative and positive correlations among vital rates across P. coronopus geographic range. Trade‐offs predominated under stressful conditions, and positive correlations arose particularly between related traits like reproduction investment across years. By analysing multiple and diverse fitness components along stress gradients, we can better understand life‐history evolution across species’ ranges, and their responses to environmental change.
  相似文献   

12.
Conifer‐feeding budworms emerge from overwintering sites as small larvae in early spring, several days before budburst, and mine old needles. These early‐emerging larvae suffer considerable mortality during this foraging period as they disperse in search of available, current‐year buds. Once buds flush, surviving budworms construct feeding shelters and must complete maturation before fresh host foliage senesces and lignifies later in the summer. Late‐developing larvae suffer greater mortality and survivors have lower fecundity when feeding on older foliage. Thus, there is a seasonal trade‐off in fitness associated with host synchrony: early‐emerging budworms have a greater risk of mortality during spring dispersal but gain better access to the most nutritious foliage, while, on the other hand, late‐emerging larvae incur a lower risk during the initial foraging period but must contend with rapidly diminishing resource quality at the end of the feeding period. We investigate the balance that results from these early‐season and late‐season synchrony fitness trade‐offs using the concept of the phenological window. Parameters associated with the variation in the phenological window are used to estimate generational fitness as a function of host‐plant synchrony. Because defoliation modifies these relationships, it is also included in the analysis. We show that fitness trade‐offs characterizing the phenological window result in a robust synchrony relationship between budworm and host plant over a wide geographic range in southern British Columbia, Canada.  相似文献   

13.
Manipulations of brood size measure the willingness or ability of parents to invest in offspring and different reproductive roles may lead to differences in feeding effort between the sexes. Parental investment in birds is usually assessed by quantifying feeding rates, but this provides an incomplete picture of parental effort because it fails to account for how parents collect food on the landscape. We studied northern flickers (Colaptes auratus), a woodpecker in which males provide the majority of parental care and used a repeated measures design and short‐term (24 h) brood enlargements (N = 35) and reductions (N = 27) to assess effects of treatment on feeding rates to nestlings and parental foraging behaviour. Parents of enlarged broods did not significantly increase feeding rate, resulting in a decline in nestling mass. Parents of reduced broods decreased their feeding rates by 84%, but increased per capita feeding rates, resulting in nestling mass gain. The variation in feeding rates to enlarged broods was not influenced by feather corticosterone, body condition, feather re‐growth rate or mass change between the incubation and nestling periods. Foraging pattern on the landscape remained the same during the enlarged treatment for both sexes. We conclude that flickers respond to proximate cues in brood demands, but do not increase feeding rates to enlarged broods, at least in the short term. A literature review suggested that this lack of response is atypical for short‐lived species. We hypothesize that parents in species with large home ranges and long nestling periods face energetic limitations that constrain their ability to respond to enlarged broods. We encourage future studies to assess foraging behaviour on the landscape to document important trade‐offs for parents such as predation risk and energy expenditure while feeding offspring.  相似文献   

14.
To predict long‐term responses to climate change, we need to understand how changes in temperature and precipitation elicit both immediate phenotypic responses and changes in natural selection. We used 22 years of data for the perennial herb Lathyrus vernus to examine how climate influences flowering phenology and phenotypic selection on phenology. Plants flowered earlier in springs with higher temperatures and higher precipitation. Early flowering was associated with a higher fitness in nearly all years, but selection for early flowering was significantly stronger in springs with higher temperatures and lower precipitation. Climate influenced selection through trait distributions, mean fitness and trait?fitness relationships, the latter accounting for most of the among‐year variation in selection. Our results show that climate both induces phenotypic responses and alters natural selection, and that the change in the optimal phenotype might be either weaker, as for spring temperature, or stronger, as for precipitation, than the optimal response.  相似文献   

15.
To invest in energetically demanding life history stages, individuals require a substantial amount of resources. Physiological traits, particularly those related to energetics, can be useful for examining variation in life history decisions and trade‐offs because they result from individual responses to environmental variation. Leptin is a protein hormone found in mammals that is proportional to the amount of endogenous fat stores within an individual. Recently, researchers have confirmed that a mammalian leptin analogue (MLA), based on the mammalian sequence of leptin, is present with associated receptors and proteins in avian species, with an inhibitory effect on foraging and body mass gain at high circulating levels. While MLA has been both quantified and manipulated in avian species, little is currently known regarding whether plasma MLA in wild‐living species and individuals is associated with key reproductive decisions. We quantified plasma MLA in wild, Arctic‐nesting female common eiders (Somateria mollissima) at arrival on the breeding grounds and followed them to determine subsequent breeding propensity, and reproductive phenology, investment, and success. Common eiders are capital‐income breeding birds that require the accumulation of substantial fat stores to initiate laying and successfully complete incubation. We found that females with lower plasma MLA initiated breeding earlier and in a shorter period of time. However, we found no links between plasma MLA levels and breeding propensity, clutch size, or reproductive success. Although little is still known about plasma MLA, based on these results and its role in influencing foraging behaviors and condition gain, plasma MLA appears to be closely linked to reproductive timing and is therefore likely to underlie trade‐offs surrounding life history decisions.  相似文献   

16.
The allocation of resources to different life‐history traits should represent the best compromise in fitness investment for organisms in their local environment. When resources are limiting, the investment in a specific trait must carry a cost that is expressed in trade‐offs with other traits. In this study, the relative investment in the fitness‐related traits, growth, reproduction and defence were compared at central and range‐edge locations, using the seaweed Ascophyllum nodosum as a model system. Individual growth rates were similar at both sites, whereas edge populations showed a higher relative investment in reproduction (demonstrated by a higher reproductive allocation and extended reproductive periods) when compared to central populations that invested more in defence. These results show the capability of A. nodosum to differentially allocate resources for different traits under different habitat conditions, suggesting that reproduction and defence have different fitness values under the specific living conditions experienced at edge and central locations. However, ongoing climate change may threaten edge populations by increasing the selective pressure on specific traits, forcing these populations to lower the investment in other traits that are also potentially important for population fitness.  相似文献   

17.
Lactation is the most energetically demanding stage of reproduction in female mammals. Increased energetic allocation toward current reproduction may result in fitness costs, although the mechanisms underlying these trade‐offs are not well understood. Trade‐offs during lactation may include reduced energetic allocation to cellular maintenance, immune response, and survival and may be influenced by resource limitation. As the smallest marine mammal, sea otters (Enhydra lutris) have the highest mass‐specific metabolic rate necessitating substantial energetic requirements for survival. To provide the increased energy needed for lactation, female sea otters significantly increase foraging effort, especially during late‐lactation. Caloric insufficiency during lactation is reflected in the high numbers of maternal deaths due to End‐Lactation Syndrome in the California subpopulation. We investigated the effects of lactation and resource limitation on maternal stress responses, metabolic regulation, immune function, and antioxidant capacity in two subspecies of wild sea otters (northern: E. l. nereis and southern: E. l. kenyoni) within the California, Washington, and Alaska subpopulations. Lactation and resource limitation were associated with reduced glucocorticoid responses to acute capture stress. Corticosterone release was lower in lactating otters. Cortisol release was lower under resource limitation and suppression during lactation was only evident under resource limitation. Lactation and resource limitation were associated with alterations in thyroid hormones. Immune responses and total antioxidant capacity were not reduced by lactation or resource limitation. Southern sea otters exhibited higher concentrations of antioxidants, immunoglobulins, and thyroid hormones than northern sea otters. These data provide evidence for allocation trade‐offs during reproduction and in response to nutrient limitation but suggest self‐maintenance of immune function and antioxidant defenses despite energetic constraints. Income‐breeding strategists may be especially vulnerable to the consequences of stress and modulation of thyroid function when food resources are insufficient to support successful reproduction and may come at a cost to survival, and thereby influence population trends.  相似文献   

18.
Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset of local spring, consequently reducing individual fitness and potentially even population levels. We used a dynamic state variable model to study whether Arctic long‐distance migrants can advance their migratory schedules under climate warming scenarios which include Arctic amplification, and whether such an advancement is constrained by fuel accumulation or the ability to anticipate climatic changes. Our model predicts that barnacle geese Branta leucopsis suffer from considerably reduced reproductive success with increasing Arctic amplification through mistimed arrival, when they cannot anticipate a more rapid progress of Arctic spring from their wintering grounds. When geese are able to anticipate a more rapid progress of Arctic spring, they are predicted to advance their spring arrival under Arctic amplification up to 44 days without any reproductive costs in terms of optimal condition or timing of breeding. Negative effects of mistimed arrival on reproduction are predicted to be somewhat mitigated by increasing summer length under warming in the Arctic, as late arriving geese can still breed successfully. We conclude that adaptation to Arctic amplification may rather be constrained by the (un)predictability of changes in the Arctic spring than by the time available for fuel accumulation. Social migrants like geese tend to have a high behavioural plasticity regarding stopover site choice and migration schedule, giving them the potential to adapt to future climate changes on their flyway.  相似文献   

19.
Plant reproductive trade‐offs are thought to be caused by resource limitations or other constraints, but more empirical support for these hypotheses would be welcome. Additionally, quantitative characterization of these trade‐offs, as well as consideration of whether they are linear, could yield additional insights. We expanded our flower removal research on lowbush blueberry (Vaccinium angustifolium) to explore the nature of and causes of its reproductive trade‐offs. We used fertilization, defoliation, positionally biased flower removal, and multiple flower removal levels to discern why reproductive trade‐offs occur in this taxon and to plot these trade‐offs along two continuous axes. We found evidence through defoliation that vegetative mass per stem may trade off with reproductive effort in lowbush blueberry because the two traits compete for limited carbon. Also, several traits including ripe fruit production per reproductive node and fruit titratable acidity may be “sink‐limited”—they decline with increasing reproductive effort because average reproductive structure quality declines. We found no evidence that reproductive trade‐offs were caused by nitrogen limitation. Use of reproductive nodes remaining per stem as a measure of reproductive effort indicated steeper trade‐offs than use of the proportion of nodes remaining. For five of six traits, we found evidence that the trade‐off could be concave down or up instead of strictly linear. Synthesis. To date, studies have aimed primarily at identifying plant reproductive trade‐offs. However, understanding how and why these trade‐offs occur represent the exciting and necessary next steps for this line of inquiry.  相似文献   

20.
Individual animal fitness can be strongly influenced by the ability to recognize habitat features which may be beneficial. Many studies focus on the effects of habitat on annual reproductive rate, even though adult survival is typically a greater influence on fitness and population growth in vertebrate species with intermediate to long lifespans. Understanding the effects of preferred habitat on individuals over the annual cycle is therefore necessary to predict its influences on individual fitness. This is particularly true in species that are resident and territorial year‐round in the temperate zone, which may face potential trade‐offs between habitat that maximizes reproduction and that which maximizes non‐breeding season (‘over‐winter’) survival. We used a 37‐year study of Song Sparrows Melospiza melodia residing territorially year‐round on a small island to examine what habitat features influenced adult over‐winter survival, how site‐specific variation in adult survival vs. annual reproductive rate influenced long‐term habitat preference, and if preferred sites on average conferred higher individual fitness. Habitat features such as area of shrub cover and exposure to intertidal coastline predicted adult over‐winter survival independent of individual age or sex, population size, or winter weather. Long‐term habitat preference (measured as occupation rate) was better predicted by site‐specific annual reproductive rate than by expected over‐winter survival, but preferred sites maximized fitness on average over the entire annual cycle,. Although adult over‐winter survival had a greater influence on population growth (λ) than did reproductive rate, the influence of reproductive rate on λ increased in preferred sites because site‐specific variation in reproductive rate was higher than variation in expected over‐winter survival. Because preferred habitats tended to have higher mean site‐specific reproductive and adult survival rates, territorial birds in this population do not appear to experience seasonal trade‐offs in preferred habitat but are predicted to incur substantial fitness costs of settling in less‐preferred sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号