首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heterochrony is believed to have played important roles in macroevolutionary morphological changes. However, few studies have focused on intraspecific heterochrony, although interspecific differences ultimately originated from variation within ancestral species. We have demonstrated heterochrony in fin development between two latitudinal populations of the medaka, Oryzias latipes . Comparisons of fin length (anal and dorsal) among wild individuals revealed that fins are shorter with respect to body length in the northern population, indicating that they are 'paedomorphic' compared with the southern population. Observations of fin ray formation and subsequent fin growth in the laboratory revealed that the timing of pterygiophore development occurs later, and that fins start to elongate later with respect to body length in the northern fish, indicating that fin growth is 'post-displaced' compared with the southern population. In addition, the rate of fin growth with respect to body length was lower in the northern males, indicating 'neoteny'. Given that all Oryzias except O. latipes are distributed in the tropics, it is likely that higher-latitude fish have evolved post-displacement and neoteny during northern extension of their geographic range. The delayed development in higher-latitude fish is probably a trade-off for faster body growth, which has evolved as an adaptation to seasonally time-constrained environments.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 571–580.  相似文献   

2.
R. Craig Stillwell 《Oikos》2010,119(9):1387-1390
Body size of animals often increases with increasing latitude. These latitudinal clines in body size have interested biologists for over 150 years. However, the mechanisms that generate these clines in size are still unclear, though latitudinal gradients in temperature appear to play an important role. More importantly, many studies that examine latitudinal clines in body size and the mechanisms responsible for these clines use phenotypic data, confounding genetic (adaptive) and non‐genetic (plasticity) sources of variation. Yet, most of these studies make adaptive conclusions based on phenotypic measures of size. Here I show the dangers of making adaptive inferences from phenotypic measures of size. In addition, I use a specific form of plasticity in body size of ectotherms, called the temperature–size rule, to illustrate how confusion about genetic and non‐genetic contributions to phenotypic variation has hampered progress in understanding the evolution of latitudinal clines in size. Field‐based measurements of body size can no doubt be influenced by plasticity, but demonstrating that latitudinal clines have a genetic basis is necessary to show that these patterns are adaptive.  相似文献   

3.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

4.
A. C. James  RBR. Azevedo    L. Partridge 《Genetics》1997,146(3):881-890
Field-collected Drosophila melanogaster from 19 populations in Eastern Australia were measured for body size traits, and the measurements were compared with similar ones on flies from the same populations reared under standard laboratory conditions. Wild caught flies were smaller, and latitudinal trends in size were greater. Reduced size was caused by fewer cells in the wing, and the steeper cline by greater variation in cell area. The reduction in size in field-collected flies may therefore have been caused by reduced nutrition, and the steeper cline may have been caused by an environmental response to latitudinal variation in temperature. No evidence was found for evolution of size traits in response to laboratory culture. The magnitude of phenotypic plasticity in response to temperature of development time, body size, cell size and cell number was examined for six of the populations, to test for latitudinal variation in plasticity. All characters were plastic in response to temperature. Total development time showed no significant latitudinal variation in plasticity, although larval development time showed a marginally significant effect, with most latitudinal variation at intermediate rearing temperatures. Neither thorax length nor wing size and its cellular components showed significant latitudinal variation in plasticity.  相似文献   

5.
Matti J. Salmela 《Oikos》2021,130(7):1143-1157
Roots constitute a major segment of plant biomass, and variation in belowground traits in situ correlates with environmental gradients at large spatial scales. Local adaptation of populations maintains intraspecific genetic variation in various shoot traits, but the contribution of genetic factors to adaptation to soil heterogeneity remains poorly known. I established a common-garden experiment with three Norway spruce Picea abies populations sampled between 60° and 67° N in Finland, each represented by 13 or 15 maternal families, to determine whether belowground traits are as genetically differentiated among populations as those in the shoot along a collective latitudinal gradient of temperature and soil heterogeneity. Two growing season simulations enabled testing for among-population differences in phenotypic plasticity. I phenotyped 777 first-year seedlings from shoot to root to capture functional traits that may influence survival in the wild: autumn phenology, shoot growth, root system size, root architecture, root morphology and growth allocation. All traits exhibited within-population genetic diversity, but among-population differentiation ranged from strong in shoot traits to nonexistent in root system architecture and morphology that are scaled to root system size. However, latitudinal trends characterised root-to-shoot ratio and root tip-to-shoot ratio that account for among-population differences in aboveground growth. Overall trait variability was multidimensional with variable among- versus within-population trends: for example, phenology and shoot growth covaried across populations, but their association within individual populations was variable. Shoot growth correlated positively with root system size, but not with root architecture or morphology. Finally, the two higher-latitude populations exhibited greater phenotypic plasticity in shoot traits and growth allocation. The results demonstrate varying patterns of genetic variation in functional traits of Norway spruce in the boreal zone, suggesting simultaneous adaptation to multiple environmental factors. Functional traits that exhibit phenotypic plasticity, genetic diversity and little covariation will promote long-term survival of populations in fluctuating environments.  相似文献   

6.
Climate‐induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype–environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude–body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion.  相似文献   

7.
Preexisting developmental plasticity in feeding larvae may contribute to the evolutionary transition from development with a feeding larva to nonfeeding larval development. Differences in timing of development of larval and juvenile structures (heterochronic shifts) and differences in the size of the larval body (shifts in allocation) were produced in sea urchin larvae exposed to different amounts of food in the laboratory and in the field. The changes in larval form in response to food appear to be adaptive, with increased allocation of growth to the larval apparatus for catching food when food is scarce and earlier allocation to juvenile structures when food is abundant. This phenotypic plasticity among full siblings is similar in direction to the heterochronic evolutionary changes in species that have greater nutrient reserves within the ova and do not depend on particulate planktonic food. This similarity suggests that developmental plasticity that is adaptive for feeding larvae also contributes to correlated and adaptive evolutionary changes in the transition to nonfeeding larval development. If endogenous food supplies have the same effect on morphogenesis as exogenous food supplies, then changes in genes that act during oogenesis to affect nutrient stores may be sufficient to produce correlated adaptive changes in larval development.  相似文献   

8.
In ectotherms, lower temperatures at high latitudes would theoretically reduce annual growth rates of individuals. If slower growth and resulting smaller body size reduce fitness, individuals at high latitudes may evolve compensatory growth. This study compares individual growth rates among and within 12 latitudinal populations of the medaka (Oryzias latipes). Growth rates during juvenile stage were measured in a common, temperature-controlled (28°C) environment. The results revealed that juvenile growth rates differed significantly among the populations. Growth rates were, moreover, significantly correlated with latitudes of source populations, such that higher-latitude individuals grew faster. Significant variation in growth rates among full-sib families within populations was also demonstrated. The results strongly suggest that higher-latitude O. latipes have acquired a greater capacity for growth as an adaptation to shorter growing seasons (which would reduce annual growth rates), thus refuting probability processes, i.e., genetic drift, founder, or bottleneck effects, as a cause of the among-population variation.  相似文献   

9.
Critical weight in the development of insect body size   总被引:6,自引:0,他引:6  
Body size is one of the most important life history characters of organisms, yet little is known of the physiological mechanisms that regulate either body size or variation in body size. Here, we examined one of these mechanisms, the critical weight, which is defined as the minimal mass at which further growth is not necessary for a normal time course to pupation. The critical weight occurred at 55% of peak larval mass in laboratory-reared larvae of the tobacco hornworm Manduca sexta. We examined the effects of genetic and environmental variation in the critical weight on body size. As in many other insects, Manduca larvae reared on poor diets were smaller and those reared at lower temperatures were larger than control animals. We demonstrated that the critical weight was lower on low quality diets but did not change with temperature. There was significant genetic variation for body size, for plasticity of body size, and for critical weight, but not for plasticity of critical weight. Variation in the critical weight accounted for 73% of between-family variance in peak larval size, whereas plasticity of critical weight was not significantly correlated with plasticity of body size. Our results suggest that although critical weight is an important factor in determining body size and enabling the evolution of body size, it may, at the same time, act as a constraint on the evolution of plasticity of body size. Thus, the determinants of body size and the determinants of plasticity of body size do not need to be identical.  相似文献   

10.
The developmental origin of phenotypic plasticity in morphological shape can be attributed to environment-specific changes in growth of overall body size, localized growth of a morphological structure or a combination of both. I monitored morphological development in the first four nymphal instars of grasshoppers (Melanoplus femurrubrum) raised on two different plant diets to determine the ontogenetic origins of diet-induced phenotypic plasticity and to quantify genetic variation for phenotypic plasticity. I measured diet-induced phenotypic plasticity in body size (tibia length), head size (articular width and mandible depth) and head shape (residual articular width and residual mandible depth) for grasshoppers from 37 full-sib families raised on either a hard plant diet (Lolium perenne) or a soft plant diet (Trifolium repens). By the second to third nymphal instar, grasshoppers raised on a hard plant diet had significantly smaller mean tibia length and greater mean residual articular width (distance between mandibles adjusted for body size) compared with full-sibs raised on a soft plant diet. However, there was no significant phenotypic plasticity in mean unadjusted articular width and mandible depth, and in mean residual mandible depth. At the population level, development of diet-induced phenotypic plasticity in grasshopper head shape is mediated by plastic changes in allocation to tissue growth that maintain growth of head size on hard, low-nutrient diets while reducing growth of body size. Within the population, there was substantial variation in the plasticity of growth trajectories since different full-sib families developed phenotypic plasticity of residual articular width through different combinations of head and body size growth. Genetic variation for diet-induced phenotypic plasticity of residual articular width, residual mandible depth and tibia length, as estimated by genotype–environment interaction, exhibited significant fluctuation through ontogeny (repeated measures MANOVA , family × plant × instar, P < 0.01). For example, there was significant genetic variation for phenotypic plasticity of residual articular width in the third nymphal instar, but not earlier or later in ontogeny. The observed patterns of genetic variation are discussed with reference to short-term constraints and the evolution of phenotypic plasticity.  相似文献   

11.
The aim of this study was to examine the latitudinal variation in preadult competitive ability of Drosophila melanogaster. Two pairs of populations from Queensland and Tasmania, Australia, were examined. Queensland flies are genetically smaller and develop more slowly than the Tasmanian flies. Survival and body size of flies raised at different temperatures and densities were compared when larvae were challenged with a common competitor. No latitudinal variation in larval survival was detected. Body size (measured as wing length) decreased with increasing temperature and larval density. Flies from the Tasmanian populations were more sensitive to the effects of temperature and density and to the joint effect of increased temperature and density. This could explain the evolution of greater growth efficiency and larger body size at lower temperatures.  相似文献   

12.
Aim  To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation.
Location  Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection.
Methods  Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites.
Results  Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions.
Main conclusions  The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.  相似文献   

13.
Understanding why organisms vary in developmental plasticity has implications for predicting population responses to changing environments and the maintenance of intraspecific variation. The epiphenotype hypothesis posits that the timing of development can constrain plasticity—the earlier alternate phenotypes begin to develop, the greater the difference that can result amongst the final traits. This research extends this idea by considering how life history timing shapes the opportunity for the environment to influence trait development. We test the prediction that the earlier an individual begins to actively interact with and explore their environment, the greater the opportunity for plasticity and thus variation in foraging traits. This research focuses on life history variation across four groups of birds using museum specimens and measurements from the literature. We reasoned that greater phenotypic plasticity, through either environmental effects or genotype-by-environment interactions in development, would be manifest in larger trait ranges (bills and tarsi) within species. Among shorebirds and ducks, we found that species with relatively shorter incubation times tended to show greater phenotypic variation. Across warblers and sparrows, we found little support linking timing of flight and trait variation. Overall, our results also suggest a pattern between body size and trait variation, consistent with constraints on egg size that might result in larger species having more environmental influences on development. Taken together, our results provide some support for the hypothesis that variation in life histories affects how the environment shapes development, through either the expression of plasticity or the release of cryptic genetic variation.  相似文献   

14.
Variation in body size, growth and life history traits of ectotherms along latitudinal and altitudinal clines is generally assumed to represent adaptation to local environmental conditions, especially adaptation to temperature. However, the degree to which variation along these clines is due to adaptation vs plasticity remains poorly understood. In addition, geographic patterns often differ between females and males – e.g. sexual dimorphism varies along latitudinal clines, but the extent to which these sex differences are due to genetic differences between sexes vs sex differences in plasticity is poorly understood. We use common garden experiments (beetles reared at 24, 30 and 36°C) to quantify the relative contribution of genetically‐based differentiation among populations vs phenotypic plasticity to variation in body size and other traits among six populations of the seed‐feeding beetle Stator limbatus collected from various altitudes in Arizona, USA. We found that temperature induces substantial plasticity in survivorship, body size and female lifetime fecundity, indicating that developmental temperature significantly affects growth and life history traits of S. limbatus. We also detected genetic differences among populations for body size and fecundity, and genetic differences among populations in thermal reaction norms, but the altitude of origin (and hence mean temperature) does not appear to explain these genetic differences. This and other recent studies suggest that temperature is not the major environmental factor that generates geographic variation in traits of this species. In addition, though there was no overall difference in plasticity of body size between males and females (when averaged across populations), we did find that the degree to which dimorphism changed with temperature varied among populations. Consequently, future studies should be extremely cautious when using only a few study populations to examine environmental effects on sexual dimorphism.  相似文献   

15.
Although genetic and plastic responses are sometimes considered as unrelated processes, their phenotypic effects may often align because genetic adaptation is expected to mirror phenotypic plasticity if adaptive, but run counter to it when maladaptive. Because the magnitude and direction of this alignment has further consequences for both the tempo and mode of adaptation, they are relevant for predicting an organisms’ reaction to environmental change. To better understand the interplay between phenotypic plasticity and genetic change in mediating adaptive phenotypic variation to climate variability, we here quantified genetic latitudinal variation and thermal plasticity in wing loading and wing shape in two closely related and widespread sepsid flies. Common garden rearing of 16 geographical populations reared across multiple temperatures revealed that wing loading decreases with latitude in both species. This pattern could be driven by selection for increased dispersal capacity in the cold. However, although allometry, sexual dimorphism, thermal plasticity and latitudinal differentiation in wing shape all show similar patterns in the two species, the relationship between the plastic and genetic responses differed between them. Although latitudinal differentiation (south to north) mirrored thermal plasticity (hot to cold) in Sepsis punctum, there was no relationship in Sepsis fulgens. While this suggests that thermal plasticity may have helped to mediate local adaptation in S. punctum, it also demonstrates that genetic wing shape differentiation and its relation to thermal plasticity may be complex and idiosyncratic, even among ecologically similar and closely related species. Hence, genetic responses can, but do not necessarily, align with phenotypic plasticity induced by changing environmental selection pressures.  相似文献   

16.
Aims Foliar herbivory and water stress may affect floral traits attractive to pollinators. Plant genotypes may differ in their responses to the interplay between these factors, and evolution of phenotypic plasticity could be expected, particularly in heterogeneous environments. We aimed at evaluating the effects of simulated herbivory and experimental drought on floral traits attractive to pollinators in genetic families of the annual tarweed Madia sativa, which inhabits heterogeneous environments in terms of water availability, herbivore abundance and pollinator abundance.Methods In a greenhouse experiment with 15 inbred lines from a M. sativa population located in central Chile (Mediterranean-type climate), we measured the effects of apical bud damage and reduced water availability on: number of ray florets per flower head, length of ray florets, flower head diameter, number of open flower heads per plant, flowering plant height and flowering time.Important findings Apical damage and water shortage reduced phenotypic expression of floral traits attractive to pollinators via additive and non-additive effects. Plants in low water showed decreased height and had fewer and shorter ray florets, and fewer and smaller flower heads. Damaged plants showed delayed flowering, were less tall, and showed shorter ray florets and smaller flower heads. The number of ray florets was reduced by damage only in the low water treatment. Plant height, flowering time and number of flower heads showed among-family variation. These traits also showed genetic variation for plasticity to water availability. Ray floret length, flower head size and time to flowering showed genetic variation for plastic responses to apical damage. Plasticity in flowering time may allow M. sativa to adjust to the increased aridity foreseen for its habitat. Because genetic variation for plastic responses was detected, conditions are given for evolutionary responses to selective forces acting on plastic traits. We suggest that the evolution of adaptive floral plasticity in M. sativa in this ecological scenario (heterogeneous environments) would result from selective forces that include not only pollinators but also resource availability and herbivore damage.  相似文献   

17.
Invasive species cope with novel environments through both phenotypic plasticity and evolutionary change. However, the environmental factors that cause evolutionary divergence in invasive species are poorly understood. We developed predictions for how different life‐history traits, and plasticity in those traits, may respond to environmental gradients in seasonal temperatures, season length and natural enemies. We then tested these predictions in four geographic populations of the invasive cabbage white butterfly (Pieris rapae) from North America. We examined the influence of two rearing temperatures (20 and 26.7 °C) on pupal mass, pupal development time, immune function and fecundity. As predicted, development time was shorter and immune function was greater in populations adapted to longer season length. Also, phenotypic plasticity in development time was greater in regions with shorter growing seasons. Populations differed significantly in mean and plasticity of body mass and fecundity, but these differences were not associated with seasonal temperatures or season length. Our study shows that some life‐history traits, such as development time and immune function, can evolve rapidly in response to latitudinal variation in season length and natural enemies, whereas others traits did not. Our results also indicate that phenotypic plasticity in development time can also diverge rapidly in response to environmental conditions for some traits.  相似文献   

18.
The body size of a univoltine carabid beetle Carabus tosanus on Shikoku Island, Japan, was clearly smaller in higher‐altitude populations (subspecies), which possibly represents incipient speciation. To explore the determinants of altitudinal differences in body size in this species, we studied the degree of phenotypic plasticity by conducting rearing experiments at two constant temperatures and examined genetic differences through interpopulation crosses. At 15 °C, C. tosanus had a longer developmental period and a shorter adult body than at 20 °C. Nevertheless, variation in body size due to temperature effects (phenotypic plasticity) was small compared to the interpopulation differences, which suggests substantial genetic differences between populations (subspecies) at different altitudes. In F1 offspring from crosses between a low‐altitude (subspecies tosanus) and a high‐altitude population (subspecies ishizuchianus), adult body length was affected by the genotypes of both parents, with an interaction effect of parental genotype and offspring sex. Further analyses revealed that adult body length was affected by sex‐linked factors in addition to autosomal factors. These genetic differences in body size may have resulted from adaptations to different altitudes and may be important for the process of incipient speciation because body size differences could contribute to premating reproductive isolation.  相似文献   

19.
Thermal and nutritional stress are commonly experienced by animals. This will become increasingly so with climate change. Whether populations can plastically respond to such changes will determine their survival. Plasticity can vary among populations depending on the extent of environmental heterogeneity. However, theory conflicts as to whether environmental heterogeneity should increase or decrease plasticity. Using three locally adapted populations of Drosophila melanogaster sampled from a latitudinal gradient, we investigated whether plastic responses to combinations of nutrition and temperature increase or decrease with latitude for four traits: egg-adult viability, egg-adult development time, and two body size traits. Employing nutritional geometry, we reared larvae on 25 diets varying in protein and carbohydrate content at two temperatures: 18 and 25°C. Plasticity varied among traits and across the three populations. Viability was highly canalized in all three populations. The tropical population showed the least plasticity for development time, the sub-tropical showed the highest plasticity for wing area, and the temperate population showed the highest plasticity for femur length. We found no evidence of latitudinal plasticity gradients in either direction. Our data highlight that differences in thermal variation and resource predictability experienced by populations along a latitudinal cline are not sufficient to predict their plasticity.  相似文献   

20.
Summary Body size in Drosophila is known to be closely related to a number of traits with important life history consequences, such as fecundity, dispersal ability and mating success. We examine the quantitative genetic basis of body size in three populations of the cactophilic species Drosophila buzzatii, which inhabit climatically different areas of Australia. Flies were reared individually to eliminate any common environmental component in a full-sib design with families split between two temperatures (18° and 25 °C). The means of several size measures differ significantly among populations while the genetic correlations among these traits generally do not differ, either among populations from different natural environments or between the different laboratory temperatures. This stability of correlation structure is necessary if laboratory estimates of genetic correlations are to have any connection with the expression of genetic variation in the field. The amount of variance due to genotype-by-environment interactions (family x temperature of development) varied among populations, apparently in parallel with the magnitudes of seasonal and diurnal variation in temperature experienced by the different populations. A coastal population, inhabiting a relatively thermally benign environment, showed no interaction, while two inland populations, inhabiting thermally more extreme areas, showed interaction. This interaction term is a measure of the amount of genetic variation in the degree of phenotypic plasticity of body size in response to temperature of development. Thus the inland flies vary in their ability to attain a given body size at a particular temperature while the coastal flies do not. This phenotypic plasticity is shown to be due primarily to differences among genotypes in the amount of response to the change in temperature. A possible selective basis for the maintenance of genetic variation for the levels of phenotypic plasticity is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号