首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetally localized RNAs in Xenopus laevis oocytes are involved in the patterning of the early embryo as well as in cell fate specification. Here we report on the isolation and characterization of a novel, vegetally localized RNA in Xenopus oocytes termed Xvelo1. It encodes a protein of unknown biological function and it represents an antisense RNA for XPc1 over a length of more than 1.8 kb. Xvelo1 exhibits a localization pattern reminiscent of the late pathway RNAs Vg1 and VegT; it contains RNA localization elements (LE) which do not match with the consensus structural features as deduced from Vg1 and VegT LEs. Nevertheless, the protein binding pattern as observed for Xvelo1-LE in UV cross-linking experiments and coimmunoprecipitation assays is largely overlapping with the one obtained for Vg1-LE. These observations suggest that the structural features recognized by the protein machinery that drives localization of maternal mRNAs along the late pathway in Xenopus oocytes must be redefined.  相似文献   

2.
Localization of mRNA is an important way of generating early asymmetries in the developing embryo. In Drosophila, Staufen is intimately involved in the localization of maternally inherited mRNAs critical for cell fate determination in the embryo. We show that double-stranded RNA-binding Staufen proteins are present in the oocytes of a vertebrate, Xenopus, and are localized to the vegetal cytoplasm, a region where important mRNAs including VegT and Vg1 mRNA become localized. We identified two Staufen isoforms named XStau1 and XStau2, where XStau1 was found to be the principal Staufen protein in oocytes, eggs, and embryos, the levels of both proteins peaking during mid-oogenesis. In adults, Xenopus Staufens are principally expressed in ovary and testis. XStau1 was detectable throughout the oocyte cytoplasm by immunofluorescence and was concentrated in the vegetal cortical region from stage II onward. It showed partial codistribution with subcortical endoplasmic reticulum (ER), raising the possibility that Staufen may anchor mRNAs to specific ER-rich domains. We further showed that XStau proteins are transiently phosphorylated by the MAPK pathway during meiotic maturation, a period during which RNAs such as Vg1 RNA are released from their tight localization at the vegetal cortex. These findings provide evidence that Staufen proteins are involved in targeting and/or anchoring of maternal determinants to the vegetal cortex of the oocyte in Xenopus. The Xenopus oocyte should thus provide a valuable system to dissect the role of Staufen proteins in RNA localization and vertebrate development.  相似文献   

3.
Loeber J  Claussen M  Jahn O  Pieler T 《The FEBS journal》2010,277(22):4722-4731
Localization of a specific subset of maternal mRNAs to the vegetal cortex of Xenopus oocytes is important for the regulation of germ layer formation and germ cell development. It is driven by vegetal localization complexes that are formed with the corresponding signal sequences in the untranslated regions of the mRNAs and with a number of different so-called localization proteins. In the context of the present study, we incorporated tagged variants of the known localization protein Vg1RBP into vegetal localization complexes by means of oocyte microinjection. Immunoprecipitation of the corresponding RNPs allowed for the identification of novel Vg1RBP-associated proteins, such as the embryonic poly(A) binding protein, the Y-box RNA-packaging protein 2B and the oocyte-specific version of the elongation factor 1α (42Sp50). Incorporation of 42Sp50 into localization RNPs could be confirmed by co-immunoprecipitation of Vg1RBP and Staufen1 with myc-tagged 42Sp50. Furthermore, myc-42Sp50 was found to co-sediment with the same two proteins in large, RNAse-sensitive complexes, as well as to associate specifically with several vegetally localizing mRNAs but not with nonlocalized control RNAs. Finally, oocyte microinjection experiments reveal that 42Sp50 is a protein that shuttles between the nucleus and cytoplasm. Taken together, these observations provide evidence for a novel function of 42Sp50 in the context of vegetal mRNA transport in Xenopus oocytes.  相似文献   

4.
5.
The 3′ untranslated region of mRNA encoding PHAX, a phosphoprotein required for nuclear export of U-type snRNAs, contains cis-acting sequence motifs E2 and VM1 that are required for localization of RNAs to the vegetal hemisphere of Xenopus oocytes. However, we have found that PHAX mRNA is transported to the opposite, animal, hemisphere. A set of proteins that cross-link to the localization elements of vegetally localized RNAs are also cross-linked to PHAX and An1 mRNAs, demonstrating that the composition of RNP complexes that form on these localization elements is highly conserved irrespective of the final destination of the RNA. The ability of RNAs to bind this core group of proteins is correlated with localization activity. Staufen1, which binds to Vg1 and VegT mRNAs, is not associated with RNAs localized to the animal hemisphere and may determine, at least in part, the direction of RNA movement in Xenopus oocytes.  相似文献   

6.
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.  相似文献   

7.
Zhao WM  Jiang C  Kroll TT  Huber PW 《The EMBO journal》2001,20(9):2315-2325
A 340 nucleotide element within the 3' untranslated region of Vg1 mRNA determines its localization to the vegetal cortex of Xenopus oocytes. To identify protein factors that bind to this region, we screened a cDNA expression library with an RNA probe containing this sequence. Five independent isolates encoded a protein (designated Prrp for proline-rich RNA binding protein) having two RNP domains followed by multiple polyproline segments. Prrp and Vg1 mRNAs are co-localized to the vegetal cortex of stage IV oocytes, substantiating an interaction between the two in vivo. Prrp also associates with VegT mRNA, which like Vg1 mRNA uses the late localization pathway, but not with Xcat-2 or Xwnt-11 mRNAs, which use the early pathway. The proline-rich domain of Prrp interacts with profilin, a protein that promotes actin polymerization. Prrp can also associate with the EVH1 domain of Mena, another microfilament-associated protein. Since the anchoring of Vg1 mRNA to the vegetal cortex is actin dependent, one function of Prrp may be to facilitate local actin polymerization, representing a novel function for an RNA binding protein.  相似文献   

8.
9.
In an effort to understand how polarity is established in Xenopus oocytes, we have analyzed the process of localization of the maternal mRNA, Vg1. In fully grown oocytes, Vg1 mRNA is tightly localized at the vegetal cortex. Biochemical fractionation shows that the mRNA is preferentially associated with a detergent-insoluble subcellular fraction. The use of cytoskeletal inhibitors suggests that (1) microtubules are involved in the translocation of the message to the vegetal hemisphere and (2) microfilaments are important for the anchoring of the message at the cortex. Furthermore, immunohistochemistry reveals that a cytoplasmic microtubule array exists during translocation. These results suggest a role for the cytoskeleton in localizing information in the oocyte.  相似文献   

10.
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.  相似文献   

11.
The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs.  相似文献   

12.
13.
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm, which originates within a distinct "mitochondrial cloud" (MC) in previtellogenic oocytes. Germ plasm contains localized RNAs implicated in germ cell development, including Xcat2 and Xdazl. To understand the mechanism of the early pathway through which RNAs localize to the MC, we applied live confocal imaging and photobleaching analysis to oocytes microinjected with fluorescent Xcat2 and Xdazl RNA constructs. These RNAs dispersed evenly throughout the cytoplasm through diffusion and then became progressively immobilized and formed aggregates in the MC. Entrapment in the MC was not prevented by microtubule disruption and did not require localization to germinal granules. Immobilized RNA constructs codistributed and showed coordinated movement with densely packed endoplasmic reticulum (ER) concentrated in the MC, as revealed with Dil16(3) labeling and immunofluorescence analysis. Vg1RBP/Vera protein, which has been implicated in linking late pathway RNAs to vegetal ER, was shown to bind specifically both wild-type Xcat2 3' untranslated region and localization-defective constructs. We found endogenous Vg1RBP/Vera and Vg1RBP/Vera-green fluorescent protein to be largely excluded from the MC but subsequently to codistribute with Xcat2 and ER at the vegetal cortex. We conclude that germ line RNAs localize into the MC through a diffusion/entrapment mechanism involving Vg1RBP/Vera-independent association with ER.  相似文献   

14.
15.
16.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA.  相似文献   

17.
Vg 1 RNA becomes localized at the vegetal cortex of Xenopus oocytes in a process requiring both intact microtubules (MT) and microfilaments. This localization occurs during a narrow window of oogenesis, when a number of RNA-binding proteins associate with the RNA. xVICKZ3 (Vg1 RBP/Vera), the first Vg1 RNA-binding protein identified, helps mediate the association of Vg1 RNA with MT and is co-localized with the RNA at the vegetal cortex. Given the complexity of the Vg1 RNA ribonucleoprotein (RNP) complex, it has remained unclear how xVICKZ3 functions in Vg1 RNA localization. Here, we have taken a closer look at the process of xVICKZ3 localization in oocytes. We have made use of deletion constructs to perform a structure-function analysis of xVICKZ3. The ability of xVICKZ3-GFP constructs to vegetally localize correlates with their association to MT but not with Vg1 RNA-binding ability. We find that when the ability of xVICKZ3 to bind Vg1 RNA is inhibited by the injection of a construct that dominantly inhibits RNA binding, both the construct and Vg1 RNA still localize, apparently through their continued association with a Vg1 RNA-containing RNP complex. These results emphasize the importance of protein-protein interactions in both xVICKZ3 and Vg1 RNA localization.  相似文献   

18.
Early development in the frog model, Xenopus laevis, is governed by RNAs, localized to the vegetal cortex of the oocyte. These RNAs include Xdazl RNA, which is involved in primordial germ cell formation, and VegT RNA, which specifies the mesoderm and endoderm. In order to determine whether orthologues of these RNAs are localized and have similar functions in other frogs, we cloned RpDazl and RpVegT from Rana pipiens, a frog that is phylogenetically distant from X. laevis. RNAs from both genes are localized to the vegetal cortex of the R. pipiens oocyte, indicating that the vegetal localization is likely the basal state. The animal location of EcVegT RNA in Eleutherodactylus coqui that we found previously (Beckham et al., 2003) is then a derived state, probably due to the great increase in egg size required for direct development of this species. To answer the question of function, we injected RpVegT or EcVegT RNAs into X. laevis embryos, and assayed animal caps for gene expression. Both of these RNAs induced the expression of endodermal, mesodermal, and organizer genes, showing that the function of RpVegT and EcVegT as meso-endodermal determinants is conserved in frogs. The RNA localizations and the function of VegT orthologues in germ layer specification may be synapomorphies for anuran amphibians.  相似文献   

19.
Only a subset of cleavage stage blastomeres in the Xenopus embryo is competent to contribute cells to the retina; ventral vegetal blastomeres do not form retina even when provided with neuralizing factors or transplanted to the most retinogenic position of the embryo. These results suggest that endogenous maternal factors in the vegetal region repress the ability of blastomeres to form retina. Herein we provide three lines of evidence that two vegetal-enriched maternal factors (VegT, Vg1), which are known to promote endo-mesodermal fates, negatively regulate which cells are competent to express anterior neural and retinal fates. First, both molecules can repress the ability of dorsal-animal retinogenic blastomeres to form retina, converting the lineage from neural/retinal to non-neural ectodermal and endo-mesodermal fates. Second, reducing the endogenous levels of either factor in dorsal-animal retinogenic blastomeres expands expression of neural/retinal genes and enlarges the retina. The dorsal-animal repression of neural/retinal fates by VegT and Vg1 is likely mediated by Sox17alpha and Derriere but not by XNr1. VegT and Vg1 likely exert their effects on neural/retinal fates through at least partially independent pathways because Notch1 can reverse the effects of VegT and Derriere but not those of Vg1 or XNr1. Third, reduction of endogenous VegT and/or Vg1 in ventral vegetal blastomeres can induce a neural fate, but only allows expression of a retinal fate when both BMP and Wnt signaling pathways are concomitantly repressed.  相似文献   

20.
Asymmetric distribution of maternal mRNAs has not been well documented in zebrafish. Recently, we have shown that dazl mRNA is localized at the vegetal pole. Here we report a novel zebrafish gene, bruno-like (brul), which provides another example of vegetal mRNA localization. brul encodes an Elav-type RNA-binding protein that belongs to the Bruno-like family that includes mammalian CUG-BP, Xenopus EDEN-BP, and Drosophila Bruno. At 24 hpf, brul mRNA was abundant in lens fiber cells. At the onset of embryogenesis, maternal brul mRNA was detected at the vegetal pole, and it then migrated rapidly toward the blastoderm through yolk cytoplasmic streams. During oogenesis, brul mRNA became localized at the vegetal cortex at stage II, later than dazl mRNA. We found that anchoring of brul mRNA was dependent on microfilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号