首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sequences of 16S rRNA of the nitrogen-fixing Frankia strain Ag45/Mut15 and the ineffective Frankia strain AgB1.9 were used to design a genus-specific oligonucleotide probe. Hybridization experiments of this Frankia probe and a second probe, specific for Nif+-Frankia strains only, were used to detect Frankia specific target sequences in RNA isolations from soil. A method is described for direct isolation of RNA from a loamy soil and a peat. Yields of about 10 ng RNA/g wet soil are obtained without detectable contamination with humic acids. Isolation of RNA after initial extraction of bacteria from soil resulted in significantly lower RNA yields, compared to the direct isolation procedure. Hybridization with both probes against rRNA isolations from Frankia-containing soil could detect target sequences within RNA isolations from 1 g wet soil with an estimated detection limit of 104 cells.  相似文献   

2.
The 23S rRNA gene was evaluated as target for the development of Sybr Green-based quantitative PCR (qPCR) for the analysis of nitrogen-fixing members of the genus Frankia or subgroups of these in soil. A qPCR with a primer combination targeting all nitrogen-fixing frankiae (clusters 1, 2 and 3) resulted in numbers similar to those obtained with a previously developed qPCR using nifH gene sequences, both with respect to introduced and indigenous Frankia populations. Primer combinations more specifically targeting three subgroups of the Alnus host infection group (cluster 1) or members of the Elaeagnus host infection group (cluster 3) were specific for introduced strains of the target group, with numbers corresponding to those obtained by quantification of nitrogen-fixing frankiae with both the 23S rRNA and nifH genes as target. Method verification on indigenous Frankia populations in soils, i.e. in depth profiles from four sites at an Alnus glutinosa stand, revealed declining numbers in the depth profiles, with similar abundance of all nitrogen-fixing frankiae independent of 23S rRNA or nifH gene targets, and corresponding numbers of one group of frankiae of the Alnus host infection only, with no detections of frankiae representing the Elaeagnus, Casuarina, or a second subgroup of the Alnus host infection groups.  相似文献   

3.

Nodule samples were collected from four alder species:Alnus nepalensis, A. sibirica, A. tinctoria andA. mandshurica growing in different environments on Gaoligong Mountains, Yunnan Province of Southwest China and on Changbai Mountains, Jilin Province of Northeast China. PCR-RFLP analysis of the IGS betweennifD andnifK genes was directly applied to unculturedFrankia strains in the nodules. A total of 21 restriction patterns were obtained. TheFrankia population in the nodules ofA. nepalensis had the highest genetic diversity among all fourFrankia populations; by contrast, the population in the nodules ofA. mandshurica had the lowest degree of divergence; the ones in the nodules ofA. sibirica andA. tinctoria were intermediate. A dendrogram, which was constructed based on the genetic distance between the restriction patterns, indicated thatFrankia strains fromA. sibirica andA. tinctoria had a close genetic relationship.Frankia strains fromA. nepalensis might be the ancestor ofFrankia strains infecting otherAlnus species. From these results and the inference of the ages ofAlnus host species, it is deduced that there was a co-evolution betweenAlnus and its microsymbiontFrankia in China.

  相似文献   

4.
D. Prat 《Plant and Soil》1989,113(1):31-38
In greenhouse experiments plants of eightAlnus species, from various parts of the world, and from different taxonomic sections, were inoculated with threeFrankia strains in order to show any possible interaction. Mixtures in equal parts of theseFrankia strains were also tried. The growth of inoculated plants was significantly higher than of the controls, with one of the three strains being superior. Mixtures of strains generally provided higher growth than the best individual strain. No interaction betweenFrankia strains andAlnus species was detected in the young plants 60 days after inoculation. Three clones ofAlnus glutinosa were inoculated with the same pure cultures ofFrankia, without producing any interaction. Inoculation time was studied in one clone and one progeny ofAlnus glutinosa. The best results were obtained with the earlier inoculation (at sowing for the progeny and at transfer to soil for thein vitro-propagated clone). The results are discussed in terms of nursery practice and field experiments for selection in breeding programmes.  相似文献   

5.
Oligonucleotide probes that hybridize with specific sequences in variable regions of the 16S rRNA of the nitrogen-fixing actinomycete Frankia were used for the identification of Frankia strains in nodules. Frankia cells were released from plant tissue by grinding glutaraldehyde-fixed root nodules in guanidine hydrochloride solution. rRNA was obtained after sonication, precipitation with ethanol, and purification by phenolchloroform extraction. Degradation of rRNA, evident in Northern blots, did not affect hybridization with the oligonucleotides. Nodules of about 1 mg (fresh weight) provided sufficient rRNA for reliable detection of the Frankia strain. The utility of this rRNA extraction method was tested in a competition experiment between two effective Frankia strains on cloned Alnus glutinosa plants.  相似文献   

6.
Nodules collected from Alnus nepalensis growing in mixed forest stands at three different sites around Shillong, were crushed in various culture media to obtain isolates of Frankia. The isolates were found to have typical Frankia morphology as revealed by the scanning electron microscope. Seedlings inoculated with isolates or crushed nodules formed nitrogen fixing nodules. Frankia specific DNA probes amplified the DNA of the tested isolate AnpUS4. Partial nucleotide sequence of the 16S rRNA gene indicated that AnpUS4 was phylogenetically distinct from all other Frankia strains characterized so far.  相似文献   

7.
DNA microarray technology offers the possibility to analyze microbial communities without cultivation, thus benefiting biodiversity studies. We developed a DNA phylochip to assess phytoplankton diversity and transferred 18S rRNA probes from dot blot or fluorescent in situ hybridization (FISH) analyses to a microarray format. Similar studies with 16S rRNA probes have been done determined that in order to achieve a signal on the microarray, the 16S rRNA molecule had to be fragmented, or PCR amplicons had to be <150 bp in length to minimize the formation of a secondary structure in the molecule so that the probe could bind to the target site. We found different results with the 18S rRNA molecule. Four out of 12 FISH probes exhibited false-negative signals on the microarray; eight exhibited strong but variable signals using full-length 18S RNA molecules. A systematic investigation of the probe's accessibility to the 18S rRNA gene was made using Prymenisum parvum as the target. Fourteen additional probes identical to this target covered the regions not tested with existing FISH probes. Probes with a binding site in the first 900 bp of the gene generated positive signals. Six out of nine probes binding in the last 900 bp of the gene produced no signal. Our results suggest that although secondary structure affected probe binding, the effect is not the same for the 18S rRNA gene and the 16S rRNA gene. For the 16S rRNA gene, the secondary structure is stronger in the first half of the molecule, whereas in the 18S rRNA gene, the last half of the molecule is critical. Probe-binding sites within 18S rRNA gene molecules are important for the probe design for DNA phylochips because signal intensity appears to be correlated with the secondary structure at the binding site in this molecule. If probes are designed from the first half of the 18S rRNA molecule, then full-length 18S rRNA molecules can be used in the hybridization on the chip, avoiding the fragmentation and the necessity for the short PCR amplicons that are associated with using the 16S rRNA molecule. Thus, the 18S rRNA molecule is a more attractive molecule for use in environmental studies where some level of quantification is desired. Target size was a minor problem, whereas for 16S rRNA molecules target size rather than probe site was important.  相似文献   

8.
16S–23S rRNA internally transcribed spacer (ITS) sequences from 53 Frankia strains were sequenced and sized from polymerase chain reaction amplification products and compiled with 14 selected 16S–23S ITS sequences from public database. Frankia genomes included two to three ITS copies lacking length polymorphism except for nine strains. No tRNA gene was encountered in this region. Frankia strains exhibited various lengths (369 to 452 nt) and a wide range of sequence similarity (35–100%) in the ITS region. The average pairwise distance varied from 0.368 (clusters 1 and 2) to 0.964 (clusters 3 and 4) and was 0.397, 0.138, 0.129, and 0.016, respectively, for cluster 4 (saprophytic non-infective/non-effective), clusters 1 and 3 (facultative symbiotic), and cluster 2 (obligate symbiotic). This suggests a gradual erosion of Frankia diversity concomitantly with a shift from saprophytic non-infective/non-effective to facultative and symbiotic lifestyle. Comparative sequence analyses of the 16S–23S rRNA intergenic spacer region of Frankia strains are not useful to assign them to their respective cluster or host infection group. Accurate assignment required the inclusion of the adjacent 16S and 23S rRNA gene fragments.  相似文献   

9.
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

10.
T Yamamoto  M Morotomi    R Tanaka 《Applied microbiology》1992,58(12):4076-4079
Portions of the 16S rRNA from closely related species of the genus Bifidobacterium that are found in the human intestinal microflora were sequenced in order to design species-specific oligonucleotide probes. Five oligonucleotide probes ranging from 16 to 19 bases in length and complementary to 16S rRNA sequences from Bifidobacterium adolescentis, B. bifidum, B. breve, B. infantis, and B. longum were synthesized. With crude high-molecular-weight RNA preparations as targets, these probes showed the desired species specificity, even down to a 1-nucleotide difference. For the practical evaluation of these probes, their specificity and sensitivity were tested against seven strains of the same species and 54 strains of heterologous bacteria with fixed whole cells as targets. The probes for B. adolescentis, B. breve, and B. longum showed efficient and specific hybridization. Although the probes for B. bifidum and B. infantis cross-reacted with a few bacterial strains not isolated from humans, these probes showed species specificity for human intestinal bacteria. These 16S rRNA probes should prove valuable for the identification and detection of human intestinal Bifidobacterium species.  相似文献   

11.
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and “Methylothermus,” which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57°C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.  相似文献   

12.
Methanotrophic bacteria play a major role in the global carbon cycle, degrade xenobiotic pollutants, and have the potential for a variety of biotechnological applications. To facilitate ecological studies of these important organisms, we developed a suite of oligonucleotide probes for quantitative analysis of methanotroph-specific 16S rRNA from environmental samples. Two probes target methanotrophs in the family Methylocystaceae (type II methanotrophs) as a group. No oligonucleotide signatures that distinguish between the two genera in this family, Methylocystis and Methylosinus, were identified. Two other probes target, as a single group, a majority of the known methanotrophs belonging to the family Methylococcaceae (type I/X methanotrophs). The remaining probes target members of individual genera of the Methylococcaceae, including Methylobacter, Methylomonas, Methylomicrobium, Methylococcus, and Methylocaldum. One of the family-level probes also covers all methanotrophic endosymbionts of marine mollusks for which 16S rRNA sequences have been published. The two known species of the newly described genus Methylosarcina gen. nov. are covered by a probe that otherwise targets only members of the closely related genus Methylomicrobium. None of the probes covers strains of the newly proposed genera Methylocella and "Methylothermus," which are polyphyletic with respect to the recognized methanotrophic families. Empirically determined midpoint dissociation temperatures were 49 to 57 degrees C for all probes. In dot blot screening against RNA from positive- and negative-control strains, the probes were specific to their intended targets. The broad coverage and high degree of specificity of this new suite of probes will provide more detailed, quantitative information about the community structure of methanotrophs in environmental samples than was previously available.  相似文献   

13.
For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers.  相似文献   

14.
The identification of sites resulting in cross-contamination of poultry flocks in the abattoir and determination of the survival and persistence of campylobacters at these sites are essential for the development of intervention strategies aimed at reducing the microbial burden on poultry at retail. A novel molecule-based method, using strain- and genus-specific oligonucleotide probes, was developed to detect and enumerate specific campylobacter strains in mixed populations. Strain-specific oligonucleotide probes were designed for the short variable regions (SVR) of the flaA gene in individual Campylobacter jejuni strains. A 16S rRNA Campylobacter genus-specific probe was also used. Both types of probes were used to investigate populations of campylobacters by colony lift hybridization. The specificity and proof of principle of the method were tested using strains with closely related SVR sequences and mixtures of these strains. Colony lifts of campylobacters were hybridized sequentially with up to two labeled strain-specific probes, followed by the generic 16S rRNA probe. SVR probes were highly specific, differentiating down to 1 nucleotide in the target sequence, and were sufficiently sensitive to detect colonies of a single strain in a mixed population. The 16S rRNA probe detected all Campylobacter spp. tested but not closely related species, such as Arcobacter skirrowi and Helicobacter pullorum. Preliminary field studies demonstrated the application of this technique to target strains isolated from poultry transport crate wash tank water. This method is quantitative, sensitive, and highly specific and allows the identification and enumeration of selected strains among all of the campylobacters in environmental samples.  相似文献   

15.
Dangling ends and surface-proximal tails of gene targets influence probe-target duplex formation and affect the signal intensity of probes on diagnostic microarrays. This phenomenon was evaluated using an oligonucleotide microarray containing 18-mer probes corresponding to the 16S rRNA genes of 10 waterborne pathogens and a number of synthetic and PCR-amplified gene targets. Signal intensities for Klenow/random primer-labeled 16S rRNA gene targets were dissimilar from those for 45-mer synthetic targets for nearly 73% of the probes tested. Klenow/random primer-labeled targets resulted in an interaction with a complex mixture of 16S rRNA genes (used as the background) 3.7 times higher than the interaction of 45-mer targets with the same mixture. A 7-base-long dangling end sequence with perfect homology to another single-stranded background DNA sequence was sufficient to produce a cross-hybridization signal that was as strong as the signal obtained by the probe-target duplex itself. Gibbs free energy between the target and a well-defined background was found to be a better indicator of hybridization signal intensity than the sequence or length of the dangling end alone. The dangling end (Gibbs free energy of −7.6 kcal/mol) was found to be significantly more prone to target-background interaction than the surface-proximal tail (Gibbs free energy of −64.5 kcal/mol). This study underlines the need for careful target preparation and evaluation of signal intensities for diagnostic arrays using 16S rRNA and other gene targets due to the potential for target interaction with a complex background.  相似文献   

16.
Diazotrophic Actinobacteria of the genus Frankia represent a challenge to classical bacterial taxonomy as they include many unculturable strains. As a consequence, we still have a poor understanding of their diversity, evolution and biogeography. In this study, a Multi-Locus Sequence Analysis (MLSA) using atpD, dnaA, ftsZ, pgk, and rpoB loci was done on a large set of cultured and uncultured strains, compared to 16S rRNA and correlated to Average Nucleotide Identity (ANI) from available Frankia genomes. MLSA provided a robust resolution of Frankia genus phylogeny and clarified the status of unresolved species and complex of species.The robustness of single-gene topologies and their congruence with the MLSA tree were tested. Lateral Gene Transfers (LGT) were few and scattered, suggesting they had no impact on the concatenate topology. The pgk marker – providing the longest sequence, highest mean genetic divergence and least occurrence of LGT – was used to survey an unequalled number of Alnus-infective Frankia — mainly uncultured strains from a broad range of host-species and geographic origins. This marker allowed reliable Single-Locus Strain Typing (SLST) below the species level, revealed an undiscovered taxonomical diversity, and highlighted the effect of cultivation, sporulation phenotype and host plant species on symbiont richness, diversity and phylogeny.  相似文献   

17.
By means of fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes (FISH), it has been shown that members of the phylum Planctomycetes represent a numerically significant bacterial group in boreal Sphagnum peat bogs. The population size of planctomycetes in oxic layers of the peat bog profile was in the range of 0.4–2.0 × 107 cells per g of wet peat, comprising 4 to 13% of the total bacterial cell number. A novel effective approach that combined a traditional cultivation technique with FISH-mediated monitoring of the target organism during the isolation procedure has been developed for the isolation of planctomycetes. Using this approach, we succeeded in isolating several peat-inhabiting planctomycetes in a pure culture. Sequencing of the 16S rRNA genes from two of these isolates, strains A10 and MPL7, showed that they belonged to the planctomycete lineages defined by the genera Gemmata and Planctomyces, respectively. The 16S rRNA gene sequence similarity between strains A10 and MPL7 and the phylogenetically closest organisms, namely, Gemmata obscuriglobus and Planctomyces limnophilus, was only 90%. These results suggest that the indigenous planctomycetes inhabiting Sphagnum peat bogs are so far unknown organisms.  相似文献   

18.
Summary Most of theFrankia strains isolated fromAlnus andMyrica species are morphologically almost indistinguishable, when grown under standard culture conditions. They form similar vegetative hyphae while sporangia are produced in variable amounts from strain to strain.Physiological reactions were assessed in order to compare 20 strains isolated from various species ofAlnus and one species ofMyrica in Europe and North America. Among invariant negative or positive characteristics, differences in urease, protease and -glucosidase activities appeared to be of significant value.  相似文献   

19.
By means of fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes (FISH), it has been shown that members of the phylum Planctomycetes represent a numerically significant bacterial group in boreal Sphagnum peat bogs. The population size of planctomycetes in oxic layers of the peat bog profile was in the range of 0.4-2.0 x 10(7) cells per g of wet peat, comprising 4 to 13% of the total bacterial cell number. A novel effective approach that combined a traditional cultivation technique with FISH-mediated monitoring of the target organism during the isolation procedure has been developed for the isolation of planctomycetes. Using this approach, we succeeded in isolating several peat-inhabiting planctomycetes in a pure culture. Sequencing of the 16S rRNA genes from two of these isolates, strains A10 and MPL7, showed that they belonged to the planctomycete lineages defined by the genera Gemmata and Planctomyces, respectively. The 16S rRNA gene sequence similarity between strains A10 and MPL7 and the phylogenetically closest organisms, namely, Gemmata obscuriglobus and Planctomyces limnophilus, was only 90%. These results suggest that the indigenous planctomycetes inhabiting Sphagnum peat bogs are so far unknown organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号