首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioassays with Morella pensylvanica as capture plant and comparative sequence analyses of nifH gene fragments of Frankia populations in nodules formed were used to investigate the diversity of Frankia in soils over a broad geographic range, i.e., from sites in five continents (Africa, Europe, Asia, North America, and South America). Phylogenetic analyses of 522-bp nifH gene fragments of 100 uncultured frankiae from root nodules of M. pensylvanica and of 58 Frankia strains resulted in a clear differentiation between frankiae of the Elaeagnus and the Alnus host infection groups, with sequences from each group found in all soils and the assignment of all sequences to four and five clusters within these groups, respectively. All clusters were formed or dominated by frankiae obtained from one or two soils with single sequences occasionally present from frankiae of other soils. Variation within a cluster was generally low for sequences representing frankiae in nodules induced by the same soil, but large between sequences of frankiae originating from different soils. Three clusters, one within the Elaeagnus and two within the Alnus host infection groups, were represented entirely by uncultured frankiae with no sequences from cultured relatives available. These results demonstrate large differences in nodule-forming frankiae in five soils from a broad geographic range, but low diversity of nodule-forming Frankia populations within any of these soils.  相似文献   

2.
Clone libraries of nifH gene fragments specific for the nitrogen-fixing actinomycete Frankia were generated from six soils obtained from five continents using a nested PCR. Comparative sequence analyses of all libraries (n=247 clones) using 96 to 97% similarity thresholds revealed the presence of three and four clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively. Diversity of frankiae was represented by fewer clusters (i.e., up to four in total) within individual libraries, with one cluster generally harboring the vast majority of sequences. Meta-analysis including sequences previously published for cultures (n=48) and for uncultured frankiae in root nodules of Morella pensylvanica formed in bioassays with the respective soils (n=121) revealed a higher overall diversity with four and six clusters of frankiae representing the Elaeagnus and the Alnus host infection groups, respectively, and displayed large differences in cluster assignments between sequences retrieved from clone libraries and those obtained from nodules, with assignments to the same cluster only rarely encountered for individual soils. These results demonstrate large differences between detectable Frankia populations in soil and those in root nodules indicating the inadequacy of bioassays for the analysis of frankiae in soil and the role of plants in the selection of frankiae from soil for root nodule formation.  相似文献   

3.
Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was evaluated as a technique to characterize strains of the nitrogen-fixing actinomycete Frankia. MALDI-TOF MS reliably distinguished 37 isolates within the genus Frankia and assigned them to their respective host infection groups, i.e., the Alnus/Casuarina and the Elaeagnus host infection groups. The assignment of individual strains to sub-groups within the respective host infection groups was consistent with classification based on comparative sequence analysis of nifH gene fragments, confirming the usefulness of MALDI-TOF MS as a rapid and reliable tool for the characterization of Frankia strains.  相似文献   

4.
The potential role of host plant species in the selection of symbiotic, nitrogen-fixing Frankia strains belonging to the Elaeagnus host infection group was assessed in bioassays with two Morella, three Elaeagnus, and one Shepherdia species as capture plants, inoculated with soil slurries made with soil collected from a mixed pine/grassland area in central Wisconsin, USA. Comparative sequence analysis of nifH gene fragments amplified from homogenates of at least 20 individual lobes of root nodules harvested from capture plants of each species confirmed the more promiscuous character of Morella cerifera and Morella pensylvanica that formed nodules with frankiae of the Alnus and the Elaeagnus host infection groups, while frankiae in nodules formed on Elaeagnus umbellata, Elaeagnus angustifolia, Elaeagnus commutata, and Shepherdia argentea generally belonged to the Elaeagnus host infection group. Diversity of frankiae of the Elaeagnus host infection groups was larger in nodules on both Morella species than in nodules formed on the other plant species. None of the plants, however, captured the entire diversity of nodule-forming frankiae. The distribution of clusters of Frankia populations and their abundance in nodules was unique for each of the plant species, with only one cluster being ubiquitous and most abundant while the remaining clusters were only present in nodules of one (six clusters) or two (two clusters) host plant species. These results demonstrate large effects of the host plant species in the selection of Frankia strains from soil for potential nodule formation and thus the significant effect of the choice of capture plant species in bioassays on diversity estimates in soil.  相似文献   

5.
The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n?=?10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.  相似文献   

6.
High-N2-fixing activities of Frankia populations in root nodules on Alnus glutinosa improve growth performance of the host plant. Therefore, the establishment of active, nodule-forming populations of Frankia in soil is desirable. In this study, we inoculated Frankia strains of Alnus host infection groups I, IIIa, and IV into soil already harboring indigenous populations of infection groups (IIIa, IIIb, and IV). Then we amended parts of the inoculated soil with leaf litter of A. glutinosa and kept these parts of soil without host plants for several weeks until they were spiked with [15N]NO3 and planted with seedlings of A. glutinosa. After 4 months of growth, we analyzed plants for growth performance, nodule formation, specific Frankia populations in root nodules, and N2 fixation rates. The results revealed that introduced Frankia strains incubated in soil for several weeks in the absence of plants remained infective and competitive for nodulation with the indigenous Frankia populations of the soil. Inoculation into and incubation in soil without host plants generally supported subsequent plant growth performance and increased the percentage of nitrogen acquired by the host plants through N2 fixation from 33% on noninoculated, nonamended soils to 78% on inoculated, amended soils. Introduced Frankia strains representing Alnus host infection groups IIIa and IV competed with indigenous Frankia populations, whereas frankiae of group I were not found in any nodules. When grown in noninoculated, nonamended soil, A. glutinosa plants harbored Frankia populations of only group IIIa in root nodules. This group was reduced to 32% ± 23% (standard deviation) of the Frankia nodule populations when plants were grown in inoculated, nonamended soil. Under these conditions, the introduced Frankia strain of group IV was established in 51% ± 20% of the nodules. Leaf litter amendment during the initial incubation in soil without plants promoted nodulation by frankiae of group IV in both inoculated and noninoculated treatments. Grown in inoculated, amended soils, plants had significantly lower numbers of nodules infected by group IIIa (8% ± 6%) than by group IV (81% ± 11%). On plants grown in noninoculated, amended soil, the original Frankia root nodule population represented by group IIIa of the noninoculated, nonamended soil was entirely exchanged by a Frankia population belonging to group IV. The quantification of N2 fixation rates by 15N dilution revealed that both the indigenous and the inoculated Frankia populations of group IV had a higher specific N2-fixing capacity than populations belonging to group IIIa under the conditions applied. These results show that through inoculation or leaf litter amendment, Frankia populations with high specific N2-fixing capacities can be established in soils. These populations remain infective on their host plants, successfully compete for nodule formation with other indigenous or inoculated Frankia populations, and thereby increase plant growth performance.  相似文献   

7.
One hundredFrankia strains isolated from variousAlnus species in a single alder stand were tested for plasmid presence. Plasmid DNA was observed in five of the frankiae strains and was analyzed. We found that plasmids with a similar molecular weight exhibited in fact minor divergences in restriction patterns. The genetic diversity among the five isolates which contained plasmids and seven isolates which contained no plasmid DNA were examined by using restriction endonucleas digestions, Southern hybridization ofnifHDK,nifAB genes, andFrankia cryptic DNA fragments determined at random. Results indicate that genomic DNA digestion patterns and Southern hybridizations to anifHDK probe were not able to discriminate between closely related frankiae. On the other hand, plasmid presence, Southern hybridization to anifAB proble or to a crypticFrankia probe allowed us to delineate groupings of these isolates.  相似文献   

8.
I. M. Miller  D. D. Baker 《Protoplasma》1985,128(2-3):107-119
Summary A correlated light and electron microscopic study was undertaken of the initiation and development of root nodules of the actinorhizal tree species,Elaeagnus angustifolia L. (Elaeagnaceae).Two pure culturedFrankia strains were used for inoculation of plants in either standing water culture or axenic tube cultures. Unlike the well known root hair infection of other actinorhizal genera such asAlnus orMyrica the mode of infection ofElaeagnus in all cases was by direct intercellular penetration of the epidermis and apoplastic colonization of the root cortex. Root hairs were not involved in this process and were not observed to be deformed or curled in the presence of the actinomyceteFrankia. In response to the invasion of the root, host cells secreted a darkly staining material into the intercellular spaces. The colonizingFrankia grew through this material probably by enzymatic digestion as suggested by clear dissolution zones around the hyphal strands. A nodule primordium was initiated from the root pericycle, well in advance of the colonizingFrankia. No random division of root cortical cells, indicative of prenodule formation was observed inElaeagnus. As the nodule primordium grew in size it was surrounded by tanninised cells of a protoperiderm. The endophyte easily traversed this protoperiderm, and once inside the nodule primordium cortex ramified within the intercellular spaces at multiple cell junctions. Invasion of the nodule cortical cells occurred when a hyphal branch of the endophyte was initiated and grew through the plant cell wall, again by apparent enzymatic digestion. The plant cell plasmalemma of invaded cells always remained intact and numerous secretory vesicles fused with it to encapsulate the advancingFrankia within a fibrous cell wall-like material. Once within the host cell some endophyte cells began to differentiate into characteristic vesicles which are the presumed site of nitrogen fixation. This study clearly demonstrates that alternative developmental pathways exist for the development of actinorhizal nitrogen-fixing root symbioses.  相似文献   

9.
Isozyme Variation among 40 Frankia Strains   总被引:4,自引:1,他引:3       下载免费PDF全文
Forty Frankia strains belonging to the Alnus and Elaeagnus host specificity groups and isolated from various plant species from different geographical areas were characterized by the electrophoretic separation of isozymes of eight enzymes. All the enzyme systems that were investigated showed large variation. Diaphorases and esterases gave multiple band patterns and confirmed the identification of specific Frankia strains. Less variability was observed with enzymes such as phosphoglucose isomerase, leucine aminopeptidase, and malate dehydrogenase, which allowed for the delineation of larger groups of Frankia strains. Cluster analysis, based on the pair-wise similarity coefficients calculated between strains, delineated three large, dissimilar groups of Frankia strains, although each of these groups contained a large amount of heterogeneity. However, numerous Frankia strains, mainly from the Alnus host specificity group, demonstrated a perfect homology for all the enzymes tested.  相似文献   

10.
11.
Ensifer meliloti (formerly Sinorhizobium meliloti) was first considered as a specific microsymbiont of Medicago, Melilotus and Trigonella. However, strains of E. meliloti were recovered from root nodules of various legume species and their symbiotic status still remains unclear. Here, we further investigate the specificity of these strains. A collection of 47 E. meliloti strains isolated in Tunisia from root nodules of Medicago truncatula, Medicago sativa, Medicago ciliaris, Medicago laciniata, Medicago marina, Medicago scutellata, Phaseolus vulgaris, Cicer arietinum, Argyrolobium uniflorum, Lotus creticus, Lotus roudairei, Ononis natrix, Retama raetam, Genista saharae, Acacia tortilis, Hedysarum carnosum and Hippocrepis bicontorta were examined by REP-PCR fingerprinting, PCR-RFLPs of the 16S-23S rDNA IGS, the nifH gene and nifD-K intergenic spacer, and sequencing of 16S rRNA and nodA genes. Their nodulation range was also assessed by cross-inoculation experiments. No clear correlation was found between chromosomal backgrounds and host plants of origin. The nodulation polyvalence of the species E. meliloti was associated with a high symbiotic heterogeneity. On the basis of PCR-RFLP data from the nifH gene and nifD-K intergenic spacer, E. meliloti strains isolated from non-Medicago legumes harboured distinct genes and possessed wider host ranges. Some strains did not nodulate Medicago species. On the basis of nodA phylogeny, the majority of the Tunisian strains, including strains from Medicago, harboured distinct nodA alleles more related to those found in E. medicae than those found in E. meliloti. However, more work is still needed to characterize this group further. The diversity observed among M. laciniata isolates, which was supported by nodA phylogeny, nifH typing and the efficiency profile on M. ciliaris, indicated that what was thought to be bv. medicaginis is certainly heterogeneous.  相似文献   

12.
Summary The genetic diversity of microsymbiont Frankia from Colletia hystrix (Clos.) plants growing in a restricted area, were investigated by PCR-restriction fragment length polymorphism (RFLP) technique. DNA from field-collected nodules was amplified by PCR with primers targeting two genomic regions; one included a large portion of the 3′ end of the 16S rRNA gene, the intergenic spacer, and the 5′ end of the 23S rRNA gene and the other in the nifD–nifK intergenic region in the nif operon as a means to estimate molecular diversity. A HaeIII digestion of the PCR product allowed us to identify PCR-RFLP groups or haplotypes among the Colletia-infective Frankia strains tested. An exhaustive small-scale sampling permitted us to detect haplotypes with a low frequency in the microsymbiont population and showed that Frankia microsymbionts have a higher genetic diversity than previously reported. Fifteen haplotypes were recognized on the basis of combining the restriction patterns in each region analyzed. The haplotype designated as A3 was found with a high frequency in the five microsymbiont Frankia groups studied indicating a dominant haplotype. This haplotype was also exhibited by strain ChI4, which was isolated in 1991 in the same locality suggesting that it is the most common haplotype in this area and very stable over time.  相似文献   

13.
Conservation of nif sequences in Frankia   总被引:9,自引:0,他引:9  
Summary Southern blots of Frankia total DNAs were hybridized with nifHDK probes from Rhizobium meliloti, Klebsiella pneumoniae and Frankia strain Arl3. Differences between strains were noted in the size of the hybridizing restriction fragments. These differences were more pronounced among Elaeagnus-compatible strains than among Alnus- or Casuarina-compatible strains. Gene banks constructed for Frankia strains EUN1f, HRN18a, CeD and ACoN24d were used to isolate nif-hybridizing restriction fragments for subsequent mapping and comparisons. The nifH zone had the highest sequence conservation and the nifH and nifD genes were found to be contiguous. The complete nucleotide sequence of the nifH open reading frame (ORF) from Frankia strain Arl3 is 861 bp in length and encodes a polypeptide of 287 amino acids. Comparisons of these nucleic acid and amino acid sequences with other published nifH sequences suggest that Frankia is most similar to Anabaena and Azotobacter spp. and K. pneunoniae and least similar to the Gram-positive Clostridium pasteurianum and to the archaebacterium Methanococcus voltae.  相似文献   

14.
Summary Alnus species are used widely in Britain for land reclamation, forestry and other purposes. Rapid juvenile growth of the AmericanAlnus rubra makes it an attractive species for planting on N-deficient soils, particularly those of low organic content. In small plot trials, this species is nodulated by indigenous soil frankiae as effectively asAlnus glutinosa. Over a three year period both species return similar amounts of N to the ecosystem, estimated at up to 10–12 kg N ha–1. Several strains ofFrankia have been isolated from local (Lennox Forest)A. rubra nodules. These differ morphologically and in their growth on different culture media, both from each other and fromA. glutinosa nodule isolates. AllAlnus isolates, however, have a total cellular fatty acid composition qualitatively similar to some other Group B frankiae. Glasshouse tests in N free culture suggest thatA. rubra nodules formed after inoculation of seedlings with American spore (–) isolates are three times more effective in N fixation than those inoculated with LennoxA. rubra spore (+) nodule homogenates. By contrast, the early growth of seedlings inoculated with spore (–)Frankia strains suggests at best a 35% improvement in N fixing activity over seedlings inoculated with LennoxA. rubra nodule isolates. Nevertheless, this improvement in activity, together with the better performance of seedlings inoculated with isolates compared with those treated with crushed nodule preparations, suggest that it would be worthwhile commercially to inoculate nursery stock with a spore (–)Frankia strain.  相似文献   

15.
Summary The establishment of actinorhizal root nodules involves penetration of host cell walls and intracellular colonization by the nitrogen-fixing endosymbiont,Frankia (Actinomycetales). In the early stages of the infection process inAlnus, unusual cell walls with undulate profiles were observed in root tip meristematic derivatives, and in early (preinfection) derivatives of the nodule lobe meristem, inFrankia-inoculated plants. The irregular cell walls attached obliquely to preexisting walls, but were not discontinuous. Serial sections revealed that the unusual walls divided two daughter cells. Microtubules in bundled arrays were abundant near the undulate walls, and radiated in several planes. In the root tips, the anomalous cell walls were observed within one day of inoculation withFrankia.  相似文献   

16.
17.
Amplified fragment length polymorphism (AFLP) was tested as an alternative to the DNA-DNA hybridization technique (DDH) to delineate genomospecies and the phylogenetic structure within the genus Frankia. Forty Frankia strains, including representatives of seven DDH genomospecies, were typed in order to infer current genome mispairing (CGM) and evolutionary genomic distance (EGD). The constructed phylogeny revealed the presence of three main clusters corresponding to the previously identified host-infecting groups. In all instances, strains previously assigned to the same genomospecies were grouped in coherent clusters. A highly significant correlation was found between DDH values and CGM computed from AFLP data. The species definition threshold was found to range from 0.071 to 0.098 mismatches per site, according to host-infecting groups, presumably as a result of large genome size differences. Genomic distances allowed new Frankia strains to be assigned to nine genomospecies previously determined by DDH. The applicability of AFLP for the characterization of uncultured endophytic strains was tested on experimentally inoculated plants and then applied to Alnus incana and A. viridis field nodules hosting culture refractory spore-positive (Sp+, that sporulate in planta) strains. Only 1.3% of all AFLP fragments were shown to be generated by the contaminant plant DNA and did not interfere with accurate genomospecies identification of strains. When applied to field nodules, the procedure revealed that Alnus Sp+ strains were bona fide members of the Alnus-Myrica host infecting group. They displayed significant genomic divergence from genomospecies G1 of Alnus infecting strains (i.e. Frankia alni) and thus may belong to another subspecies or genomospecies.  相似文献   

18.
Alders (Alnus spp.) are important components of northern ecosystems due to their ability to fix nitrogen (N) in symbiosis with Frankia bacteria. Availability of optimal Frankia may be a contributing factor in limiting the performance and ecological effects of Alnus, but the factors underlying distribution of Alnus-infective Frankia are not well understood. This study examined the genetic structure (nifD–K spacer RFLP haplotypes) of Frankia assemblages symbiotic with two species of Alnus (A. tenuifolia and A. viridis) in four successional habitats in interior Alaska. We used one habitat in which both hosts occurred to observe differences between host species independent of habitat, and we used replicate sites for each habitat and host to assess the consistency of symbiont structure related to both factors. We also measured leaf N content and specific N-fixation rate (SNF) of nodules (15N uptake) to determine whether either covaried with Frankia structure, and whether Frankia genotypes differed in SNF in situ. Frankia structure differed between sympatric hosts and among habitats, particularly for A. tenuifolia, and was largely consistent among replicate sites representing both factors. Leaf N differed between host species and among habitats for both hosts. SNF did not differ among habitats or host species, and little evidence for differences in SNF among Frankia genotypes was found, due largely to high variation in SNF. Consistency of Frankia structure among replicate sites suggests a consistent relationship between both host species and habitat among these sites. Correlations with specific environmental variables and possible underlying mechanisms are discussed. Nomenclature: Flora of North America ().  相似文献   

19.
Sequences of 16S rRNA of the nitrogen-fixing Frankia strain Ag45/Mut15 and the ineffective Frankia strain AgB1.9 were used to design a genus-specific oligonucleotide probe. Hybridization experiments of this Frankia probe and a second probe, specific for Nif+-Frankia strains only, were used to detect Frankia specific target sequences in RNA isolations from soil. A method is described for direct isolation of RNA from a loamy soil and a peat. Yields of about 10 ng RNA/g wet soil are obtained without detectable contamination with humic acids. Isolation of RNA after initial extraction of bacteria from soil resulted in significantly lower RNA yields, compared to the direct isolation procedure. Hybridization with both probes against rRNA isolations from Frankia-containing soil could detect target sequences within RNA isolations from 1 g wet soil with an estimated detection limit of 104 cells.  相似文献   

20.
A set of oligonucleotides has been developed to study the competitivity of two Frankia strains in the nodulation of the roots of two host plant species: Alnus glutinosa and Alnus incana. Two 20 mer-oligonucleotides, complementary to highly conserved sequences inside the nifH gene, were used as primers for the polymerase chain reaction (PCR) system in order to amplify microsymbiont DNA extracted from actinorhizae. PCR products were analyzed using two strain-specific 15-mer oligonucleotides identified in the amplified region. Hybridization data indicate that strain ACoN24d is more competitive than train ArI3 in the nodulation of both hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号