首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   

2.
KRN5500 is a semisynthetic spicamycin analogue consisting of a seven-carbon amino sugar linked to a C(14) unsaturated fatty acid through glycine and to the amino group of adenine. The drug inhibits cell growth potently and has antitumor activity in in vivo models. The mechanism of the antiproliferative effect of KRN5500 remains to be elucidated. We have found that acute exposure of drug-sensitive HT-29 colon adenocarcinoma cells to the drug results initially in swelling of the Golgi apparatus. Continuous exposure to the drug resulted in the emergence of a resistant population of cells characterized by numerous intracellular vacuoles. These KRN5500-resistant tumor cells exhibited increased staining with the Golgi stain NBD C(6)-ceramide and the ER-Golgi fluorescent dye BODIPY-brefeldin A, which, unlike the parental drug-sensitive cells, was dispersed throughout the cytoplasm. Marker enzymes associated with the ER (glucose 6-phosphatase) and cis-Golgi (GalNAc transferase) were elevated >2-fold and nearly 4-fold, respectively, in drug-resistant cell lines while the trans-Golgi marker enzyme, galactosyltransferase, was not. The additional findings that the KRN5500-resistant cells have a >2-fold elevation in ERGIC-53, a cis-Golgi marker protein of the ER-Golgi intermediate compartment (ERGIC), as well as increased 58K, a 58-kDa microtubule-binding protein with formiminotransferase cyclodeaminase activity, and tubulin indicate that the cellular secretory pathway is a primary determinant of sensitivity to KRN5500, as resistance to this agent corresponds with accumulation of several components relatable to ER and cis-Golgi function. Further support for this conclusion is provided by studies which demonstrate that KRN5500 alters the distribution of newly synthesized carcinoembryonic antigen within the secretory pathway, including arrest of this N-glycosylated protein in the Golgi of LS-174T colon carcinoma cells.  相似文献   

3.
We examined the effect of a newly synthesized DNA-binding ligand, quinacrine-netropsin hybrid molecule (QN), on cytotoxicity, apoptosis, and DNA strand breaks induced by an enediyne antitumor antibiotic, C1027. QN significantly enhanced C1027-induced cellular DNA strand breaks, caspase-3 activation, and DNA ladder formation, characteristic of apoptosis, in human HL-60 cells. Flow cytometry revealed that C1027-induced intracellular H(2)O(2) generation was enhanced by QN, suggesting that QN enhances C1027-induced cytotoxic effect through H(2)O(2)-mediated apoptosis. QN also significantly enhanced C1027-induced apoptosis in BJAB cells, and the inhibition of apoptosis was observed in BJAB cells transfected with Bcl-2 gene. The experiment using (32)P-labeled DNA fragments showed that the addition of QN enhanced C1027-induced double-stranded DNA cleavage at the 5'-AGG-3'/3'-TCC-5' sequence (cutting sites are underlined). These results suggest that QN enhances C1027-induced antitumor effect via DNA cleavage and apoptosis. The present study shows a novel approach to the potentially effective anticancer therapy.  相似文献   

4.
The existing cytometric methodologies do not allow one to directly correlate, within the same cells, functional cell attributes that are revealed supravitally with features that require cell fixation to be detected or measured. Taking advantage of the "file merge" feature of the laser-scanning cytometer, we have been able to correlate the supravital changes that occur during apoptosis, namely the drop in mitochondrial transmembrane potential (Delta Psim) and generation of the reactive oxygen intermediates (ROIs), with features revealed by analysis of fixed cells: the cell cycle position and DNA fragmentation. The cell cycle position was established based on the cell's stainability with propidium iodide while DNA fragmentation was assessed by in situ DNA strand break labeling using exogenous terminal deoxynucleotidyltransferase. During apoptosis of HL-60 cells induced by the DNA topoisomerase I inhibitor camptothecin (CPT), the dissipation of Delta Psim occurred preferentially in S-phase cells and preceded the appearance of DNA strand breaks. Essentially all cells with DNA strand breaks had dissipated Delta Psim. Compared to the decrease of Delta Psim, the CPT-induced rise in ROIs during apoptosis was less restricted to S-phase cells. Furthermore, no elevation of ROIs was detected in a significant proportion of cells with DNA strand breaks. The data suggest that DNA fragmentation may occur in some cells prior to the increase in ROIs and thus, unlike the dissipation of Delta Psim, the oxidative stress may not be a prerequisite for activation of an endonuclease. Alternatively, the oxidative stress may be a transient event, occupying a narrow "time window" during the apoptotic process. The approach opens a possibility to study direct relationships, within the same cells, between cellular changes (e.g., occurring during apoptosis, mitogenesis, differentiation, etc.) detected by functional assays of live cells and changes that cannot be analyzed supravitally.  相似文献   

5.
KRN5500 is a semisynthetic spicamycin analogue consisting of a seven-carbon amino sugar linked to a C14 unsaturated fatty acid through glycine and to the amino group of adenine. The drug inhibits cell growth potently and has antitumor activity in in vivo models. The mechanism of the antiproliferative effect of KRN5500 remains to be elucidated. We have found that acute exposure of drug-sensitive HT-29 colon adenocarcinoma cells to the drug results initially in swelling of the Golgi apparatus. Continuous exposure to the drug resulted in the emergence of a resistant population of cells characterized by numerous intracellular vacuoles. These KRN5500-resistant tumor cells exhibited increased staining with the Golgi stain NBD C6–ceramide and the ER–Golgi fluorescent dye BODIPY–brefeldin A, which, unlike the parental drug-sensitive cells, was dispersed throughout the cytoplasm. Marker enzymes associated with the ER (glucose 6-phosphatase) and cis-Golgi (GalNAc transferase) were elevated >2-fold and nearly 4-fold, respectively, in drug-resistant cell lines while the trans-Golgi marker enzyme, galactosyltransferase, was not. The additional findings that the KRN5500-resistant cells have a >2-fold elevation in ERGIC-53, a cis-Golgi marker protein of the ER–Golgi intermediate compartment (ERGIC), as well as increased 58K, a 58-kDa microtubule-binding protein with formiminotransferase cyclodeaminase activity, and tubulin indicate that the cellular secretory pathway is a primary determinant of sensitivity to KRN5500, as resistance to this agent corresponds with accumulation of several components relatable to ER and cis-Golgi function. Further support for this conclusion is provided by studies which demonstrate that KRN5500 alters the distribution of newly synthesized carcinoembryonic antigen within the secretory pathway, including arrest of this N-glycosylated protein in the Golgi of LS-174T colon carcinoma cells.  相似文献   

6.
It has been suggested that terminally differentiated mammalian cells have a decreased DNA repair capacity, compared with proliferating stem cells. To investigate this hypothesis, we have examined gamma-ray-induced DNA strand breaks and their repair in the murine proadipocyte stem cell line 3T3-T. By exposure to human plasma, 3T3-T cells can be induced to undergo nonterminal and then terminal differentiation. DNA strand breaks were evaluated using the technique of alkaline elution. No difference was detected among stem, nonterminally differentiated, and terminally differentiated cells in the initial levels of radiation-induced DNA strand breaks. Each of the strand break dose response increased as a linear function of gamma-ray dose. The strand breaks induced by 4 Gy rejoined following biphasic kinetics for each cell type. At each time point examined after irradiation, however, the percentage of strand breaks that had not rejoined in terminally differentiated cells was three to six times greater than in stem cells. The rate of strand break rejoining in nonterminally differentiated cells was of an intermediate value between that of the stem and of the terminally differentiated cells. These results indicate that, at least for 3T3-T cells, differentiated cells have a reduced capacity for DNA repair.  相似文献   

7.
Cleistanthin A is a novel anticancer agent isolated from Cleistanthus collinus (Rox B). It caused chromatid aberrations in a dose dependent manner. However, the concentrations that induced the aberrations, neither affected viability nor induced DNA strand breaks. Only at higher concentrations and after long exposure, DNA strand breaks were observed. Cleistanthin A induced apoptosis in Chinese hamster ovary (CHO) cells, in cervical carcinoma (Si Ha) cells and in a p53 deficient cell line K562. Cleistanthin A-induced cell death was low in bcl-2 transfected cells. Cleistanthin A inhibited the incorporation of [3H]thymidine into DNA; however, it did not affect the transport of [3H]thymidine into these cells. These studies indicate that the cytotoxic effects of cleistanthin A are mediated by the inhibition of DNA synthesis, induction of DNA damage and apoptosis.  相似文献   

8.
The ability of butachlor to induce cytotoxicity, clastogenicity and DNA damage was assessed using Chinese hamster ovary cells (CHO), Swiss mouse embryo fibroblasts (MEF) and human peripheral blood lymphocytes. A dose and time dependent loss of viability was evident upon treatment of CHO cells with butachlor. Cell killing to an extent of 50% was observed when cells were treated with 16.2 micrograms/ml of butachlor for 24 hr or with 11.5 micrograms/ml for 48 hr. The herbicide induced micronuclei significantly in cultured lymphocytes at 24 and 48 hr of treatment suggesting that it is clastogenic. To understand the mechanism of cell death caused by butachlor, its effect on DNA strand breaks was studied in MEF. A concomitant decrease in cell viability was observed with increase in DNA strand breaks. Agarose gel electrophoresis of DNA from herbicide treated CHO cells and cytochemical staining indicate the induction of apoptosis by butachlor.  相似文献   

9.
The effects of cellular differentiation on the repair of DNA damage induced by uv radiation were investigated in the murine 3T3-T proadipocyte cell culture system. Upon exposure to human plasma, actively cycling 3T3-T cells (stem cells) undergo growth arrest, which is followed by terminal differentiation into lipid-laden adipocytes. In response to uv irradiation, the level of unscheduled DNA synthesis is significantly lower in adipocytes as compared to stem cells. The alkaline elution assay was used to monitor the appearance of repair-induced strand breaks in 3T3-T cells after uv irradiation. DNA strand breaks were detected in stem cells by 4 min post-uv with essentially no further increase after 8 min. When terminally differentiated adipocytes were irradiated and allowed to repair, however, more strand breaks were present at 4 min and, in marked contrast to stem cells, continued to accumulate in adipocytes for at least 16 min post-uv. Inhibition of repair-replication with hydroxyurea and cytosine arabinoside significantly increased accumulation of repair-induced strand breaks in stem cells, yet had little effect on this accumulation in adipocytes. For stem cells and adipocytes, incision activity was linear out to at least 10 Jm-2 without saturation. These data suggested that 3T3-T cell differentiation is accompanied by a defect in some postincision process of the excision-repair pathway.  相似文献   

10.
The review summarizes literature data on the role of DNA breaks and DNA repair in the differentiation of pluripotent stem cells (PSC) and connective cell lineages. PSC, including embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC), are rapidly dividing cells with highly active DNA damage response (DDR) mechanisms to ensure the stability and integrity of the DNA. In PSCs, the most common DDR mechanism is error-free homologous recombination (HR) that is primarily active during the S phase of the cell cycle, whereas in quiescent, slow-dividing or non-dividing tissue progenitors and terminally differentiated cells, errorprone non-homologous end joining (NHEJ) mechanism of the double-strand break (DSB) repair is dominating. Thus, it seems that reprogramming and differentiation induce DNA strand breaks in stem cells which itself may trigger the differentiation process. Somatic cell reprogramming to iPSCs is preceded by a transient increase of the DSBs induced presumably by the caspase-dependent DNase or reactive oxygen species. In general, pluripotent stem cells possess stronger DNA repair systems compared to differentiated cells. Nonetheless, during a prolonged cell culture propagation, DNA breaks can accumulate due to the DNA polymerase stalling. Consequently, the DNA damage might trigger the differentiation of stem cells or replicative senescence of somatic cells. The differentiation process per se is often accompanied by a decrease in the DNA repair capacity. Thus, the differentiation might be triggered by DNA breaks, alternatively, the breaks can be a consequence of the decay in the DNA repair capacity of differentiated cells.Key words: DNA breaks, DNA repair, differentiation, stem cells, connective tissue  相似文献   

11.
The present review summarizes data on the accumulation of DNA strand breaks in differentiating cells. Large 50 Kbp free DNA fragments were observed by several research teams in non-apoptotic insect, mammal and plant cells. A more intensive DNA breakage was observed during maturation of spermatides, embryo development, and differentiation of myotubes, epidermal cells, lymphocytes and neutrophils. In general, accumulation of DNA strand breaks in differentiating cells cannot be attributed to decrease of the DNA repair efficiency. Poly(ADP)ribose synthesis often follows the DNA breakage in differentiating cells. We hypothesize that DNA fragmentation is an epigenetic tool for regulation of the differentiation process. Scarce data on localization of the differentiation-associated DNA strand breaks indicate their preferred accumulation in specific DNA sequences including the nuclear matrix attachment sites and repeats. Recent data on non-apoptotic functions of caspases provide more evidence for possible existence of a DNA breakage mechanism in differentiating cells resembling the initial stage of apoptosis. Excision of methylated cytosine and recombination are other possible explanations of the phenomenon. Elucidation of mechanisms of differentiation-induced DNA strand breaks appears to possess considerable research potential.  相似文献   

12.
Poly(ADP-ribose) polymerase (PARP), a nuclear enzyme involved in DNA repair, is a target of caspases during apoptosis: its cleavage onto 89- and 24-kDa fragments is considered to be a hallmark of the apoptotic mode of cell death. Another hallmark is the activation of endonuclease which targets internucleosomal DNA. The aim of the present study was to reveal cell cycle phase specificity as well as the temporal and sequence relationships of PARP cleavage vis-à-vis DNA fragmentation in two model systems of apoptosis, one induced by DNA damage via cell treatment with camptothecin (CPT) (mitochondria-induced pathway) and another by the cytotoxic ligand tumor necrosis factor alpha (TNF-alpha) (cell surface death receptor pathway). PARP cleavage was detected immunocytochemically using antibody which recognizes its 89-kDa fragment (PARP p89) while DNA fragmentation was assayed by in situ labeling of DNA strand breaks. The frequency and extent of PARP cleavage as well as DNA fragmentation were measured by mutiparameter flow and laser scanning cytometry. PARP cleavage, selective to S phase cells, was detected 90 min after administration of CPT. PARP cleavage in the cells treated with TNF-alpha was not selective to any cell cycle phase and was seen already after 30 min. DNA fragmentation trailed PARP cleavage by about 30 min and showed a similar pattern of cell cycle specificity. PARP p89 was present in nuclear chromatin but at least in the early phase of apoptosis it did not colocalize with DNA strand breaks. The rate of cleavage of PARP molecules in individual cells whether induced by CPT or TNF-alpha was rapid as reflected by the paucity of cells with a mixture of cleaved and noncleaved PARP molecules. In contrast, DNA fragmentation proceeded stepwise before reaching the maximal number of DNA strand breaks. Although time windows for PARP cleavage vs DNA fragmentation were different at early stages of apoptosis, a good overall correlation between the cytometric assays of apoptotic cells identification based on these events was observed in both CPT- and TNF-alpha-treated cultures.  相似文献   

13.
Formation of single- and double strand breaks in DNA which may be discovered by microelectrophoresis in agarose gel is one of the criterion of genetical lesions in cells as a result of apoptosis or of genotoxic agent action. Genotoxic action of nickel chloride at the level of DNA of the individual cells in the initial culture of human embryonic haemopoietic cells was studied. It has been shown that about 2% cells in the studied in vitro populations were in the apoptosis state. Nickel chloride induced increasing of the frequency of formation of electrophoretic tracks of "comet" type with destroyed DNA.  相似文献   

14.
Histone deacetylase inhibitors (HDACi) are promising anti-cancer agents, however, their mechanisms of action remain unclear. In acute myeloid leukemia (AML) cells, HDACi have been reported to arrest growth and induce apoptosis. In this study, we elucidate details of the DNA damage induced by the HDACi vorinostat in AML cells. At clinically relevant concentrations, vorinostat induces double-strand breaks and oxidative DNA damage in AML cell lines. Additionally, AML patient blasts treated with vorinostat display increased DNA damage, followed by an increase in caspase-3/7 activity and a reduction in cell viability. Vorinostat-induced DNA damage is followed by a G2-M arrest and eventually apoptosis. We found that pre-treatment with the antioxidant N-acetyl cysteine (NAC) reduces vorinostat-induced DNA double strand breaks, G2-M arrest and apoptosis. These data implicate DNA damage as an important mechanism in vorinostat-induced growth arrest and apoptosis in both AML cell lines and patient-derived blasts. This supports the continued study and development of vorinostat in AMLs that may be sensitive to DNA-damaging agents and as a combination therapy with ionizing radiation and/or other DNA damaging agents.  相似文献   

15.
HEMA (2-hydroxyethyl methacrylate), a methacrylate commonly used in dentistry, was reported to induce genotoxic effects, but their mechanism is not fully understood. HEMA may be degraded by the oral cavity esterases or through mechanical stress following the chewing process. Methacrylic acid (MAA) is the primary product of HEMA degradation. In the present work we compared cytotoxic and genotoxic effects induced by HEMA and MAA in human gingival fibroblasts (HGFs). A 6-h exposure to HEMA or MAA induced a weak decrease in the viability of HGFs. Neither HEMA nor MAA induced strand breaks in the isolated plasmid DNA, but both compounds evoked DNA damage in HGFs, as evaluated by the alkaline comet assay. Oxidative modifications to the DNA bases were monitored by the DNA repair enzymes Endo III and Fpg. DNA damage induced by HEMA and MAA was not persistent and was removed during a 120 min repair incubation. Results from the neutral comet assay indicated that both compounds induced DNA double strand breaks (DSBs) and they were confirmed by the γ-H2AX assay. Both compounds induced apoptosis and perturbed the cell cycle. Therefore, methacrylic acid, a product of HEMA degradation, may be involved in its cytotoxic and genotoxic action.  相似文献   

16.
The formation and disappearance of DNA single-strand breaks (SSB) produced by 4-demethoxydaunorubicin (4-dmDR) in P388 murine leukemia cells and in a resistant subline were examined by alkaline elution methods in relation to cellular pharmacokinetics. DNA strand breaks produced by this intercalating agent were essentially DNA lesions mediated by topoisomerase II, even at very high drug concentrations, since they were detected as protein-associated breaks by filter elution. Similarly, the appearance of delayed DNA breaks in cells exposed to high concentrations, following drug removal, showed predominance of protein-associated breaks, thus supporting a similar mechanism of breakage induction. This finding indirectly suggests that, in this experimental model, free radical production makes little (if any) contribution to DNA damage, and also that DNA effects are not the consequence of early cell death. In contrast to a rapid disappearance of protein-associated strand breaks produced by intercalating agents and topoisomerase II inhibitors of different classes, DNA breaks induced by low concentrations of the anthracycline derivative are only partially reversible following drug removal, but they persisted and even increased with high concentrations. Thus, not only the extent of DNA breaks but also their persistence may contribute to the cytotoxic potency of anthracyclines. The importance of DNA lesions to cytotoxic action of the anthracycline is also emphasized by drug effect on the resistant line. A negligible effect on DNA of resistant cells was detected at drug concentrations lethal to sensitive cells. However, exposure to equitoxic drug concentrations resulted in a comparable amount of DNA breaks in sensitive and resistant cells. Although faster DNA rejoining in resistant cells may be in part attributable to increased efflux of drug, no correlation exists between cell drug accumulation and extent of DNA lesions. With equitoxic drug concentrations cellular drug content was higher in resistant cells, suggesting an intrinsic insensitivity of this variant to DNA cleavage effects of the anthracycline.  相似文献   

17.
The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA-damaging agents.  相似文献   

18.
This study tried to clarify the question if nuclear genotoxicity played a role in 3'-azido-3'-deoxythymidine (AZT) toxicity. We investigated cytotoxic and DNA-damaging effects of AZT on human hepatoma HepG2 and human colonic CaCo-2 cells as well as on human diploid lung fibroblasts HEL. The amount of induced DNA damage was measured by standard alkaline single cell gel electrophoresis (SCGE). The nature of induced DNA lesions was evaluated (1) by modified SCGE, which includes treatment of lysed cells with DNA repair enzymes Endo III and Fpg and enables to recognize oxidized bases of DNA, and (2) by SCGE processed in parallel at pH 13.0 (standard technique) and pH 12.1, which enables to recognize alkali labile DNA lesions and direct DNA strand breaks. Cytotoxicity of AZT was evaluated by the trypan blue exclusion technique. Our findings showed that 3-h treatment of cells with AZT decreased the viability of all cell lines studied. SCGE performed in the presence of DNA repair enzymes proved that AZT induced oxidative lesions to DNA in all cell types. In hepatoma HepG2 cells and embryonic lung fibroblasts HEL the majority of AZT-induced DNA strand breaks were pH-independent, i.e. they were identified at both pH values (12.1 and 13.0). These DNA lesions represented direct DNA breaks. In colonic Caco-2 cells DNA lesions were converted to DNA strand breaks particularly under strong alkaline conditions (pH>13.0), which is characteristic for alkali-labile sites of DNA. DNA strand break rejoining was investigated by the standard comet assay technique during 48 h of post-AZT-treatment in HepG2 and Caco-2 cells. The kinetics of DNA rejoining, considered an indicator of DNA repair, revealed that AZT-induced DNA breaks were repaired in both cell types slowly, though HepG2 cells seemed to be more repair proficient with respect to AZT-induced DNA lesions.  相似文献   

19.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   

20.
During the induced differentiation of the human promyelocytic leukaemic cell line, HL-60, along the myelocytic lineage, DNA strand-breaks are formed. These breaks which are formed in the face of a proficient DNA repair mechanism, are only transiently maintained and subsequently become religated. The ligation of these breaks requires the activity of the nuclear adenosine diphosphoribosyl transferase (ADPRT). Inhibition of nuclear ADPRT, an enzyme totally dependent on the presence of DNA strand-breaks for its activity and required for efficient DNA repair in eukaryotic cells, blocks the religation of these breaks but not their formation. The inhibition of DNA strand ligation in the differentiating HL-60 cells results in loss of viability and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号