首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
对广州市水系污染状况及其综合治污的重要性和必要性进行了分析,对以往靠比较单一的污水处理厂处理污水效果较差的原因从多个角度进行了探究.对于采取建立利用植物多级处理、净化水污染物的立体处理系统的原理、必要性及可行性进行了分析;针对广州市土地紧张,在水厂内难以建立大型植物氧化塘的特点,提出了在各个河涌建立各级以高等植物为主的植物净化系统等措施,对主要技术措施进行了论述,并对其所能达到的改善水生态系统、实现良好的景观效益和生态效益方面进行了深入的探讨.  相似文献   

2.
Ensuring that water resources development in harmony with aquatic environment is the major water policy of Taiwan in the 21st century, Taiwan's water authority has adopted several methodologies, such as utilizing ecological engineering techniques, establishing integrated water resources management configuration, involving the public in decision-making processes, etc., and applying them in the field. Significant consequences in ecological engineering were obtained in several cases, such as for Ta-Chia Creek, where wire cages, tires, and boulders were installed to improve the stream habitat, and for Wu-Lao Creek, where natural water purification facilities were constructed to reduce river pollution. Although the sustainable methodologies have been widely accepted by hydraulic engineers in Taiwan, lack of engineer-friendly evaluation indices or methods hindered the further progress of river ecological engineering projects. This research applied a non-metric multidimensional–scaling (MDS) analysis to measure the assemblage change of river aquatic habitat. A dike construction project at Chu-Lan Creek was selected for verification in this study. The analyzed results showed that the dike construction project did affect the aquatic habitat in Chu-Lan Creek. The proposed MDS analysis successfully captured the effect of the construction. The MDS method could be used to evaluate the improvement or damage of aquatic habitat by a traditional hydraulic approach or a new ecological hydraulic developed technique in Taiwan.  相似文献   

3.
文章主要以根系分泌物为核心, 综述了根系分泌物的分类、发生机理及影响因素; 围绕着植物-土壤-微生物三者的关系, 阐述了根系分泌物介导的植物与植物之间的化感作用、植物与根际微生物之间的协同作用以及植物微生物相互作用对土壤物质循环的影响。水生植物以其生境的特殊性和功能的不可替代性, 对沉积物污染物去除和水体生态修复产生显著的影响。在水体生态问题较为严峻的今天, 充分认识水生植物根系分泌物介导的根际过程将为水生植物生态学和水体生态修复领域的发展提供基础, 并为学科应用潜力的开发提供依据。  相似文献   

4.
大沽排污河生态修复河道水质综合评价及生物毒性影响   总被引:2,自引:0,他引:2  
王敏  唐景春  朱文英  粱霍燕  王如刚 《生态学报》2012,32(14):4535-4543
为了改善城市河道水质,实现排污河污染控制与修复,在天津市大沽排污河的上游代表性河段开展了河道原位生态修复工程示范。对植物修复后河道的污染状况进行了监测和分析,与清洁河道做了比较,并对水质修复效果和生物毒性影响状况进行综合分析和评价,研究生态修复示范工程对排污河水质的修复效果和生态效应。结果表明:经种植水葱等水生植物进行生态修复后,河道污染一定程度上降低,水质得到改善。大沽河主要污染是营养元素N、P污染和有机物污染,重金属污染不严重。植物修复对电导率、溶解性总固体(TDS)、盐度、氯化物有一定影响,但影响不显著;对COD等有机污染的修复效果较好,最高去除效率可达54%,但相比清洁水域值依然较高,有机污染依然较严重;对营养元素N、P没有修复效果,反而修复区有升高的趋势,相对清洁水域污染严重。主成分分析表明水质参数主要是氨氮、总氮、总磷代表的营养元素及pH值、DO、电导率、TDS、盐度和氯化物,综合评定结果显示修复区域芦苇根部水质最好;聚类分析将17个水质指标分成5类,并与主成分分析结果显示出一致性。植物根际周边的微生物数量多,群落多样性高。植物修复对水样植物毒性影响明显,能降低其毒性;水样对发光菌均具有毒性作用,存在潜在的急性生物毒性;修复区水样对水生动物大型蚤不存在急性生物毒性。  相似文献   

5.
Results of a 3-year survey (1978–1980) and review of historic trends have shown a major decline in the number of species and the distribution of submersed aquatic macrophytes in the tidal Potomac River since the early 1900's. The freshwater tidal river is essentially devoid of plants and only very sparse populations remain in the mesohaline section of the estuary. Present plant populations are largely confined to the transition-zone region where salinity instability at the fresh-to-brackish water interface is believed to reduce biotic stress on submersed vegetation. Many factors may be implicated in the loss of vegetation over major regions of the tidal Potomac River; however, long-term conditions of excessive nutrients appear to be primarily responsible for the present distribution.  相似文献   

6.
阐述水生植物的生态功能特性与生态修复原理,以及近年来水生植物在渔业生态养殖中作为水产动物绿色饲料与病害生态防治环境友好药物的来源、有害有毒藻类控制的化感解毒生物资源、污水生物净化与渔业水域生态修复的开发应用。同时就水生植物在水产生态养殖与渔业水域环境修复开发应用中存在的问题进行探讨,并提出相应的建议。  相似文献   

7.
生态工程中食物链组合的环分析   总被引:1,自引:0,他引:1  
郭中伟  李典谟 《生态学报》1993,13(4):342-347
本文研究了一个用于治理水体生态系统富营养化的生态工程,应用环分析方法对工程中的食物链的组合进行了分析。在这里,贝类被用于清除过量的藻类;种植水生植物改变营养的流转途径并且放养食植性鱼类,通过捕捞鱼和贝,使水体中的有机物和无机盐沿着从藻类到贝类和从水生植物到食植性鱼类两条途径由水体生态系统中输出,应用环分析的手段,可以调整生态工程中食物链的组合结构,使整个生态工程具有某种特定的功能。  相似文献   

8.
This study investigated the development of interspecific adaptations of flow-resistance mechanisms to higher flow rates in rigid-stemmed Hygrophila salicifolia (Vahl) Nees (willow leaf Hygrophila sp.) plants placed in simulated water channels. The results indicate that adaptations to higher flow rates include a reduction in: growth rate, average fresh weight, average dry weight, and average diameter; but an increase in the number of parallel shoots. These effects combine to create a streamlined profile, reduce plant damage, and increase propagation through adventitious budding. Higher flow rates also reduced the ratio of average plant height to average root length in rigid-stemmed Hygrophila sp. The increased root length, strengthening of plant anchors, and reduction of uprooting seen at higher flow rates are likely to increase slope stability and reduce riverbank topsoil runoff. Moreover, rigid-stemmed aquatic macrophytes develop different adaptations than flexible-stemmed water plants (e.g., water celery); for these plants, higher flow velocities trigger an increase in the average density of vascular bundles and a reduction of the average root length, which results in uprooting and movement to different locations. These results suggest that different aquatic macrophytes play different roles in water channels. Our methods and findings can inform further investigations into the roles played by different aquatic macrophytes in ecological engineering and help to identify optimal planting materials or precursors for riverbanks.  相似文献   

9.
Urban rivers have often experienced substantial engineering modification and consequently are highly degraded aquatic ecosystems with minimal riparian habitat. Habitat restoration and improvement efforts are needed within urban rivers to support ecological communities and increase ecosystem integrity. Most river restoration techniques are not feasible within large urban rivers, and so there is a need to develop novel methodologies. Artificial structures such as river walls can function as habitat for plant and invertebrate species in urban rivers, and in some cases can be more diverse than remnant habitat. Along the River Thames through central London, plant species richness was found to be significantly higher on river walls than intertidal foreshore, which represents the only remnant habitat for riparian species. Both this survey and other studies have suggested that the physical and environmental characteristics of river walls are likely to influence their capacity to function as ecological habitat, for example, walls composed of more complex construction materials (brick and boulders) being more diverse than simpler structures (concrete and sheet piling). The opportunity exists to use river walls and other artificial structures (e.g., jetties) to improve habitat along urban rivers by installing walls which are designed to be more complex, or by adding modifications to existing walls. Some trial modifications, such as the addition of wall ledges and timber fenders to sheet piling, have been installed at Deptford Creek along the River Thames, and have so far greatly supported the colonization and development of plant communities. The restoration possibilities of such modifications should be considered, and further development and rigorous testing of installations is required in urban rivers to make sound restoration recommendations.  相似文献   

10.
水生植物引种的生态安全评价   总被引:2,自引:0,他引:2  
随着水生植物的大量应用,水域环境的生态安全越来越受到关注。水生植物入侵具有一定的生物学、区系地理、生态位和生境特征,对水生植物的生态安全评价可在一定程度上防止水生植物引种的盲目性。该文针对来自水生外来入侵植物的生态安全威胁,分析了水生外来入侵植物的入侵特征及其危害,提出了水生植物引种的生态安全评价的内容、程序、指标体系和方法。  相似文献   

11.
水生植物是河流生态系统的重要组成部分, 研究河流水生植物群落组成及演替对于河流生态系统健康诊断具有重要意义。该研究采用野外生态学研究方法, 于2013年9月和2014年6月2次对汉江中下游12个典型代表性江段的水生植物群落的组成、分布和生物量等进行调查。调查结果表明, 现阶段汉江中下游的主要水生植物共有69种, 隶属28科49属, 其中优势种主要是穿叶眼子菜(Potamogeton perfoliatus)、竹叶眼子菜(P. malaianus)、芦苇(Phragmites australis)、南荻(Triarrhena lutarioriparia)和喜旱莲子草(Alternanthera philoxeroides)等。结合早期的研究表明, 汉江中游江段沉水植物优势群落变化明显; 下游则呈现出由沉水植物群落向挺水植物群落演替的格局。挖沙和污染等人类干扰以及水位波动、河流底质和植物繁殖策略等自然因素可能是导致汉江中下游水生植物优势种变化和群落演替的主要因素。该研究结果可为汉江中下游的水生植物多样性保护和生态修复提供科学依据。  相似文献   

12.
孙然好  程先  陈利顶 《生态学报》2017,37(24):8445-8455
水生态功能分区是针对水生态系统特征的陆地生态系统划分,是为流域水生态管理提供生态背景和基本单元。陆地-水生态系统的耦合是水生态功能分区的核心,但多停留在个别小流域进行理论探讨,大型流域的实际案例较少。针对海河流域独特的气候、地貌、水文和人类活动特征,提出了水生态功能分区的三级指标体系。一级二级区针对气候、地貌、水文背景进行"自上而下"的分区,三级区针对人类活动对水资源、水环境、生境影响,采用"自下而上"的分区方法。最终,海河流域划分了6个一级区、16个二级区和73个三级区。研究充分体现了"以水定陆、以陆控水"的基本原则,以及"自下而上"和"自上而下"分区方法的优点,结果可为海河流域水生态管理提供科学依据,为水资源空间调配与合理利用、产业结构布局与区域协调等服务。  相似文献   

13.
雅砻江干流河道内生态需水量生境模拟法研究   总被引:2,自引:0,他引:2  
吴春华 《生态科学》2007,26(6):536-539
生态需水的研究已成为国内外地球科学领域普遍关注的一个热点问题。在现场调查的基础上,根据雅砻江干流独特的生态环境特点与保护目标,选择了包括水文和生物两方面信息的方法―生境模拟法,以达到满足保护水生生物的生境目标,维持调水河流良好的生态功能的目的。结果表明,生境模拟法计算的各站各年的河道内生态需水量基本上处于或接近Tennant法所设定的最小和适宜生态需水量之间,而Tennant法设定的计算标准主要考虑当地的水生生物生活习性及气候特点,符合当地的河流生态与环境条件。可见应用生境模拟法来计算河道内生态需水量是可行的。  相似文献   

14.
赵玲玲  夏军  杨芳  杨龙  徐飞 《生态学报》2021,41(12):5054-5065
水是生态系统物质循环和能量流动的重要纽带,水生态系统修复在区域生态系统修复中起到关键作用。粤港澳大湾区剧烈人类活动对江河湖库生态系统造成破坏和干扰,江河湖库污染严重,水生物减少,导致流域水生态服务功能退化甚至丧失;从生态修复科学内涵出发,判断湾区水生态系统健康状况已处于非生物控制跃迁阈值之下;针对该形势,从工程建设、水环境治理、空间规划和管理机制四个方面,梳理湾区近期开展的与水生态修复相关的水生态文明建设、水污染防治行动计划、水生态空间划定和推进河长制等工作,并对其中用到的技术、指标和制度进行条理;然后以茅洲河流域综合治理和广东万里碧道作为水生态修复的点、面代表,从水生态修复的整体目标、采用的技术措施、效果评价的指标体系和管理制度方法等方面分析当前的工作现状;总结湾区现状水生态修复工作,认为湾区水生态系统的非生物修复阶段基本结束;基于生态系统修复理论结合湾区江河湖库生态系统特点,提出适合湾区的水生态修复框架,讨论水生态系统修复面临的问题和未来工作的展望,为大湾区水生态修复提供直接依据。  相似文献   

15.
The role of herbivores in regulating aquatic plant dynamics has received growing recognition from researchers and managers. However, the evidence for herbivore impacts on aquatic plants is largely based on short-term exclosure studies conducted within a single plant growing season. Thus, it is unclear how long herbivore impacts on aquatic plant abundance can persist for. We addressed this knowledge gap by testing whether mute swan (Cygnus olor) grazing on lowland river macrophytes could be detected in the following growing season. Furthermore, we investigated the role of seasonal changes in water current speed in limiting the temporal extent of grazing. We found no relationship between swan biomass density in 1 year and aquatic plant cover or biomass in the following spring. No such carry-over effects were detected despite observing high swan biomass densities in the previous year from which we inferred grazing impacts on macrophytes. Seasonal increases in water velocity were associated with reduced grazing pressure as swans abandoned river habitat. Furthermore, our study highlights the role of seasonal changes in water velocity in determining the length of the mute swan grazing season in shallow lowland rivers and thus in limiting the temporal extent of herbivore impacts on aquatic plant abundance.  相似文献   

16.
The hydrologic regime of the Illinois River has been substantially altered by floodplain levees, navigation dams, and water diversion. Unnaturally frequent and untimely water level fluctuations, large and small, have decreased the productivity of many floodplain vegetation communities that provide important ecological services, including the moist-soil plant community. We simulated three scenarios, including two that were expected to benefit moist-soil plants: (1) existing conditions, with levees and navigation dams closed during the summer growing season; (2) levees opened to reconnect the river and its floodplain during the growing season; and (3) both the downstream navigation dam and the levees opened during the growing season. A 1-dimensional hydraulic model generated daily hydrographs of the river at three positions in the 135 km study reach: (1) near the downstream dam, (2) in the middle of the reach, and (3) near the upstream dam. These hydrographs then were used to run a model that predicts the growth of moist-soil plants at a range of floodplain elevations. As expected, the model predicted that plants would grow over a larger area with levees open during the growing season than under the existing conditions, but the outcomes showed a strong location dependency. Moist-soil plant production would increase in the upper and mid-reach locations, but there would be no change near the downstream dam despite opening the levees. Modelling revealed that the existing operation of the navigation dam permanently floods most of the floodplain zone where moist soil plants might grow for at least 15 km upstream of the dam. Trees currently grow all the way to the low water line and are likely to exclude moist soil plants from any restored portion of the floodplain. Sites for reconnecting the river with its floodplain should be carefully chosen to maximize the chances of recovering the important moist-soil plant community in this regulated river.  相似文献   

17.
江苏长江岸线生态修复评价指标体系研究   总被引:4,自引:1,他引:3  
廖迎娣  张欢  侯利军  陈达 《生态学报》2021,41(10):3910-3916
通过分析江苏长江岸线生态修复的现状及存在的问题,明确了构建生态修复评价指标体系的必要性。基于江苏长江岸线生态修复的实际情况,借鉴前人相关研究成果及湿地、水生态等领域有关生态评价的规范,提出植物覆盖度、水土保持度、原生植物恢复度、植物物种多样性、护岸型式多样性和岸线曲折度6项关键指标,以及各项指标的定量化确定方法。在此基础上,构建了以前4项为主要指标,其它为附加指标的评价体系,明确了赋分等级和对应分值。分析研究结果表明,6项指标全面系统考虑了长江岸线生态修复对植物生长状态、动物生存条件和岸坡稳定等方面要求;修复评价指标体系通过主要指标和附加指标相结合的方式,既实现了对生态修复效果的定量化评价,又体现了对生态修复工程设计理念的引导,为长江岸线生态修复的有序推进奠定了基础。  相似文献   

18.
The Yangtze River is the largest river in China. It is a priority conservation area for biodiversity of the world, with its main river, branches and wetlands. As an essential part of freshwater ecosystem, aquatic vegetation has been well studied by Chinese researchers since 1950s, but large-scaled analysis on the biodiversity pattern is lacked. Based on published studies, we analyzed spatial and temporal pattern of aquatic plant diversity in the Yangtze River Basin, and calculated the suitable habitat area and underlying influence of environmental factors using MaxEnt software. A total of 298 species are recognized, belonging to 121 genera in 52 families, which is 57.6% of the total aquatic vascular plants in China. The Yangtze River Basin is the key area for aquatic plant diversity of China, especially the subregions of middle reaches. The elevation and land use are the key environmental variables to the spatial pattern of aquatic plants. The separation among water systems have weak influence on the spatial pattern of diversity in aquatic vascular plants, but potamo-lacustrine habitats facilitated the species homogenization of the flora in a sub-basin scale. The network consists of Poyang Lake, Dongting Lake, Tai Lake, and the middle and lower mainstream is the suitable area for the aquatic plants based on the MaxEnt model. In the past half century, the decline or loss of aquatic vegetation occurred in plenty of lakes in the Yangtze River Basin. We suggested that the protection of aquatic vegetation should be incorporated into the integrated conservation of the middle and lower Yangtze River. © 2019, Institute of Hydrobiology, Chinese Academy of Sciences. All rights reserved.  相似文献   

19.
In biological control programs, the insect natural enemy’s ability to suppress the plant invader may be affected by abiotic factors, such as resource availability, that can influence plant growth and reproduction. Understanding plant tolerance to herbivory under different environmental conditions will help to improve biocontrol efficacy. The invasive alligator weed (Alternanthera philoxeroides) has been successfully controlled by natural enemies in many aquatic habitats but not in terrestrial environments worldwide. This study examined the effects of different levels of simulated leaf herbivory on the growth of alligator weed at two levels of fertilization and three levels of soil moisture (aquatic, semi-aquatic, and terrestrial habitats). Increasing levels of simulated (manual) defoliation generally caused decreases in total biomass in all habitats. However, the plant appeared to respond differently to high levels of herbivory in the three habitats. Terrestrial plants showed the highest below–above ground mass ratio (R/S), indicating the plant is more tolerant to herbivory in terrestrial habitats than in aquatic habitats. The unfertilized treatment exhibited greater tolerance than the fertilized treatment in the terrestrial habitat at the first stage of this experiment (day 15), but fertilizer appears not to have influenced tolerance at the middle and last stages of the experiment. No such difference was found in semi-aquatic and aquatic habitats. These findings suggest that plant tolerance is affected by habitats and soil nutrients and this relationship could influence the biological control outcome. Plant compensatory response to herbivory under different environmental conditions should, therefore, be carefully considered when planning to use biological control in management programs against invasive plants.  相似文献   

20.
在典型草型富营养化湖泊-内蒙古乌梁素海设立试验研究基地,进行较大规模生态恢复工程试验,研究表明,实施沉水植物收割工程与芦苇园田化生态管理工程是草型富营养化湖泊生态恢复的两项重要技术措施。以机械化方式收割沉水植物能够削减湖泊内源性营养物负荷的积累和释放,减少二次污染,抑制生物填平作用,改善水体环境;采用机械化技术控制芦苇蔓延、打开芦苇区通风道和通水道,可以重建湖泊绿色自然景观,提高全湖水流循环速度。有计划、合理地运用生态恢复工程不仅可以减轻草型湖泊所面临的巨大生态压力,延缓沼泽化演化进程。而且可以在实施生态工程的同时开发利用水生植物资源,使湖泊环境与湿地综合利用得到持续发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号