首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many cell types polarized transport directs the movement of mRNAs and proteins from their site of synthesis to their site of action, thus conferring cell polarity. The cytoplasmic dynein microtubule motor complex is involved in this process. In Drosophila melanogaster, the Egalitarian (Egl) and Bicaudal-D (BicD) proteins are also essential for the transport of macromolecules to the oocyte and to the apical surface of the blastoderm embryo. Hence, Egl and BicD, which have been shown to associate, may be part of a conserved core localization machinery in Drosophila, although a direct association between these molecules and the dynein motor complex has not been shown. Here we report that Egl interacts directly with Drosophila dynein light chain (Dlc), a microtubule motor component, through an Egl domain distinct from that which binds BicD. We propose that the Egl-BicD complex is loaded through Dlc onto the dynein motor complex thereby facilitating transport of cargo. Consistent with this model, point mutations that specifically disrupt Egl-Dlc association also disrupt microtubule-dependant trafficking both to and within the oocyte, resulting in a loss of oocyte fate maintenance and polarity. Our data provide a direct link between a molecule necessary for oocyte specification and the microtubule motor complex, and supports the hypothesis that microtubule-mediated transport is important for preserving oocyte fate.  相似文献   

2.
Clathrin facilitates vesicle formation during endocytosis and sorting in the trans‐Golgi network (TGN)/endosomal system. Unlike in mammals, yeast clathrin function requires both the clathrin heavy (CHC) and clathrin light (CLC) chain, since Chc1 does not form stable trimers without Clc1. To further delineate clathrin subunit functions, we constructed a chimeric CHC protein (Chc‐YR) , which fused the N‐terminus of yeast CHC (1–1312) to the rat CHC residues 1318–1675, including the CHC trimerization region. The novel CHC‐YR allele encoded a stable protein that fractionated as a trimer. CHC‐YR also complemented chc1Δ slow growth and clathrin TGN/endosomal sorting defects. In strains depleted for Clc1 (either clc1Δ or chc1Δ clc1Δ), CHC‐YR, but not CHC1, suppressed TGN/endosomal sorting and growth phenotypes. Chc‐YR‐GFP (green fluorescent protein) localized to the TGN and cortical patches on the plasma membrane, like Chc1 and Clc1. However, Clc1‐GFP was primarily cytoplasmic in chc1Δ cells harboring pCHC‐YR, indicating that Chc‐YR does not bind yeast CLC. Still, some partial phenotypes persisted in cells with Chc‐YR, which are likely due either to loss of CLC recruitment or chimeric HC lattice instability. Ultimately, these studies have created a tool to examine non‐trimerization roles for the clathrin LC.  相似文献   

3.
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine‐tuning the activity of the retrograde motor cytoplasmic dynein.  相似文献   

4.
Cytoplasmic dynein is involved in a multitude of essential cellular functions. Dynein's activity is controlled by the combinatorial action of several regulatory proteins. The molecular mechanism of this regulation is still poorly understood. Using purified proteins, we reconstitute the regulation of the human dynein complex by three prominent regulators on dynamic microtubules in the presence of end binding proteins (EBs). We find that dynein can be in biochemically and functionally distinct pools: either tracking dynamic microtubule plus‐ends in an EB‐dependent manner or moving processively towards minus ends in an adaptor protein‐dependent manner. Whereas both dynein pools share the dynactin complex, they have opposite preferences for binding other regulators, either the adaptor protein Bicaudal‐D2 (BicD2) or the multifunctional regulator Lissencephaly‐1 (Lis1). BicD2 and Lis1 together control the overall efficiency of motility initiation. Remarkably, dynactin can bias motility initiation locally from microtubule plus ends by autonomous plus‐end recognition. This bias is further enhanced by EBs and Lis1. Our study provides insight into the mechanism of dynein regulation by dissecting the distinct functional contributions of the individual members of a dynein regulatory network.  相似文献   

5.
The dynein adaptor Drosophila Bicaudal D (BicD) is auto‐inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full‐length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X‐ray structure of the C‐terminal domain of the BicD/F684I mutant reveals a coiled‐coil registry shift; in the N‐terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild‐type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled‐coil registry shift upon cargo‐binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled‐coil registry shift may be a mechanism to modulate cargo selection for BicD2‐dependent transport pathways.  相似文献   

6.

Background

A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein''s function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function—loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus—however exactly what BicD''s role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD''s role in lipid droplet transport during Drosophila embryogenesis.

Methodology/Principal Findings

Functional loss of BicD impairs the embryo''s ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicDnull) decreases the average run length of both plus and minus end directed microtubule (MT) based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II), but in phase III (gastrulation) motion actually appears better than in the wild-type.

Conclusions/Significance

In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical—and temporally changing—role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors.  相似文献   

7.
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1.  相似文献   

8.
Post‐translational modifications (PTMs) of α/β‐tubulin are believed to regulate interactions with microtubule‐binding proteins. A well‐characterized PTM involves in the removal and re‐ligation of the C‐terminal tyrosine on α‐tubulin, but the purpose of this tyrosination–detyrosination cycle remains elusive. Here, we examined the processive motility of mammalian dynein complexed with dynactin and BicD2 (DDB) on tyrosinated versus detyrosinated microtubules. Motility was decreased ~fourfold on detyrosinated microtubules, constituting the largest effect of a tubulin PTM on motor function observed to date. This preference is mediated by dynactin's microtubule‐binding p150 subunit rather than dynein itself. Interestingly, on a bipartite microtubule consisting of tyrosinated and detyrosinated segments, DDB molecules that initiated movement on tyrosinated tubulin continued moving into the segment composed of detyrosinated tubulin. This result indicates that the α‐tubulin tyrosine facilitates initial motor–tubulin encounters, but is not needed for subsequent motility. Our results reveal a strong effect of the C‐terminal α‐tubulin tyrosine on dynein–dynactin motility and suggest that the tubulin tyrosination cycle could modulate the initiation of dynein‐driven motility in cells.  相似文献   

9.
Dynein is a minus-end-directed microtubule motor with critical roles in mitosis, membrane transport and intracellular transport. Several proteins regulate dynein activity, including dynactin, LIS1 (refs 2, 3) and NudEL (NudE-like). Here, we identify a NUDEL homologue in budding yeast and name it Ndl1. The ndl1delta null mutant shows decreased targeting of dynein to microtubule plus ends, an essential element of the model for dynein function. We find that Ndl1 regulates dynein targeting through LIS1, with which it interacts biochemically, but not through CLIP170, another plus-end protein involved in dynein targeting. Ndl1 is found at far fewer microtubule ends than are LIS1 and dynein. However, when Ndl1 is present at a plus end, the molar amount of Ndl1 approaches that of LIS1 and dynein. We propose a model in which Ndl1 binds transiently to the plus end to promote targeting of LIS1, which cooperatively recruits dynein.  相似文献   

10.
Microtubules are essential components of the cytoskeleton that participate in a variety of cellular processes such as cell division and migration. In addition, there is a growing body of evidence implicating a role for microtubules in intracellular viral transport. In this study, we found that pharmacological disruption of microtubules remarkably blocked bovine immunodeficiency virus (BIV) movement from the cell periphery to the perinuclear region, a process known as retrograde transport. A similar effect was observed by inhibiting function of the microtubule‐associated motor protein dynein. By yeast two‐hybrid assay, we found that the capsid protein (CA) of BIV interacted with the dynein light‐chain component LC8. Immunoprecipitation and GST‐pulldown assays further demonstrated an interaction between CA and LC8 in mammalian cells. In addition, our data revealed LC8 as a linker between BIV particles and microtubules. Retrograde transport of BIV was significantly inhibited by knockdown of LC8 expression. Our findings present the first evidence that incoming BIV particles employ host microtubule/dynein machinery for transport towards the perinuclear region. In addition, our data indicate that the LC8–CA interaction is a potential target for the design of antiviral strategies.  相似文献   

11.
Motor proteins are essential components of intracellular transport inside eukaryotic cells. These protein molecules use chemical energy obtained from hydrolysis of ATP to produce mechanical forces required for transporting cargos inside cells, from one location to another, in a directed manner. Of these motors, cytoplasmic dynein is structurally more complex than other motor proteins involved in intracellular transport, as it shows force and fuel (ATP) concentration dependent step‐size. Cytoplasmic dynein motors are known to work in a team during cargo transport and force generation. Here, we use a complete Monte‐Carlo model of single dynein constrained by in vitro experiments, which includes the effect of both force and ATP on stepping as well as detachment of motors under force. We then use our complete Monte‐Carlo model of single dynein motor to understand collective cargo transport by a team of dynein motors, such as dependence of cargo travel distance and velocity on applied force and fuel concentration. In our model, cargos pulled by a team of dynein motors do not detach rapidly under higher forces, confirming the experimental observation of longer persistence time of dynein team on microtubule under higher forces.  相似文献   

12.
Neurons rely on microtubule (MT) motor proteins such as kinesin‐1 and dynein to transport essential cargos between the cell body and axon terminus. Defective axonal transport causes abnormal axonal cargo accumulations and is connected to neurodegenerative diseases, including Alzheimer's disease (AD). Glycogen synthase kinase 3 (GSK‐3) has been proposed to be a central player in AD and to regulate axonal transport by the MT motor protein kinesin‐1. Using genetic, biochemical and biophysical approaches in Drosophila melanogaster, we find that endogenous GSK‐3 is a required negative regulator of both kinesin‐1‐mediated and dynein‐mediated axonal transport of the amyloid precursor protein (APP), a key contributor to AD pathology. GSK‐3 also regulates transport of an unrelated cargo, embryonic lipid droplets. By measuring the forces motors generate in vivo, we find that GSK‐3 regulates transport by altering the activity of kinesin‐1 motors but not their binding to the cargo. These findings reveal a new relationship between GSK‐3 and APP, and demonstrate that endogenous GSK‐3 is an essential in vivo regulator of bidirectional APP transport in axons and lipid droplets in embryos. Furthermore, they point to a new regulatory mechanism in which GSK‐3 controls the number of active motors that are moving a cargo .  相似文献   

13.
Yeast TGN resident proteins that frequently cycle between the TGN and endosomes are much more slowly transported to the prevacuolar/late endosomal compartment (PVC) than other proteins. However, TGN protein transport to the PVC is accelerated in mutants lacking function of Inp53p. Inp53p contains a SacI polyphosphoinositide phosphatase domain, a 5-phosphatase domain, and a proline-rich domain. Here we show that all three domains are required to mediate "slow delivery" of TGN proteins into the PVC. Although deletion of the proline-rich domain did not affect general membrane association, it caused localization to become less specific. The proline-rich domain was shown to bind to two proteins, including clathrin heavy chain, Chc1p. Unlike chc1 mutants, inp53 mutants do not mislocalize TGN proteins to the cell surface, consistent with the idea that Chc1p and Inp53p act at a common vesicular trafficking step but that Chc1p is used at other steps also. Like mutations in the AP-1 adaptor complex, mutations in INP53 exhibit synthetic growth and transport defects when combined with mutations in the GGA proteins. Taken together with other recent studies, our results suggest that Inp53p and AP-1/clathrin act together in a TGN-to-early endosome pathway distinct from the direct TGN-to-PVC pathway mediated by GGA/clathrin.  相似文献   

14.
Clathrin-coated vesicles mediate cellular endocytosis of nutrients and molecules that are involved in a variety of biological processes. Basic components of the vesicle coat are clathrin heavy chain (Chc) and clathrin light chain molecules. In Drosophila melanogaster the chc gene function has been analyzed in a number of previous studies mainly using genetic approaches. However, the chc mRNA and protein expression patterns have not been studied systematically. We have generated an antibody that specifically recognizes Chc and we have analyzed chc RNA and protein expression patterns throughout embryonic and larval stages. We found that chc mRNA and protein are highly expressed from early stages of embryogenesis onwards, consistent with genetic studies predicting a maternal contribution of the gene function. During subsequent stages mRNA and protein are co-expressed in all embryonic cells; however we found an up-regulation in specific tissues including the gut, the salivary glands, tracheal system and the epidermis. In addition the central nervous system and the nephrocyte-like garland cells show strong Chc expression at late embryogenesis. In larvae Chc is highly expressed in garland cells, imaginal discs, fat body, salivary glands and the ring gland. Subcellularly, we found Chc protein in a vesicle-like pattern within the cytoplasm and at the plasma membrane. Co-labeling studies show that Chc is partially in contact with the trans-Golgi network and co-localizes with markers for early endocytosis. Together, the antibody may serve as a new tool to study the function of Chc in clathrin-dependent cellular processes, such as endocytosis.  相似文献   

15.
The neuron-enriched, endosomal protein Calcyon (Caly) regulates endocytosis and vesicle sorting, and is important for synaptic plasticity and brain development. In the current investigation of Caly interacting proteins in brain, the microtubule retrograde motor subunit, cytoplasmic dynein 1 heavy chain (DYNC1H), and microtubule structural proteins, α and β tubulin, were identified as Caly associated proteins by MALDI-ToF/ToF. Direct interaction of the Caly-C terminus with dynein and tubulin was further confirmed in in vitro studies. In Cos-7 cells, mCherry-Caly moved along the microtubule network in organelles largely labeled by the late endosome marker Rab7. Expression of the dynein inhibitor CC1, produced striking alterations in Caly distribution, consistent with retrograde motors playing a prominent role in Caly localization and movement. In axons of cultured adult rat sensory neurons, Caly-positive organelles co-localized with dynein intermediate chain (DYNC1I1-isoform IC-1B) and the dynein regulator, lissencephaly 1 (LIS1), both of which co-precipitated from brain with the Caly C-terminus. Manipulation of dynein function in axons altered the motile properties of Caly indicating that Caly vesicles utilize the retrograde motor. Altogether, the current evidence for association with dynein motors raises the possibility that the endocytic and cargo sorting functions of Caly in neurons could be regulated by interaction with the microtubule transport system.  相似文献   

16.
p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at?terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor?neuron disease.  相似文献   

17.
18.
Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin‐1 and kinesin‐2, and for available data for cytoplasmic dynein and the dynein‐dynactin‐BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load‐dependent detachment kinetics. In simulations, dynein is dominated by kinesin‐1, but DDB and kinesin‐1 are evenly matched, recapitulating recent experimental work. Kinesin‐2 competes less well against dynein and DDB, and overall, load‐dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.   相似文献   

19.
Long-distance intracellular delivery is driven by kinesin and dynein motor proteins that ferry cargoes along microtubule tracks . Current models postulate that directional trafficking is governed by known biophysical properties of these motors-kinesins generally move to the plus ends of microtubules in the cell periphery, whereas cytoplasmic dynein moves to the minus ends in the cell center. However, these models are insufficient to explain how polarized protein trafficking to subcellular domains is accomplished. We show that the kinesin-1 cargo protein JNK-interacting protein 1 (JIP1) is localized to only a subset of neurites in cultured neuronal cells. The mechanism of polarized trafficking appears to involve the preferential recognition of microtubules containing specific posttranslational modifications (PTMs) by the kinesin-1 motor domain. Using a genetic approach to eliminate specific PTMs, we show that the loss of a single modification, alpha-tubulin acetylation at Lys-40, influences the binding and motility of kinesin-1 in vitro. In addition, pharmacological treatments that increase microtubule acetylation cause a redirection of kinesin-1 transport of JIP1 to nearly all neurite tips in vivo. These results suggest that microtubule PTMs are important markers of distinct microtubule populations and that they act to control motor-protein trafficking.  相似文献   

20.
This review summarizes the data describing the role of cellular microtubules in transportation of membrane vesicles — transport containers for secreted proteins or lipids. Most events of early vesicular transport in animal cells (from the endoplasmic reticulum to the Golgi apparatus and in the opposite recycling direction) are mediated by microtubules and microtubule motor proteins. Data on the role of dynein and kinesin in early vesicle transport remain controversial, probably because of the differentiated role of these proteins in the movements of vesicles or membrane tubules with various cargos and at different stages of secretion and retrograde transport. Microtubules and dynein motor protein are essential for maintaining a compact structure of the Golgi apparatus; moreover, there is a set of proteins that are essential for Golgi compactness. Dispersion of ribbon-like Golgi often occurs under physiological conditions in interphase cells. Golgi is localized in the leading part of crawling cultured fibroblasts, which also depends on microtubules and dynein. The Golgi apparatus creates its own system of microtubules by attracting γ-tubulin and some microtubule-associated proteins to membranes. Molecular mechanisms of binding microtubule-associated and motor proteins to membranes are very diverse, suggesting the possibility of regulation of Golgi interaction with microtubules during cell differentiation. To illustrate some statements, we present our own data showing that the cluster of vesicles induced by expression of constitutively active GTPase Sar1a[H79G] in cells is dispersed throughout the cell after microtubule disruption. Movement of vesicles in cells containing the intermediate compartment protein ERGIC53/LMANI was inhibited by inhibiting dynein. Inhibiting protein kinase LOSK/SLK prevented orientation of Golgi to the leading part of crawling cells, but the activity of dynein was not inhibited according to data on the movement of ERGIC53/LMANI-marked vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号