首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The keratinase gene from Bacillus licheniformis MKU3 was cloned and successfully expressed in Bacillus megaterium MS941 as well as in Pichia pastoris X33. Compared with parent strain, the recombinant B. megaterium produced 3-fold increased level of keratinase while the recombinant P. pastoris strain had produced 2.9-fold increased level of keratinase. The keratinases from recombinant P. pastoris (pPZK3) and B. megaterium MS941 (pWAK3) were purified to 67.7- and 85.1-folds, respectively, through affinity chromatography. The purified keratinases had the specific activity of 365.7 and 1277.7 U/mg, respectively. Recombinant keratinase from B. megaterium was a monomeric protein with an apparent molecular mass of 30 kDa which was appropriately glycosylated in P. pastoris to have a molecular mass of 39 kDa. The keratinases from both recombinant strains had similar properties such as temperature and pH optimum for activity, and sensitivity to various metal ions, additives and inhibitors. There was considerable enzyme stability due to its glycosylation in yeast system. At pH 11 the glycosylated keratinase retained 95% of activity and 75% of its activity at 80 degrees C. The purified keratinase hydrolyzed a broad range of substrates and displayed effective degradation of keratin substrates. The K(m) and V(max) of the keratinase for the substrate N-succinyl-Ala-Ala-Pro-Phe-pNA was found to be 0.201 mM and 61.09 U/s, respectively. Stability in the presence of detergents, surfactants, metal ions and solvents make this keratinase suitable for industrial processes.  相似文献   

2.
The ker gene encoding pre-pro keratinase of Bacillus licheniformis MKU3 was cloned with xylose inducible promoter (PxylA) or -amylase promoter (PamyL) or both in Escherichia coli–Bacillus shuttle vector, pWH1520 generating recombinant plasmids pWHK3, pWAK3 and pWXAK3 respectively. Compared with Bacillius megaterium MS941 (pWXAK3) expressing ker gene with PxylAPamyL promoters, B. megaterium MS941 (pWAK3) with PamyL displayed higher keratinase yield (168.6 U/ml) and specific activity (14.59 U/mg) after 36 h of growth in LB medium, however the keratinase yield decreased in the culture grown in LB medium supplemented with starch or xylose or both. A maximum yield of 186.3 U/ml with specific activity of 17.25 U/mg was obtained from xylose induced keratinase expression in B. megaterium MS941 (pWHK3) grown for 24 h. The recombinant plasmids were stably maintained with sustained expression of keratinase for about 60 generations in B. megaterium MS941 rather than in B. megaterium 14945.  相似文献   

3.
To increase the production of keratinase, stable strains of Bacillus licheniformis carrying multiple keratinase gene copies in the chromosome were developed. Integrative vectors carrying kerA with or without P43-promoter were constructed and subcloned into B. licheniformis T399D and Bacillus subtilis DB104. In T399D, multiple copies of kerA integration into the chromosome were identified and determined by Southern blot. The optimal integration of kerA was found in the range of 3-5 copies. Higher integration of gene copies (>5) caused reduced processing and secretion of the extracellular keratinase. In DB104, kerA was cloned in the plasmid, not integrated into the chromosome. The strong constitutive promoter P43 not only increased the keratinase production in plasmid-based expression in DB104 but also improved the enzyme yield of the integrants of T399D. New strains were able to enhance cell growth and enzyme yield at higher concentrations of medium substrate. When they were grown in either soy or feather medium, the keratinase activity was stable and improved by about 4-6 times.  相似文献   

4.
Bacillus licheniformis PWD-1, the parent strain, and B. subtilis FDB-29, a recombinant strain. In both strains, keratinase was induced by proteinaceous media, and repressed by carbohydrates. A seed culture of B. licheniformis PWD-1 at early age, 6–10 h, is crucial to keratinase production during fermentation, but B. subtilis FDB-29 is insensitive to the seed culture age. During the batch fermentation by both strains, the pH changed from 7.0 to 8.5 while the keratinase activity and productivity stayed at high levels. Control of pH, therefore, is not necessary. The temperature for maximum keratinase production is 37°C for both strains, though B. licheniformis is thermophilic and grows best at 50°C. Optimal levels of dissolved oxygen are 10% and 20% for B. licheniformis and B. subtilis respectively. A scale-up procedure using constant temperature at 37°C was adopted for B. subtilis. On the other hand, a temperature-shift procedure by which an 8-h fermentation at 50°C for growth followed by a shift to 37°C for enzyme production was used for B. licheniformis to shorten the fermentation time and increase enzyme productivity. Production of keratinase by B. licheniformis increased by ten-fold following this new procedure. After respective optimization of fermentation conditions, keratinase production by B. licheniformis PWD-1 is approximately 40% higher than that by B. subtilis FDB-29. Received 16 July 1998/ Accepted in revised form 07 March 1999  相似文献   

5.
AIMS: Bacillus licheniformis PWD-1 is a keratin-degrading, spore-forming bacterium isolated from a poultry waste digester. A sporulation-deficient mutant of B. licheniformis PWD-1, named B. licheniformis WBG, was developed and characterized. METHODS AND RESULTS: The mutation was generated using the splicing by overlap extension PCR method (Gene SOEing) to create 256 bp deletion in the spoIIAC gene, which encodes an essential sporulation-specific sigma factor. In vivo gene replacement was accomplished with the use of a temperature-sensitive plasmid that is able to integrate and excise the nucleotide fragment 256 bp from the B. licheniformis chromosome. PCR analysis and DNA sequencing confirmed the spoIIAC gene deletion. Heat-treatment assays and electron microscopy verified the absence of spores. CONCLUSIONS: This asporogenic strain is able to express normal levels of keratinase when compared with its wild-type host. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, a method of constructing a stable sporulation-defective strain was developed. It can be potentially useful as a tool to generate asporogenic strains of Bacillus that retain their industrial capabilities for production of exoproteases and other exozymes.  相似文献   

6.
【目的】通过对一株地衣芽孢杆菌来源的角蛋白酶N端进行分子改造,研究其对角蛋白酶活力和热稳定性的影响,进而提高角蛋白酶的热稳定性。【方法】将角蛋白酶N端前5个氨基酸进行分段缺失,并通过序列比对将N端的前5个氨基酸替换为来源于Thermoactinomyces vulgaris的嗜热蛋白酶的N端,将野生型和突变体角蛋白酶基因在枯草芽孢杆菌WB600中进行表达,并对重组酶进行纯化与酶学性质研究。【结果】角蛋白酶N端不同长度的缺失大幅度地降低了角蛋白酶的活力,其中缺失前5个氨基酸完全丧失了酶活力。将角蛋白酶N端前5个氨基酸替换为嗜热蛋白酶N端前12个氨基酸,虽然降低了近70%的活力,但是却增加了角蛋白酶的热稳定性,60°C条件下的半衰期t1/2由原来的9 min提高到20 min。【结论】角蛋白酶的N端对其酶活力具有较大的影响,与嗜热蛋白酶来源的N端进行替换可以有效提高角蛋白酶的热稳定性。  相似文献   

7.
Keratinase are proteolytic enzymes which have gained much attention to convert keratinous wastes that cause huge environmental pollution problems. Ten microbial isolates were screened for their keratinase production. The most potent isolate produce 25.2?U/ml under static condition and was primarily identified by partial 16s rRNA gene sequence as Bacillus licheniformis ALW1. Optimization studies for the fermentation conditions increased the keratinase biosynthesis to 72.2?U/ml (2.9-fold). The crude extracellular keratinase was optimally active at pH 8.0 and temperature 65?°C with 0.7% soluble keratin as substrate. The produced B. licheniformis ALW1 keratinase exhibited a good stability over pH range from 7 to 9 and over a temperature range 50–60?°C for almost 90?min. The crude enzyme solution was able to degrade native feather up to 63% in redox free system.  相似文献   

8.
目的:基于同源单交换原理构建地衣芽孢杆菌基因快速敲除方法,提高基因敲除效率。方法:以地衣芽孢杆菌(Bacillus licheniformis)20085内切纤维素酶基因celb为拟敲除对象,利用重叠PCR技术将celb基因内约500bp片段与氯霉素抗性基因(Cmr)相连接,经末端单酶切后电转化至B.licheniformis 20085感受态细胞中,仅通过一次同源单交换,将抗性基因Cmr插入至celb基因内部,实现目的基因的敲除。结果:经过氯霉素抗性筛选和基因组PCR鉴定,成功获得celb基因缺失菌株B.licheniformis 20085Δcelb;发酵验证结果显示,B.licheniformis 20085Δcelb较原始菌株滤纸崩解能力显著降低,其中发酵60h后内切纤维素酶(CMC酶)活力由1.86U/ml降低至0.50U/ml,表明celb基因在地衣芽孢杆菌降解纤维素的过程中起着重要作用。结论:通过重叠PCR技术结合同源单交换原理能够实现地衣芽孢杆菌目的基因的快速敲除,为该菌株甚至其它微生物提供了一种基因功能快速鉴定的手段。  相似文献   

9.
T Imanaka  T Himeno    S Aiba 《Journal of bacteriology》1987,169(9):3867-3872
The penicillinase antirepressor gene, penJ, of Bacillus licheniformis ATCC 9945a was cloned in Escherichia coli by using pMB9 as a vector plasmid. The penicillinase gene, penP, its repressor gene, penI, and penJ were encoded on the cloned 5.2-kilobase HindIII fragment of the recombinant plasmid pTTE71. The penJ open reading frame was composed of 1,803 bases and 601 amino acid residues (molecular weight, 68,388). A Shine-Dalgarno sequence was found 7 bases upstream from the translation start site. Since this sequence was located in the 3'-terminal region of the penI gene, penJ might be transcribed together with penI as a polycistronic mRNA from the penI promoter. Frameshift mutations of penJ were constructed in vitro from pTTE71, and the penJ mutant gene was introduced into B. licheniformis by chromosomal recombination. The transformant B. licheniformis U173 (penP+ penI+ penJ) turned out to be uninducible for penicillinase production, whereas the wild-type strain (penP+ penI+ penJ+) was inducible. Only when these three genes (penP, penI, and PenJ) were simultaneously subcloned in Bacillus subtilis did the plasmid carrier exhibit inducible penicillinase production, as did wild-type B. licheniformis. It was concluded that penJ is involved in the penicillinase induction. The regulation of penP expression by penI and penJ is discussed.  相似文献   

10.
11.
角蛋白酶生产菌株的分离筛选与鉴定   总被引:1,自引:0,他引:1  
【目的】分离筛选具有高效脱毛能力的野生角蛋白酶生产菌株,开发无硫制革生物脱毛剂。【方法】以贮备原料皮的特定环境中的污水样品为菌株源、在含诱导物脱脂羊毛粉的培养基中的富集、筛选与评估其发酵液脱毛能力的多相筛选方法分离选育高产角蛋白酶野生菌株。通过形态学、生理生化特征,Biolog全自动分析以及16SrDNA基因序列分析等方法多尺度地鉴定目的菌株。【结果】定向筛选得到了一株高活力,无硫脱毛效率高的菌株。鉴定结果表明,该菌株为地衣芽孢杆菌属,故命名为地衣芽孢杆菌(Bacillus licheniformis)X-47。【结论】应用多相定位选育技术筛选出的菌株地衣芽孢杆菌(Bacillus licheniformis)X-47,产角蛋白酶活力高,脱毛效率高,对胶原作用力弱的特点,具有开发无硫脱毛生物助剂的潜力。  相似文献   

12.
【目的】地衣芽孢杆菌MY75菌株的几丁质酶基因的异源表达,并对表达蛋白的特性进行研究。【方法】制备MY75菌株培养上清粗蛋白,利用酶谱分析确定具有几丁质酶活的蛋白分子量。将该蛋白进行飞行时间质谱分析,确定其部分氨基酸序列,设计PCR引物对MY75菌株的几丁质酶基因进行克隆及异源表达。对表达蛋白的最适反应温度及pH,温度耐受性及金属离子对酶活力的影响等特性进行了研究,并测定了表达蛋白对真菌孢子萌发的抑制活性和对甜菜夜蛾幼虫的杀虫增效作用。【结果】酶谱分析证明MY75菌株培养上清液中仅含有一种55kDa的几丁质酶。将该编码基因chiMY克隆及序列分析后发现,基因长度为1797bp,编码599个氨基酸。在大肠杆菌中异源表达的几丁质酶ChiMY蛋白的分子量为67kDa。质谱分析证明,55kDa蛋白与67kDa蛋白序列相同。ChiMY最适pH和最适温度分别为7.0和50°C,为中性几丁质酶。Li+,Na+,和Mg2+离子对表达蛋白的酶活力具有促进作用,Mn2+,Cr3+,Zn2+和Ag+离子则能显著抑制酶活力,Cu2+和Fe3+离子完全抑制酶活性。生物测定的结果显示,异源表达的MY75几丁质酶能够抑制小麦赤霉及黑曲霉的孢子萌发,并且对苏云金芽孢杆菌的杀虫活力具有增效作用。【结论】地衣芽孢杆菌MY75菌株中仅有一种55kDa几丁质酶,其编码基因能够在大肠杆菌中大量表达,表达蛋白分子量与野生型蛋白之间有显著差异,由此证明MY75菌株中存在着几丁质酶的剪切加工过程。明确了地衣芽孢杆菌几丁质酶ChiMY具有抑制真菌活性及杀虫增效作用。上述全部研究结论在国内首次报道。  相似文献   

13.
By using plasmid pMB9, penicillinase genes (penP and penI) from both the wild-type and constitutive strains of Bacillus licheniformis 9945A were cloned in EScherichia coli. When a low-copy-number plasmid was used, both wild-type and constitutive penicillinase genes could be transferred into Bacillus subtilis. However, when a high-copy-number plasmid was used, only the genes of the wild type could be transferred. These recombinant plasmids in B. subtilis could all be transferred by the protoplast transformation procedure into B. licheniformis. Transformants of E. coli were resistant to ampicillin (20 micrograms/ml) in spite of the low penicillinase activities (7 U/mg of cells). However, transformants of B. subtilis and B. licheniformis were sensitive to ampicillin (20 micrograms/ml) even in high penicillinase activities (more than 10,000 U/mg of cells). The secretion of penicillinase was rarely observed in E. coli. In contrast, penicillinases secreted from transformants of B. subtilis and B. licheniformis were around 30 and 60% of the total activities, respectively. We took advantage of the plasmids to permit the construction of hetero- and mero-polyploid structures in host cells, and we discuss a regulatory mechanism of penicillinase synthesis in B. licheniformis.  相似文献   

14.
本文根据GenBank 中巨大芽孢杆菌(Bacillus megaterium)的PGA基因序列设计了上下游引物,通过PCR扩增出巨大芽孢杆菌1.1741中的PGA基因。将该基因连接到T7lac启动子控制下的表达载体pYES2(amp+,ura+)上,构建了重组质粒pYES2-PGA。用LiAc/SSDNA/PEG方法将其转化进酿酒酵母(Saccharomyces cerevisiae)H158中表达,在不需要苯乙酸诱导的重组菌株发酵液中检测到了青霉素酰化酶活性,最高酶活达到0.75 U/ml。将该PGA基因测序结果与GenBank中巨大芽孢杆菌L04471.1、U07682.1和Z37542三株的PGA基因序列比对,表现出很高的同源性,分别达到97.1%、99.8% 和99.8%。  相似文献   

15.
The kerA gene which encodes the enzyme keratinase was isolated from the feather-degrading bacterium Bacillus licheniformis PWD-1. The entire gene, including pre-, pro- and mature protein regions, was cloned with Pker, its own promoter, P43, the vegetative growth promoter, or the combination of P43-Pker into plasmid pUB18. Transformation of the protease-deficient strain B. subtilis DB104 with these plasmids generated transformant strains FDB-3, FDB-108 and FDB-29 respectively. All transformants expressed active keratinase in both feather and LB media, in contrast to PWD-1, in which kerA was repressed when grown in LB medium. With P43-Pker upstream of kerA, FDB-29 displayed the highest activity in feather medium. Production of keratinase in PWD-1 and transformants was further characterized when glucose or casamino acids were supplemented into the feather medium. These studies help understand the regulation of kerA expression and, in the long run, can help strain development and medium conditioning for the production of this industrially important keratinase. Received 31 December 1996/ Accepted in revised form 23 June 1997  相似文献   

16.
地衣芽孢杆菌2709由于易于培养、GRAS状态和完善的蛋白质分泌能力,是已经投入工业生产碱性蛋白酶的菌株。为改善该菌株的发酵生产性能,提高菌体对培养基成分的利用和碱性蛋白酶产量,对菌株的胞外分泌酶系进行完善。利用同源重组机制,在基因组复制起始位点附近引入了来源于短小芽孢杆菌的木聚糖酶基因xynA和在复制起始位点中心对称的位置引入耶氏解脂酵母来源的脂肪酶基因lipY2。整合菌株在摇瓶发酵44h时,木聚糖酶、脂肪酶酶活力分别达(58±2.07)U/mL和(207±10.62)U/mL,其分泌表达促进了地衣芽孢杆菌对发酵培养基的分解与利用,提高了培养基中还原糖、上清总氮的含量和沉淀中含氮化合物的分解;细菌生物量较地衣芽孢杆菌原始菌株提高了11.76%,同时碱性蛋白酶的发酵周期较原始菌提前了4h,碱性蛋白酶产量提高了14.41%。地衣芽孢杆菌2709分泌酶系的丰富和发酵性能的改善为在饲料行业中作为微生物制剂的地衣芽孢杆菌提供了改造的方法。  相似文献   

17.
The main keratinase (kerA) gene from the Bacillus licheniformis S90 was optimized by two codon optimization strategies and expressed in Pichia pastoris in order to improve the enzyme production compared to the preparations with the native kerA gene. The results showed that the corresponding mutations (synonymous codons) according to the codon bias in Pichia pastoris were successfully introduced into keratinase gene. The highest keratinase activity produced by P. pastoris pPICZαA-kerAwt, pPICZαA-kerAopti1 and pPICZαA-kerAopti2 was 195 U/ml, 324 U/ml and 293 U/ml respectively. In addition, there was no significant difference in biomass concentration, target gene copy numbers and relative mRNA expression levels of every positive strain. The molecular weight of keratinase secreted by recombinant P. pastori was approx. 39 kDa. It was optimally active at pH 7.5 and 50°C. The recombinant keratinase could efficiently degrade both α-keratin (keratin azure) and β-keratin (chicken feather meal). These properties make the P. pastoris pPICZαA-kerAopti1 a suitable candidate for industrial production of keratinases.  相似文献   

18.
19.
20.
The genome sequence of Bacillus licheniformis SVD1, that produces a cellulolytic and hemi-cellulolytic multienzyme complex, was partially determined, indicating that the glycoside hydrolase system of this strain is highly similar to that of B. licheniformis ATCC14580. All of the fifty-six genes encoding glycoside hydrolases identified in B. licheniformis ATCC14580 were conserved in strain SVD1. In addition, two new genes, xyn30A and axh43A, were identified in the B. licheniformis SVD1 genome. The xyn30A gene was highly similar to Bacillus subtilis subsp. subtilis 168 xynC encoding for a glucuronoarabinoxylan endo-1,4-β-xylanase. Xyn30A, produced by a recombinant Escherichia coli, had high activity toward 4-O-methyl-d-glucurono-d-xylan but showed definite activity toward oat-spelt xylan and unsubstituted xylooligosaccharides. Recombinant Axh43A, consisting of a family-43 catalytic module of the glycoside hydrolases and a family-6 carbohydrate-binding module (CBM), was an arabinoxylan arabinofuranohydrolase (α-l-arabinofuranosidase) classified as AXH-m23 and capable of releasing arabinosyl residues, which are linked to the C-2 or C-3 position of singly substituted xylose residues in arabinoxylan or arabinoxylan oligomers. The isolated CBM polypeptide had an affinity for soluble and insoluble xylans and removal of the CBM from Axh43A abolished the catalytic activity of the enzyme, indicating that the CBM plays an essential role in hydrolysis of arabinoxylan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号