首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
To assess the impact of non-host crops intercropping, bioagents and oil cakes, on population dynamics of Fusarium oxysporum f. sp. psidii (Fop) and wilt of guava. Lowest population of Fop was recorded in garlic followed by intercropping with marigold with reduction of 84.9 and 83.9%, respectively. Bioagents viz; Aspergillus niger, Trichoderma viride and Trichoderma harzianum reduced the Fop population significantly, with the lowest in T. harzianum followed by A. niger. Garlic bulb extract exhibited maximum inhibition of Fop growth (2.7 cm) followed by marigold (2.4 cm), respectively, over control. Neem cake significantly reduced population of Fop, closely followed by mahua cake, over control. Integration of neem cake + T. harzianum + garlic reduced the Fop population significantly, over control, followed by neem cake + T. harzianum + marigold but neem cake + T. harzianum + marigold reduced wilt disease significantly in comparison to neem cake + T. harzianum + garlic inter-cropping.  相似文献   

2.
Bean anthracnose caused by Colletotrichum lindemuthianum is a serious seed borne disease. For devising an effective management strategy, the efficacy of different bioagents, viz. Trichoderma viride, Trichoderma harzianum, Trichoderma hamatum and Gliocladium virens conducted under in vitro and in vivo conditions revealed maximum inhibition of mycelial growth in dual culture (59.48%) and inverted plate (55.98%) with T. viride. All the bioagents overgrew the pathogen and the principal mechanism of mycoparisitism observed was coiling, brusting and disintegration of pathogen hyphae. Culture filtrate from T. viride was found best as it completely inhibited radial growth at 25 and 50% concentration and reduced the spore germination of test fungus significantly. However, lower concentrations of culture filtrate from all bioagents showed little effect on spore germination. Seed application of bioagents was found better as compared to soil application. A maximum increase in seed germination and inhibition of seed borne infection was observed with T. viride followed by T. harzianum under pot culture conditions. T. viride has the maximum potentiality to suppress the spore germination, mycelial growth, seed borne infection of C. lindemuthianum and increased seed germination when compared with the other biocontrol agents.  相似文献   

3.
The efficacy of eight fungal and eight bacterial isolates was tested for their ability to inhibit the growth of Sclerotium rolfsii, the causal agent of collar rot of peppermint. In vitro studies revealed that Trichoderma harzianum (THA) and Pseudomonas fluorescens (PFM) showed the highest inhibition of mycelial growth (68.28; 74.25 %) of S. rolfsii. The antagonists T. harzianum and P. fluorescens were compatible with each other and they were tested alone and together in in vivo for the control of S. rolfsii. Besides, the induction of defense-related enzymes such as peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, and the accumulation of phenolics in peppermint plants due to the application of bioagents were also studied. Combined application of talc-based formulation of bioagents and challenge inoculation with S. rolfsii recorded maximum induction of defense-related enzymes, and accumulation of phenolics as compared with individual application. This study suggests that the increased induction of defense-related enzymes (two- to threefold) and phenolic content (threefold) due to the combination treatment of bioagents might be involved in the reduction of collar rot incidence.  相似文献   

4.
Malformation disease of Mango (Mangifera indica L.) caused by Fusarium moniliforme var. subglutinans is one of the most destructive diseases, which is a major production constraint in the mango-growing regions of India. In this study, The bioagents Trichoderma viride (Tr1), Trichoderma virens (Tr2) and Trichoderma harzianum (Tr3) were evaluated in culture with the pathogens to monitor the antagonistic effect and their volatile compound and culture filtrates (non-volatile compound). It was found that all the three isolates of bioagents significantly checked the growth of F. moniliforme var. subglutinans. In dual culture, the best result was obtained with T. harzianum followed by T. virens and T. viride. A similar result was also observed in the case of culture filtrates ofTrichoderma spp. The results clearly showed that inhibition of the growth of the fusaria isolates by T. harzianum was significantly superior to T. viride andT.virens. In case of antifungal activity of volatile compounds released by Trichoderma isolates, it was also observed that T. virens was more superior to T.harzianum and T. viride.  相似文献   

5.
Fifteen Trichoderma isolates were tested for their antagonistic ability against Lasiodiplodia theobromae. Trichoderma harzianum exhibited the greatest inhibition in dual culture. Microscopic investigation demonstrated direct parasitism and coiling of T. harzianum and T. viride around hyphae of L. theobromae, causing swollen, deformed, shortened, or rounded cells of the pathogen. Granulation of cytoplasm and disintegration of the hyphal walls of L. theobromae also were noted in dual culture. Trichoderma viride reduced rotting by 29.07 to 65.06% in artificially inoculated banana fruits. Treatment of banana fruits with T. viride 4 h prior to inoculation with L. theobromae provided better protection than simultaneous application or treatment 4 h after inoculation.  相似文献   

6.
Trichoderma, soil-borne filamentous fungi, are capable of parasitising several plant pathogenic fungi. Twelve isolates of Trichoderma spp. isolated from different locations of South Andaman were characterized for their cultural, morphological and antagonistic activity against soil borne and foliar borne pathogens. The sequencing of these isolates showed seven different species. The isolates revealed differential reaction patterns against the test pathogens viz., Sclerotium rolfsii, Colletotrichum gloeosporioides and C. capsici. However, the isolates, TND1, TWN1, TWC1, TGD1 and TSD1 were most effective in percentage inhibition of mycelial growth of test pathogens. Significant chitinase and β-1,3-glucanase activities of all Trichoderma isolates has been recorded in growth medium. T. viride was found with highest chitinase whereas T. harzianum was recorded with highest β-1,3-glucanase activities.  相似文献   

7.
Sesame (Sesamum indicum L.) is one of the most important oilseed crops in Egypt and worldwide. It is being infected with many pathogens, among these pathogens Fusarium oxysporum f.sp. sesami (Zap.) Cast is causing severe economic losses on sesame. In this study, antagonistic capability of 24 isolates of Trichoderma spp. was assessed in vitro against F. oxysporum f.sp. sesami. Two strains; T. harzianum (T9) and T. viride (T21) were revealed to have high antagonistic effect against F. oxysporum f.sp. sesami in vitro with inhibition percentage about 70 and 67%, respectively. These two isolates proved to have high ability to control Fusarium wilt disease under greenhouse conditions. The highest reduction in disease severity was achieved with T. viride followed by T. harzianum with reduction in disease severity about 77 and 74%, respectively. This study revealed that the time of application of bioagents is a decisive factor in determining the efficacy of Trichoderma isolates to control Fusarium wilt of sesame. It was revealed that the highest reduction in the disease severity was achieved when either Trichoderma viride or T. harzianum were applied 7 days before challenging with the F. oxysporum f.sp. sesami.  相似文献   

8.
Mycoparasitic activities of various isolates of Trichoderma viride, T. harzianum, T. hamatum, T. longibrachiatum, T. koningii, T. pseudokoningii, Gliocladium virens and Laetisaria arvalis were studied against a serious plant pathogen, Botryodiplodia theobromae by scanning electron microscopy (SEM). Macroscopic observations of fungal growth in dual-cultures revealed that most of the isolates made hyphal contact with the pathogen within 2 days after inoculation, leading to the inhibition in pathogen growth. However, T. viride Tv-4, T. hamatum and T. pseudokoningii inhibited pathogen growth before hyphal contact and exhibited an inhibition zone between the colonies of both fungi. SEM investigations demonstrated that in case of hyphal interaction, the firm binding of antagonists (T. viride Tv-1 & Tv-3, T. harzianum Th-1 & Th-2, T. longibrachiatum and L. arvalis) to B. theobromae hyphae established either by coiling around its hyphae, or by penetrating its hyphal cells by forming hooks, haustoria and appressoria-like structures which invariably led to cell disruption. Although T. koningii and G. virens Gv-2 & Gv-3 did not interact physically by way of coiling and penetration, they produced wall lytic enzymes or antifungal substances after coming in contact with B. theobromae which caused wrinkling, bursting and collapsing of pathogen mycelium. It is, therefore, suggested that the outcome of the interaction of antagonist and pathogen was most likely determined by initial hyphal contact that triggered a series of events in pathogen degradation.  相似文献   

9.
Abstract

Biological and nutrient management of soil borne disease is increasingly gaining stature as a possible practical and safe approach. Inhibitory effects of fungal and bacterial antagonists were tested under in vitro conditions against the wilt pathogen of alfalfa Fusarium oxysporum f. sp. medicaginis. Trichoderma harzianum and Pseudomonas fluorescens (PI 5) were found to be effective against the alfalfa wilt pathogen. Manganese sulphate at 500 and 750 ppm inhibited the mycelial growth of F. oxysporumf. sp. medicaginis under in vitro conditions. In pot culture studies, manganese sulphate at 12.5 mg/kg reduced the wilt incidence (23.33%). Combined application of manganese sulphate 12.5 mg/kg + T. harzianum 1.25 mg/kg of soil significantly reduced the wilt incidence accompanied by improved plant growth and yield in pot culture. The mixture of manganese sulphate (25 kg/ha) + T. harzianum (2.5 kg/ha) significantly reduced the wilt incidence when applied as a basal dose in the field conditions. The average mean of disease reduction was 62.42% over control.  相似文献   

10.
Nine isolates of Trichoderma were collected from Assiut Governorate, Egypt, as leaf surface and endophytic fungi associated with onion flora stalks. Four isolates were identified as Trichoderma harzianum, while five isolates were belonging to Trichoderma longibrachiatum. The antagonistic activity of these isolates against onion purple blotch pathogen Alternaria porri was studied in vitro using dual culture assay. All tested Trichoderma isolates showed mycoparasitic activity and competitive capability against the mycelial growth of A. porri. Mycoparastic activity of Trichoderma was manifested morphologically by the overgrowth upon the mycelial growth of the pathogen and microscopically by production of coiling hyphae around pathogen hyphae. Isolates of Tharzianum exhibited high ability to compete on potato dextrose agar (PDA) medium causing the maximum rate of pathogen inhibition (73.12%), while isolates of T. longibrachiatum showed inhibition rate equalling 70.3%. Chitinase activity of Trichoderma was assayed, and T. harzianum Th‐3013 showed the maximum value contributing 2.69 U/min. Application of T. harzianum Th‐3013 to control purple blotch disease in vivo under greenhouse conditions caused disease reduction up to 52.3 and 79.9% before and after 48 h of pathogen inoculation, respectively, while the fungicide Ridomil Gold Plus caused disease reduction comprising 56.5 and 71.7%, respectively. This study proved that T. harzianum Th‐3013 as a biocontrol agent showed significant reduction in onion purple blotch disease compared with the tested fungicide.  相似文献   

11.
Trichoderma is a well-known antagonist against soilborne plant pathogens. However, the species and even various isolates have different biocontrol potential. To evaluate the antagonistic activities of Trichoderma harzianum, T. harzianum strain T100 (T100), T. viride and T. haematum against Fusarium oxysporum and F. proliferatum, we used dual culture and productions of volatile and non-volatile metabolites in three different phases in vitro. An analysis of the data in dual culture tests represented T. viride, T. haematum and T100 as effective antagonists of Fusarium while T100 was the only fungus being able to lyse the confronting mycelia. Similar results were obtained in the volatile metabolites tests also. In contrast with the two previous tests, the non-volatile metabolites produced by T. harzianum inhibited Fusarium mycelial growth the most, and T100 acted moderately. It was also clearly showed that the antagonistic effect of Trichoderma spp. was more on F. proliferatum than on F. oxysporum. Finally, because Trichoderma spp. was most effective in the second phase, we recommend to use T100 against F. proliferatum at the initial stages of infection as its mycoparasitism on F. oxysporum was observed microscopically through forming apressoria structures without any coiling around the pathogen.  相似文献   

12.
The aim of this study is to investigate the antifungal activity of mycelia of Pleurotus ostreatus (white oyster mushroom) and licorice (Glycyrrhiza glabra) root extract against three undesirable fungi. They are Trichoderma spp., Trichoderma harzianum I and Trichoderma harzianum II which was tested on PSA (potato sucrose agar) medium enriched with licorice (Glycyrrhiza glabra) root extract (PSA-G media) using three concentrations (0.05, 0.10 and 0.20 g/L) in alone and dual cultures. Trichoderma spp. showed less mycelial growth of 8.75, 9.17 and 9.50 mm/day on PSA-G0.05, PSA-G0.1 and PSA-G0.2 respectively compared with 10.25 mm/day on fresh PSA (control) in dual culture. The best mycelial growth inhibition was recorded on PSA-G0.2 (14.97%) by T. harzianum II in alone culture opposite 63.72% in dual ones. The lower mycelial growth rate of T. harzianum I was 17.75 mm/day on PSA-G0.1 (0.10 g/L). In dual culture, overgrowth time of T. harzianum I had 5 days compared as approx. 6 days in alone culture. Generally, when the concentration of licorice extract increased, the mycelial growth rate of the undesirable fungi decreased. Also, all PSA-G media, especially PSA-G0.2, indicated low growth averages compared with the control (fresh PSA) against the pathogen while this concentration encourages growth of oyster mushroom. Also, this concentration reduced the density of sporulation of green molds; therefore, this concentration can be applied to reduce influence this pathogen in cultivation farm.  相似文献   

13.
Fifty plant extracts, four oil cakes and eight antagonistic organisms were tested against Bipolaris oryzae (Cochliobolus miyabeanus), the causal agent of brown spot disease of rice. In vitro studies indicated that two leaf extracts, Nerium oleander and Pithecolobium dulce exerted the higher percent inhibition to mycelial growth (77.4, 75.1%) and spore germination (80.3, 80.0%) of B. oryzae. Among the four oil cake extracts tested in vitro against B. oryzae, neem cake extract showed the maximum inhibition percent to mycelial growth (80.18%) and spore germination (81.13%) of the pathogen followed by mahua cake extract, castor and gingelly cake extract. Trichoderma viride (Tv2) was significantly effective in inhibiting the mycelial growth (62.92%) and spore germination (77.03%) of the pathogen followed by Trichoderma harzianum (Th5) and Trichoderma reesei (Tr3). The promising leaf extracts, oil cake extracts and antagonistic microorganisms were further evaluated for their efficacies in disease management under glasshouse and field conditions. In glasshouse studies, post-infectional spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) was significantly effective in reducing the incidence of brown spot of rice by 66, 52 and 45 percent respectively. Two rounds of spraying of rice plants with neem cake extract, N. oleander leaf extract and T. viride (Tv2) in the field at initial appearance of disease and 15 days later reduced the incidence of brown spot (70, 53 and 48% disease reduction respectively) and increased the yield by 23, 18 and 15 percent respectively.  相似文献   

14.
The aim of the study for the importance of oxalic acid produced by Sclerotium rolfsii during the invasion of host tissue during pathogenesis acts synergistically with endopolygalacturonase, lowering the pH of the infected tissues to a level optimal for the activity of this enzyme. Oxalic acid was the principal toxic agent produced in the culture filtrates of S. rolfsii and it was responsible for the death of host cells. The calcium present in structural pectates can be strongly chelated by oxalic acid. As a consequence, plant tissues are rendered more susceptible to invasion by S. rolfsii. Oxalic acid produced by S. rolfsii was very much reduced by Trichoderma viride (TVB1) (0.79 mg/ml culture filtrate), Pseudomonas fluorescens (SBHRPF2) 0.93 mg, neem cake (10%) (0.87 mg/ml), Lippia nodiflora (10%) and Lantana camera (10%) which were recorded as 2.12 and 2.25 mg/ml. The organic biocides that interfered with S. rolfsii led to reduction of oxalic acid production, which specifically reduced the disease incidence, and the oxalic acid degradation was a useful approach as a disease control strategy.  相似文献   

15.
Environmental pollution in addition to direct damage on plant growth, with the destruction of biological control agents, causes indirect damage to plants. The aim of this research was to study the effects of different concentrations (0, 500, 1000, 1500 and 2000 ppm) of heavy metals including Ag, Co, Cu, Fe, Hg, Mn, Pb and Zn on the mycelial growth and to assess the fungicidal or fungistatic effects of these salts on five Nematophagus fungi including Trichoderma harzianum (T8), Trichoderma virens (T21), Trichoderma hamatum (T9), Pochonia chlamydosporia var. chlamydosporia and Arthrobotrys oligospora. The results show that Ag, Co, Cu, Fe and Hg could stop the mycelium growth of all fungi, but Mn, Pb and Zn cannot inhibit the growth of these fungi completely. Among the first group, Hg and Cu stopped the growth of fungi even in 500 ppm. Among these metals that inhibit the growth of fungi, Cu has fungistatic effect and others have fungicide effect. The experiment was conducted in vitro condition, using potato dextrose agar (PDA) under complete randomised design with four replications. The data of mycelium growth were recorded at seven days after inoculation at 25 ± 2°C.  相似文献   

16.
The objective of this study was to screen Streptomyces spp. for biological control of root and stem rot (Sclerotium rolfsii) and bacterial wilt (Ralstonia solanacearum), the very destructive diseases of chili pepper in Thailand. About 265 isolates of Streptomyces spp. were tested for their inhibitory effects on S. rolfsii mycelial growth on dual culture plates. Then, 14 promising isolates were further tested for their effects on R. solanacearum growth. Three effective isolates further identified as S. mycarofaciens SS-2-243, S.philanthi RL-1-178 and S. philanthi RM-1-138 were selected and proved to produce both antifungal and antibacterial substances in the culture medium. S. philanthi RM-1-138 strongly inhibited seed germination and seedling growth of chili pepper in laboratory tests. Therefore, it was not used in the following studies. When tested in greenhouse conditions, the efficacy of S. philanthi RL-1-178 in suppressing Sclerotium root and stem rot of chili pepper was approximately equal to that of Trichoderma harzianum NR-1-52 or that of carboxin treatment. S. mycarofaciens SS-2-243 and S. philanthi RL-1-178 suppressed Ralstonia wilt of chili pepper in a way that was similar to streptomycin sulfate treatment and it was observed that T. harzianum NR-1-52 had no effect on the bacterial wilt. Under field conditions where the soil was inoculated with two pathogens, the results showed that S. philanthi RL-1-178 could protect the chili pepper plants from S. rolfsii and R. solanacearum infection better than S. mycarofaciens SS-2-243 or T. harzianum NR-1-52. S. philanthi RL-1-178 treatment resulted in 58.75% survival of chili pepper plants and its efficacy was not significantly different from the carboxin-and-streptomycin sulfate treatment.  相似文献   

17.
Strains of selected bacteria and Trichoderma harzianum isolated from sugarcane rhizosphere and endosphere regions were tested for the production of chitinolytic enzymes and their involvement in the suppression of Colletotrichum falcatum, red rot pathogen of sugarcane. Among several strains tested for chitinolytic activity, 12 strains showed a clearing zone on chitin-amended agar medium. Among these, bacterial strains AFG2, AFG 4, AFG 10, FP7 and VPT4 and all the tested T. harzianum strains produced clearing zones of a size larger than 10 mm. The antifungal activity of these strains increased when chitin was incorporated into the medium. Trichoderma harzianum strain T5 showed increased levels of activity of N-acetylglucosaminidase and -1,3-glucanase when grown on minimal medium containing chitin or cell wall of the pathogen. Lytic enzymes of bacterial strains AFG2, AFG4, VPT4 and FP7 and T. harzianum T5 inhibited conidial germination and mycelial growth of the pathogen. Enzymes from T. harzianum T5 were found to be the most effective in inhibiting the fungus. When mycelial discs of the pathogen were treated with the enzymes, electrolytes were released from fungal mycelia. The results indicated that antagonistic T. harzianum T5 caused a higher level of lysis of the pathogen mycelium, and the inhibitory effect was more pronounced when the lytic enzymes were produced using chitin or cell wall of the pathogen as carbon source.  相似文献   

18.
A preliminary virulence test of four fungal isolates, Beauveria bassiana IMI 382302, Beauveria bassiana IMI 386701, Trichoderma harzianum T24 and Aspergillus flavus Link against larvae of Spodoptera littoralis was performed. The most effective isolates against larvae of S. littoralis were B. bassiana 302 and T. harzianum T24, which also showed the lower percentage of pupation compared with the other two isolates under the same conditions of treatments. Three concentrations (1 × 106, 1 × 107 and 1 × 108 ml?1) of the aqueous conidial suspension of the four tested isolates were carried out against both larval and pupal stages of S. littoralis within five days post-treatment. T. harzianum T24 showed 80% larval mortality only when applied at the highest conidial concentration, while A. flavus showed 100% pupal mortality only, at all of its conidial concentrations. However, B. bassiana IMI 382302 showed relatively high dose-dependant larval and pupal mortalities, while strain IMI 386701 of B. bassiana showed a very weak mortality against pupae at higher concentrations, and no virulence against larvae was recorded. Enzymatic and antibiosis bioassays of the four fungal isolates showed relatively high activities against Fusarium spp. for most of the tested isolates. Clear zone of enzyme activity on agar plates proportionally increased with increasing the concentration of enzyme substrate and prolongation of the incubation period. Mtabolites produced in the agar culture inhibited the growth of Fusarium spp. and the productivity differed greatly among isolates or strains of the same isolate. Volatile and non-volatile compounds produced by A. flavus Link showed a higher inhibition activity against Fusarium spp. compared with the other fungal isolates. The humoral antifungal response of insect host is relatively high compared to the anti-bacterial one. Injection of larvae with the immune sensitive bacteria Micrococcus luteus (5 × 103 bacteria/larva) showed a detectable humoral response by 2 h, peaked around 12 h and became hardly detectable by 24 h post-injection. Injection of larvae with conidial suspension (5 × 103 conidia/larva) from each of the fungal isolates showed humoral antifungal activity against B. bassiana IMI 386701 and A. flavus only. This activity was detectable by 12 h, peaked around 36 h and became hardly detectable by 48 h post-injection. Although the humoral antifungal response was started slowly compared to the antibacterial one, it lasted for longer and enabled larvae to withstand the infection with these immune-sensitive fungal strains. No humoral activity was detected against B. bassiana IMI 382302, although however, weak activity was detected against T. harzianum T24 only at the low conidial concentration but not at the higher one (1 × 108 ml?1). Thus, this study concludes that larvae of S. littoralis showed immune-dependant sensitivity to T. harzianum T24 and B. bassiana IMI 382302. Therefore, this study may recommend these two fungal isolates as mycoinsecticides in the battle against cotton leaf worm in Egypt. Hence, they have been selected for future comprehensive bioassays in the laboratory under conditions similar to that in the field. This, in fact, may help for developing effective mycoinsecticides against this pest. Penetration mechanims of insect cuticle by entomopathogenic fungi will be discussed.  相似文献   

19.
Pathogenicity test of all fungi (14 different isolates) isolated from both infected tomato fruits and the surface wash of other healthy fruits had different pathogenicity rates. The genus Rhizopus sp. was the most pathogenic one followed by Fusarium sp. Trichoderma harzianum isolates (T3 and T4) had a different pattern of antagonism against the tested pathogens. In dual plate test of the antagonistic action of T3 and T24 against the postharvest pathogens, clear zone size ranged between 1 and 4 and 3 and 6 mm by T3 and T24, respectively. The antagonists (T3 and T24) didn't show inhibition zone against Rhizopus sp., but they could overgrow it by 100% after 9 days of incubation. Mostly, all the other postharvest isolates showed high degree of overgrowth by T3 than T24. The two antagonists failed to overgrow Aspergillus species except for A. niger (3) which was overgrown by T3. Volatile and non-volatile metabolite tests indicated that mycelial growth of Penicillium stekii was significantly inhibited by T3 and T24 more than the other tested pathogens. The inhibition of A. niger (1) was 12% by non-volatile metabolites of T24 produced after 1 day incubation, and reached to 97% inhibition by the metabolites of 3 days. Interestingly, inhibition of Aspergillus sp. by volatile compounds of T3 and T24 was 2% and 20%, respectively, whereas the inhibition of the same pathogen by non-volatile compounds reached 75% and 87%, respectively. The results of slice assay clearly indicate that T. harzianum (T3 and T24) could provide a complete protection to tomato slices from the infection of the tested pathogens. After 3 days of incubation, Trichoderma suppressed the linear growth of these pathogens on tomato slices and the percentage of suppression was significant and ranged between 80 and 100%, except with Rhizopus sp. the suppression reached 33% only.  相似文献   

20.
Abstract

In order to evaluate the potential of naturally occurring filamentous fungi having potential as biocontrol agents effective against grey mould and post-harvest fruit rot caused by Botrytis cinerea on tomato, fungal saprophytes were isolated. They were obtained from leaves, fruits and flowers belonging to different species of cultivated and spontaneous Solanaceous plants collected at the horticultural area of La Plata, Argentina. Of 300 isolates screened for inhibition of B. cinerea using the dual culture technique on agar plate, 12 strains inhibited strongly mycelial growth of the pathogen. Among the antagonists one isolate of Epicoccun nigrum (126), four of Trichoderma harzianum (110, 118, 248 and 252) and four isolates of Fusarium spp. decreased the spore germination of B. cinerea between 30 and 70%. These isolates were probed on tomato fruits to evaluate their biocontrol activity against post-harvest grey mould. In growth chamber tests, E. nigrum (27), F. equiseti (22, 105) and T. harzianum (118, 252) reduced the diameter of fruit lesions by 50 – 90% and were selected for further biocontrol assays of tomato plants in the greenhouse. Although there were not significant differences between the treatments and the control, F. equiseti (105), E. nigrum (27) and T. harzianum (118) reduced by 20, 22 and 22 respectively the disease on whole plants. The targeted application of isolates of E. nigrum, T. harzianum and F. equiseti provides a promising alternative to the use of fungicide spray to control B. cinerea on tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号