首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new species of Gram-positive cocci were isolated from the uropygial glands of wild woodpeckers (Dendrocopos major) originating from different locations in Germany. A polyphasic approach confirmed the affiliation of the isolates to the genus Kocuria. Phylogenetic analysis based on the 16S rRNA gene showed high degree of similarity to Kocuria koreensis DSM 23367T (99.0% for both isolates). However, low ANIb values of <80% unequivocally separated the new species from K. koreensis. This finding was further corroborated by DNA fingerprinting and analysis of polar lipid profiles. Furthermore, growth characteristics, biochemical tests, MALDI-TOF MS analysis, and G + C contents clearly differentiated the isolates from their known relatives. Besides, the woodpecker isolates significantly differed from each other in their whole-cell protein profiles, DNA fingerprints, and ANIb values. In conclusion, the isolated microorganisms constitute members of two new species, for which the names Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov. are proposed. The type strains are 36T (DSM 101740T = LMG 29265T) and 257T (=DSM 101741T = LMG 29266T) for K. uropygialis sp. nov. and K. uropygioeca sp. nov., respectively.  相似文献   

2.
Four bacterial strains designated 410T, 441, 695T and 736 were isolated from maize root in Beijing, P. R. China. Based on 16S rRNA gene phylogeny, the four strains formed two clusters in the genus Caulobacter. Since strain 441 was a clonal variety of strain 410T, only three strains were selected for further taxonomic studies. The whole genome average nucleotide identity (ANI) value between strains 410T and 695T was 94.65%, and both strains shared less than 92.10% ANI values with their close phylogenetic neighbors Caulobacter vibrioides DSM 9893T, Caulobacter segnis ATCC 21756T and Caulobacter flavus CGMCC 1.15093T. Strains 410T and 695T contained Q-10 as the sole ubiquinone and their major fatty acids were C16:0, 11-methyl C18:1ω 0, 11-methyl C18: 1ω7c, summed feature 3 (C16:1ω7c and/or C16:1ω 1ω7c and/or C16: 1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω 1ω7c and/or C18: 1ω6c). Their major polar lipids consisted of glycolipids and phosphatidylglycerol, and phenotypic tests differentiated them from their closest phylogenetic neighbors. Based on the results obtained, it is proposed that the three strains represent two novel species, for which the names Caulobacter zeae sp. nov. (type strain 410T = CGMCC 1.15991 = DSM 104304) and Caulobacter radicis sp. nov. (type strain 695T = CGMCC 1.16556 = DSM 106792) are proposed.  相似文献   

3.
Two strains (pedersoliT and girotti) of a new species of bacteria were isolated from the preen glands of wild Egyptian geese (Alopochen aegyptiacus) from the river Neckar in southern Germany in two subsequent years. The strains were lipophilic, fastidious, Gram-positive rods and belonged to the genus Corynebacterium. Phylogenetically, the isolates were most closely related to Corynebacterium falsenii DSM 44353T which has been found to be associated with birds before. 16S rRNA gene sequence similarity to all known Corynebacterium spp. was significantly <97%. Corresponding values of rpoB showed low levels of similarity <87% and ANIb was <73%. G + C content of the genomic DNA was 65.0 mol% for the type strain of the goose isolates, as opposed to 63.2 mol% in Corynebacterium falsenii. MALDI-TOF MS analysis of the whole-cell proteins revealed patterns clearly different from the related species, as did biochemical tests, and polar lipid profiles. We therefore conclude that the avian isolates constitute strains of a new species, for which the name Corynebacterium heidelbergense sp. nov. is proposed. The type strain is pedersoliT (=DSM 104638T = LMG 30044T).  相似文献   

4.
Six strains of extremely halophilic and alkaliphilic euryarchaea were enriched and isolated in pure culture from surface brines and sediments of hypersaline alkaline lakes in various geographical locations with various forms of insoluble cellulose as growth substrate. The cells are mostly flat motile rods with a thin monolayer cell wall while growing on cellobiose. In contrast, the cells growing with cellulose are mostly nonmotile cocci covered with a thick external EPS layer. The isolates, designated AArcel, are obligate aerobic heterotrophs with a narrow substrate spectrum. All strains can use insoluble celluloses, cellobiose, a few soluble glucans and xylan as their carbon and energy source. They are extreme halophiles, growing within the range from 2.5 to 4.8 M total Na+ (optimum at 4 M) and obligate alkaliphiles, with the pH range for growth from 7.5 to 9.9 (optimum at 8.5–9). The core archaeal lipids of strain AArcel5T were dominated by C20–C20 dialkyl glycerol ether (DGE) (i.e. archaeol) and C20–C25 DGE in nearly equal proportion. The 16S rRNA gene analysis indicated that all six isolates belong to a single genomic species mostly related to the genera Saliphagus-Natribaculum-Halovarius. Taking together a substantial phenotypic difference of the new isolates from the closest relatives and the phylogenetic distance, it is concluded that the AArcel group represents a novel genus-level branch within the family Natrialbaceae for which the name Natronobiforma cellulositropha gen. nov., sp. nov. is proposed with AArcel5T as the type strain (JCM 31939T = UNIQEM U972T).  相似文献   

5.
Twelve Acetobacter pasteurianus-related strains with publicly available genomes in GenBank shared high 16S rRNA gene sequence similarity (>99.59%), but average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH) values and multilocus sequence- and genome-based relatedness analyses suggested that they were divided into four different phylogenetic lineages. Relatedness analyses based on multilocus sequences, 1,194 core genes and whole-cell MALDI-TOF profiles supported that strains LMG 1590T and LMG 1591 (previously classified as the type strains of A. pasteurianus subsp. ascendens and paradoxus, respectively) and strain SLV-7T do not belong to A. pasteurianus. Strain SLV-7T, isolated from Korean traditional vinegar, shared low ANI (<91.0%) and in silico DDH (44.2%) values with all other Acetobacter type strains analyzed in this study, indicating that strain SLV-7T represents a new Acetobacter species. The phenotypic and chemotaxonomic analyses confirmed these results and therefore a new species named Acetobacter oryzifermentans sp. nov. is proposed with SLV-7T (= KACC 19301T = JCM 31096T) as the type strain. Strains LMG 1590T and LMG 1591 shared high ANI (99.4%) and in silico DDH (96.0%) values between them, but shared low ANI (<92.3%) and in silico DDH (<49.0%) values with other type strains analyzed in this study, indicating that strains LMG 1590T and LMG 1591 should be reclassified into a new single species that should be named Acetobacter ascendens sp. nov., comb. nov., with LMD 51.1T (= LMG 1590T = NCCB 51001T) as its type strain.  相似文献   

6.
This study reported that Babesia bigemina (Bbig-SF) was continuously cultured in vitro in a serum-free medium supplemented with a mixture of insulin-transferrin-selenite (M-ITS) and putrescine (Pu). Firstly, the effect of five different types of basal culture media supplemented with 40% bovine serum was evaluated regarding the proliferation of the protozoan parasite. Cultures with the advanced DMEM/F12 medium (A-DMEM/F12) showed the highest percentage of parasitized erythrocytes (PPE) at 8.37%. Using A-DMEM/F12, a strain of B. bigemina (Bbig-SF) was adapted for growth in bovine serum-free medium by a sequential reduction of serum and demonstrated a maximum PPE of 7.18% in the absence of serum. The next study was the evaluation of the effect of adding four different concentrations of M-ITS to the serum-free A-DMEM/F12 medium on Bbig-SF; the optimal concentrations of M-ITS were 2000, 1100, and 1.34 mg/L, which yielded a PPE of 7.23%. Next, eight levels of Pu were evaluated on Bbig-SF cultured in serum-free A-DMEM/F12. After the addition of 0.1012 mg/L of Pu, the maximum PPE was 7.61%. When the combination of serum-free A-DMEM/F12 + M-ITS (2000, 1100, and 1.34 mg/L) + Pu (0.1012 mg/L) was evaluated, it yielded a maximum PPE of 14.80%. Finally, the combination of M-ITS + Pu in A-DMEM/F12 without serum and incorporation of a perfusion bioreactor yielded a maximum PPE of 33.45%. We concluded these culturing innovations for B. bigemina in vitro allow the optimization of small- and large-scale proliferation as a source of this protozoan parasite for future studies.  相似文献   

7.
Analysis of spoilage-associated microbiota of modified-atmosphere packaged poultry meat revealed four different bacterial isolates that could not be assigned to known species. They showed a Gram-negative staining behavior, were facultatively aerobic, non-motile with variable cell morphology. Phylogenetic analysis of 16S rDNA and gyrB, rpoD and recA revealed a distinct lineage within the genus Photobacterium with Photobacterium (P.) iliopiscarium DSM 9896T, P. phosphoreum DSM 15556T, P. kishitanii DSM 19954T, P. piscicola LMG 27681T and P. aquimaris DSM 23343T as closest relatives.The designated type strain TMW 2.2021T is non-luminous and grew at 0–20 °C (optimum 10–15 °C), within pH 5.0–8.5 (optimum 6–8) and in the presence of 0.5–3% (w/v) NaCl (optimum 1%). Major cellular fatty acids of TMW 2.2021T were summed feature 3 (C16:1ω7c/iso-C15 3-OH), C16:0, C18:1ω7c and summed feature 2 (C12:0 aldehyde and C10.928 unknown). Quinone analysis revealed Q-8 as sole respiratory ubiquinone. The genome of TMW 2.2021T has a size of 4.56 Mb and a G + C content of 38.49 mol%. The ANI value between TMW 2.2021T and the type strain of closest relative P. iliopiscarium DSM 9896T was 91.43%. Fingerprinting on the base of M13-RAPD-PCR band pattern and MALDI-TOF MS profiles allowed intraspecies differentiation between our isolates but also supported their distinct lineage to a novel species. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, strain TMW 2.2021T and further strains represent a novel species of the genus Photobacterium, for which the name Photobacterium carnosum sp. nov. is proposed. The type strain is TMW 2.2021T (=DSM 105454T = CECT 9394T).  相似文献   

8.
We profiled three novel T. gondii inhibitors identified from an antimalarial phenotypic high throughput screen (HTS) campaign: styryl 4-oxo-1,3-benzoxazin-4-one KG3, tetrahydrobenzo[b]pyran KG7, and benzoquinone hydrazone KG8. These compounds inhibit T. gondii in vitro with IC50 values ranging from 0.3 to 2 μM, comparable to that of 0.25 to 1.5 μM for the control drug pyrimethamine. KG3 had no measurable cytotoxicity against five mammalian cell lines, whereas KG7 and KG8 inhibited the growth of 2 of 5 cell lines with KG8 being the least selective for T. gondii. None of the compounds were mutagenic in an Ames assay. Experimental gLogD7.4 and calculated PSA values for the three compounds were well within the ranges predicted to be favorable for good ADME, even though each compound had relatively low aqueous solubility. All three compounds were metabolically unstable, especially KG3 and KG7. Multiple IP doses of 5 mg/kg KG7 and KG8 increased survival in a T. gondii mouse model. Despite their liabilities, we suggest that these compounds are useful starting points for chemical prospecting, scaffold-hopping, and optimization.  相似文献   

9.
Ten Gram-strain-negative, facultatively anaerobic, moderately halophilic bacterial strains, designated AL184T, IB560, IB563, IC202, IC317, MA421, ML277, ML318, ML328A and ML331, were isolated from water ponds of five salterns located in Spain. The cells were motile, curved rods and oxidase and catalase positive. All of them grew optimally at 37 °C, at pH 7.2–7.4 and in the presence of 7.5% (w/v) NaCl. Based on phylogenetic analyses of the 16S rRNA, the isolates were most closely related to Salinivibrio sharmensis BAGT (99.6–98.2% 16S rRNA gene sequence similarity) and Salinivibrio costicola subsp. costicola ATCC 35508T (99.0–98.1%). According to the MLSA analyses based on four (gyrB, recA, rpoA and rpoD) and eight (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA) concatenated gene sequences, the most closely relatives were S. siamensis JCM 14472T (96.8–95.4% and 94.9–94.7%, respectively) and S. sharmensis DSM 18182T (94.0–92.6% and 92.9–92.7%, respectively). In silico DNA–DNA hybridization (GGDC) and average nucleotide identity (ANI) showed values of 23.3–44.8% and 80.2–91.8%, respectively with the related species demonstrating that the ten isolates constituted a single novel species of the genus Salinivibrio. Its pangenome and core genome consist of 6041 and 1230 genes, respectively. The phylogeny based on the concatenated orthologous core genes revealed that the ten strains form a coherent phylogroup well separated from the rest of the species of the genus Salinivibrio. The major cellular fatty acids of strain AL184T were C16:0 and C18:1. The DNA G + C content range was 51.9–52.5 mol% (Tm) and 50.2–50.9 mol% (genome). Based on the phylogenetic-phylogenomic, phenotypic and chemotaxonomic data, the ten isolates represent a novel species of the genus Salinivibrio, for which the name Salinivibrio kushneri sp. nov. is proposed. The type strain is AL184T (= CECT 9177T = LMG 29817T).  相似文献   

10.
Gram-negative pathogens secrete effector proteins into human cells to modulate normal cellular processes and establish a bacterial replication niche. Shigella and pathogenic Escherichia coli possess homologous effector kinases, OspG and NleH1/2, respectively. Upon translocation, OspG but not NleH binds to ubiquitin and a subset of E2 ~ Ub conjugates, which was shown to activate its kinase activity. Here we show that OspG, having a minimal kinase fold, acquired a novel mechanism of regulation of its activity. Binding of the E2 ~ Ub conjugate to OspG not only stimulates its kinase activity but also increases its optimal temperature for activity to match the human body temperature and stabilizes its labile C-terminal domain. The melting temperature (Tm) of OspG alone is only 31?°C, as compared to 41?°C to NleH1/2 homologs. In the presence of E2 ~ Ub, the Tm of OspG increases to ~ 42?°C, while Ub by itself increases the Tm to 39?°C. Moreover, OspG alone displays maximal activity at 26?°C, while in the presence of E2 ~ Ub, maximal activity occurs at ~ 42?°C. Using NMR and molecular dynamics calculations, we have identified the C-terminal lobe and, in particular, the C-terminal helix, as the key elements responsible for lower thermal stability of OspG as compared to homologous effector kinases.  相似文献   

11.
Heterodera schachtii is a well-known, destructive pathogen of Chinese cabbage (Brassica rapa pekinensis) in Korea, and several studies have attempted to find a potential control measure against it. This study is the first to investigate the effects of varying temperature on the reproduction and damage potential of H. schachtii to Chinese cabbage. Chinese cabbage plants were inoculated with H. schachtii at different densities (1, 2, or 4 juveniles per gram of soil) and grown under three temperature regimes: constant (15, 20, or 25 °C), increasing (10, 14, and 18 °C), and fluctuating (positive, 16.7–22.0 °C; negative, 21.5–11.5 °C). At a constant temperature after 30 days of inoculation, both Chinese cabbage and H. schachtii performed best at 20 °C. However, after 60 days of inoculation, H. schachtii had a significantly higher population at 20 °C, whereas cabbage growth was best at 25 °C. With increasing temperature, the numbers of cysts and females did not change significantly, and reached maxima at an initial temperature of 14 °C. However, the number of leaves and weights of the Chinese cabbage plants significantly differed at 14 °C. Under fluctuating temperatures, temperature decreases reduced the H. schachtii population.  相似文献   

12.
The application of tandem MALDI-TOF MS screening with 16S rRNA gene sequencing of selected isolates has been demonstrated to be an excellent approach for retrieving novelty from large-scale culturing. The application of such methodologies in different hypersaline samples allowed the isolation of the culture-recalcitrant Salinibacter ruber second phylotype (EHB-2) for the first time, as well as a new species recently isolated from the Argentinian Altiplano hypersaline lakes. In this study, the genome sequences of the different species of the phylum Rhodothermaeota were compared and the genetic repertoire along the evolutionary gradient was analyzed together with each intraspecific variability. Altogether, the results indicated an open pan-genome for the family Salinibacteraceae, as well as the codification of relevant traits such as diverse rhodopsin genes, CRISPR-Cas systems and spacers, and one T6SS secretion system that could give ecological advantages to an EHB-2 isolate. For the new Salinibacter species, we propose the name Salinibacter altiplanensis sp. nov. (the designated type strain is AN15T = CECT 9105T = IBRC-M 11031T).  相似文献   

13.
Two non-pathogenic strains R89-1 and R90T isolated from poppy seed (Papaver somniferum L.) wastes were phenotypically and genotypically characterized. Multilocus sequence analysis (MLSA) was conducted with six genes (atpD, glnA, gyrB, recA, rpoB, 16S rRNA). The strains represented a new species which clustered with Agrobacterium rubi NBRC 13261T and Agrobacterium skierniewicense Ch11T type strains. MLSA was further accompanied by whole-genome phylogeny, in silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses for both strains. ANI and dDDH values were deep below the species delineation threshold. Phenotypic features of the novel strains unequivocally allowed their differentiation from all other Agrobacterium species. Unlike other agrobacteria, the strains were salt sensitive and were able to biotransform morphine alkaloids. The dominant cellular fatty acids are 18:1 w7c, 16:0 and 12:0 aldehyde/16:1 iso I/14:0 3OH summed in feature 2 and the major respiratory quinine is Q-10 (87%). The DNA G + C content is 56 mol%. Microbial community analysis indicated probable association with P. somniferum plant material. Altogether, these characteristics showed that strains R90T and R89-1 represent a new species of the genus Agrobacterium which we propose to name Agrobacterium bohemicum. The type strain of A. bohemicum is R90T (=CCM 8736T = DSM 104667T).  相似文献   

14.
Planctomycetes are bacteria with complex molecular and cellular biology. They have large genomes, some over 7 Mb, and complex life cycles that include motile cells and sessile cells. Some live on the complex biofilm of macroalgae. Factors governing their life in this environment were investigated at the genomic level. We analyzed the genomes of three planctomycetes isolated from algal surfaces. The genomes were 6.6 Mbp to 8.1 Mbp large. Genes for outer-membrane proteins, peptidoglycan and lipopolysaccharide biosynthesis were present. Rubripirellula obstinata LF1T, Roseimaritima ulvae UC8T and Mariniblastus fucicola FC18T shared with Rhodopirellula baltica and R. rubra SWK7 unique proteins related to metal binding systems, phosphate metabolism, chemotaxis, and stress response. These functions may contribute to their ecological success in such a complex environment. Exceptionally huge proteins (6000 to 10,000 amino-acids) with extracellular, periplasmic or membrane-associated locations were found which may be involved in biofilm formation or cell adhesion.  相似文献   

15.
Bioassay-guided fractionation of the EtOH extract of licorice (Glycyrrhiza glabra roots), using a GAL-4-PPAR-γ chimera assay method, resulted in the isolation of 39 phenolics, including 10 new compounds (110). The structures of the new compounds were determined by analysis of their spectroscopic data. Among the isolated compounds, 5′-formylglabridin (5), (2R,3R)-3,4′,7-trihydroxy-3′-prenylflavane (7), echinatin, (3R)-2′,3′,7-trihydroxy-4′-methoxyisoflavan, kanzonol X, kanzonol W, shinpterocarpin, licoflavanone A, glabrol, shinflavanone, gancaonin L, and glabrone all exhibited significant PPAR-γ ligand-binding activity. The activity of these compounds at a sample concentration of 10 μg/mL was three times more potent than that of 0.5 μM troglitazone.  相似文献   

16.
Microorganisms classified in to the Pseudomonas genus are a ubiquitous bacteria inhabiting variety of environmental niches and have been isolated from soil, sediment, water and different parts of higher organisms (plants and animals). Members of this genus are known for their metabolic versatility and are able to utilize different chemical compounds as a source of carbon, nitrogen or phosphorus, which makes them an interesting microorganism for bioremediation or bio-transformation. Moreover, Pseudomonas sp. has been described as a microorganism that can easily adapt to new environmental conditions due to its resistance to the presence of high concentrations of heavy metals or chemical pollution. Here we present the isolation and analysis of Pseudomonas silesiensis sp. nov. strain A3T isolated from peaty soil used in a biological wastewater treatment plant exploited by a pesticide packaging company. Phylogenetic MLSA analysis of 4 housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), complete genome sequence comparison (ANIb, Tetranucleotide identity, digital DDH), FAME analysis, and other biochemical tests indicate the A3T strain (type strain PCM 2856T = DSM 103370T) differs significantly from the closest relative species and therefore represents a new species within the Pseudomonas genus. Moreover, bioinformatic analysis of the complete sequenced genome showed that it consists of 6,823,539 bp with a 59.58 mol% G + C content and does not contain any additional plasmids. Genome annotation predicted the presence of 6066 genes, of which 5875 are coding proteins and 96 are RNA genes.  相似文献   

17.
Four novel Gram-stain-positive, non spore forming and fructose-6-phosphate phosphoketolase-positive strains were isolated from the faeces of a cotton top tamarin (Saguinus oedipus) and an emperor tamarin (Saguinus imperator). Phylogenetic analyses based on 16S rRNA revealed that bifidobacterial strains TRE 1T exhibit close phylogenetic relatedness to Bifidobacterium catulorum DSM 103154 (96.0%) and Bifidobacterium tissieri DSM 100201 (96.0%); TRE DT and TRE HT were closely related to Bifidobacterium longum subsp. longum ATCC 15708T with similarity values of 97.4% and 97.5%, respectively; TRI 7T was closely related to Bifidobacterium tissieri DSM 100201 (96.0%). The Average Nucleotide Identity (ANI) and in silico DDH (isDDH) analysis with closest neighbour supported an independent phylogenetic position of all strains with values ranged from 74 to 85% for ANI and from 24 to 28% for isDDH. DNA base composition of the four strains was in the range of 58.3–63.5 mol% G + C. Based on the phylogenetic, genotypic and phenotypic data, the strains TRE 1T, TRE DT, TRE HT and TRI 7T clearly represent four novel taxa within the genus Bifidobacterium for which the names Bifidobacterium primatium sp. nov. (type strain TRE 1T = DSM 100687T = JCM 30945T), Bifidobacterium scaligerum sp. nov. (type strain TRE DT = DSM 103140T = JCM 31792T), Bifidobacterium felsineum sp. nov. (type strain TRE HT = DSM 103139T = JCM 31789T) and Bifidobacterium simiarum sp. nov. (type strain TRI 7T = DSM 103153T = JCM 31793) are proposed.  相似文献   

18.
Three strains, H01100409BT, H01100413B, and H27100402HT, were isolated from several internal organs of diseased redbanded seabream (Pagrus auriga) reared in Andalusia (Southern Spain). All strains were studied by phenotypic, including chemotaxonomy, and genomic characteristics. Phylogenetic analysis based on concatenated sequences of six housekeeping genes (gyrB, ftsZ, topA, mreB, gapA, and 16S rRNA) supported the inclusion of the strains within the clade Phosphoreum of the genus Photobacterium, and two of the strains (H27100402HT and H01100409BT) formed a tight group separated from the closest species P. aquimaris. Genomic analyses, including average nucleotide identity (ANIb and ANIm) and DNA–DNA hybridization (DDH), clearly separated strains H27100402HT and H01100409BT from the other species within the clade Phosphoreum with values below the thresholds for species delineation. The chemotaxonomic features (including FAME analysis and MALDI-TOF-MS) of H27100402HT and H01100409BT strains confirmed their differentiation from the related taxa. The results demonstrated that strain H01100413B was classified as P. aquimaris and the strains H27100402HT and H01100409BT represented a new species each in the genus Photobacterium, for which we propose the names Photobacterium malacitanum sp. nov., type strain H27100402HT (=CECT 9190T = LMG 29992T), and Photobacterium andalusiense sp. nov., type strain H01100409BT (=CECT 9192T = LMG 29994T).  相似文献   

19.
A magnetotactic bacterium, designated strain BW-1T, was isolated from a brackish spring in Death Valley National Park (California, USA) and cultivated in axenic culture. The Gram-negative cells of strain BW-1T are relatively large and rod-shaped and possess a single polar flagellum (monotrichous). This strain is the first magnetotactic bacterium isolated in axenic culture capable of producing greigite and/or magnetite nanocrystals aligned in one or more chains per cell. Strain BW-1T is an obligate anaerobe that grows chemoorganoheterotrophically while reducing sulfate as a terminal electron acceptor. Optimal growth occurred at pH 7.0 and 28 °C with fumarate as electron donor and carbon source. Based on its genome sequence, the G + C content is 40.72 mol %. Phylogenomic and phylogenetic analyses indicate that strain BW-1T belongs to the Desulfobacteraceae family within the Deltaproteobacteria class. Based on average amino acid identity, strain BW-1T can be considered as a novel species of a new genus, for which the name Desulfamplus magnetovallimortis is proposed. The type strain of D. magnetovallimortis is BW-1T (JCM 18010T–DSM 103535T).  相似文献   

20.
Conidia of Trichoderma harzianum produced from either solid or liquid fermentation must be dried to prevent spoilage by microbial contamination, and to induce dormancy for formulation development and prolonged self-life. Drying conidia of Trichoderma spp. in large scale production remains the major constraint because conidia lose viability during the drying process at elevated temperatures. Moreover, caking must be avoided during drying because heat generated by milling conidial chunks will kill conidia. It is ideal to dry conidia into a flow-able powder for further formulation development. A method was developed for microencapsulation of Trichoderma conidia with sugar through spray drying. Microencapsulation with sugars, such as sucrose, molasses or glycerol, significantly (P < 0.05) increased the survival percentages of conidia after drying. Microencapsulation of conidia with 2% sucrose solution resulted in the highest survival percentage when compared with other sucrose concentrations and had about 7.5 × 1010 cfu in each gram of dried conidia, and 3.4 mg of sucrose added to each gram of dried conidia. The optimal inlet/outlet temperature setting was 60/31 °C for spray drying and microencapsulation. The particle size of microencapsulated conidia balls ranged from 10 to 25 μm. The spray dried biomass of T. harzianum was a flow-able powder with over 99% conidia, which could be used in a variety of formulation developments from seed coatings to sprayable formulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号