首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in tropical Asia. Since all the Basmati varieties are highly susceptible and the disease is prevalent in the entire Basmati growing region of India, BB is a severe constraint in Basmati rice production. The present study was undertaken with the objective of combining the important Basmati quality traits with resistance to BB by a combination of phenotypic and molecular marker-assisted selection (MAS). Screening of 13 near-isogenic lines of rice against four isolates of the pathogen from Basmati growing regions identified the Xa4, xa8, xa13 and Xa21 effective against all the isolates tested. Two or more of these genes in combination imparted enhanced resistance as expressed by reduced average lesion length in comparison to individual genes. The two-gene pyramid line IRBB55 carrying xa13 and Xa21 was found equally effective as three/four gene pyramid lines. The two BB resistance genes present in IRBB55 were combined with the Basmati quality traits of Pusa Basmati-1 (PB-1), the most popular high yielding Basmati rice variety used as recurrent parent. Phenotypic selection for disease resistance, agronomic and Basmati quality characteristics and marker-assisted selection for the two resistance genes were carried out in BC1F1, BC1F2 and BC1F3 generations. Background analysis using 252 polymorphic amplified fragment length polymorphism (AFLP) markers detected 80.4 to 86.7% recurrent parent alleles in BC1F3 selections. Recombinants having enhanced resistance to BB, Basmati quality and desirable agronomic traits were identified, which can either be directly developed into commercial varieties or used as immediate donors of BB resistance in Basmati breeding programs.  相似文献   

2.

To combat the dreaded diseases in rice like bacterial blight (BB) and blast, host plant resistance has been advocated as the most suitable and sustainable method. Through the present study, we have successfully incorporated three major BB resistance genes, namely Xa21, xa13 and xa5 into NLR3449, a high yielding, blast resistant, fine-grain type, popular rice variety through marker-assisted backcross breeding. Foreground selection was carried out using polymerase chain reaction based, gene-specific markers, namely pTA248 (Xa21), xa13prom (xa13) and xa5FM (xa5) at each generation of backcrossing, while 127 polymorphic SSR markers spanning on 12 chromosomes were used for background selection and backcrossing was limited to two rounds. At BC2F1 generation, a single plant (NLR-87-10) with 89.9% recovery, possessing all the three BB resistance genes was forwarded to BC2F2 generation. A solitary BC2F2 plant, namely NLR-87-10-106 possessing all the three resistance genes and 96% genome recovery was identified and advanced through selfing until BC2F4 generation by adopting pedigree-method of selection. Three best BC2F4 lines, possessing high level of resistance against BB and blast, and equivalent or superior to NLR 34449 in terms of yield, grain quality and agro-morphological traits were identified and advanced for multi-location trials.

  相似文献   

3.
A new bacterial blight recessive resistance gene xa34(t) was identified from the descendant of somatic hybridization between an aus rice cultivar (cv.) BG1222 and susceptible cv. IR24 against Chinese race V (isolate 5226). The isolate was used to test the resistance or susceptibility of F1 progenies and reciprocal crosses of the parents. The results showed that F1 progenies appeared susceptibility there were 128R (resistant):378S (susceptible) and 119R:375S plants in F2 populations derived from two crosses of BG1222/IR24 and IR24/BG1222, respectively, which both calculates into a 1R:3S ratio. 320 pairs of stochastically selected SSR primers were used for genes?? initial mapping. The screened results showed that two SSR markers, RM493 and RM446, found on rice chromosome 1 linked to xa34(t). Linkage analysis showed that these two markers were on both sides of xa34(t) with the genetic distances 4.29 and 3.05?cM, respectively. The other 50 SSR markers in this region were used for genes?? fine mapping. The further results indicated that xa34(t) was mapped to a 1.42?cM genetic region between RM10927 and RM10591. In order to further narrow down the genomic region of xa34(t), 43 of insertion/deletion (Indel) markers (BGID1-43) were designed according to the sequences comparison between japonica and indica rice. Parents?? polymorphic detection and linkage assay showed that the Indel marker BGID25 came closer to the target gene with a 0.4?cM genetic distance. A contig map corresponding to the locus was constructed based on the reference sequences aligned by the xa34(t) linked markers. Consequently, the locus of xa34(t) was defined to a 204?kb interval flanked by markers RM10929 and BGID25.  相似文献   

4.
Construction of a BAC contig containing the xa5 locus in rice   总被引:9,自引:0,他引:9  
 The recessive gene xa5 confers resistance to bacterial blight in rice. To generate a physical map of the xa5 locus, three RFLP markers RG556, RG207 and RZ390, closely linked to xa5, were used to screen a rice bacterial artificial chromosome (BAC) library. The identified overlapping BAC clones formed two small contigs which were extended to both sides by chromosome walking. The final physical map consisted of 14 BAC clones and covered 550 kb. Genetic analysis with an F2 population showed that two RFLP markers 28N22R and 40F20R, derived from the BAC clones in the contig, flanked the xa5 locus. To further delimit the location of the xa5 locus, RFLP markers RG556 and RG207 were converted to sequence tagged sites and used to perform genetic analysis. The results indicated that the xa5 locus was most likely located between RG207 and RG556. Among the BAC clones in the contig, one clone, 44B4, hybridized to both RG207 and RG556. This suggests that BAC clone 44B4 carried the xa5 locus. Received: 12 January 1998 / Accepted: 27 May 1998  相似文献   

5.
To incorporate durable resistance against bacterial blight, a major disease rice, three resistance genes, xa 5, xa13 and Xa21, from IRBB 60 were transferred through marker-assisted backcrossing using RG 556, RG 136 and pTA248 markers linked to the three genes to supplement the Xa4 gene present in Lalat, a popular rice cultivar. Effective selection enabled the transfer in three back-crosses and a generation of selfing and background selection employing morphological and grain quality traits and molecular markers, led to >90 % recovery of the recurrent parental genome. The gene pyramids exhibited high levels of resistance against the pathogen in multi-location evaluation trials conducted over several locations of bacterial blight in India. IL-2 (CRMAS2621-7-1), a gene pyramid, was identified as being promising for several endemic regions of bacterial blight and was released as Improved Lalat in one of the identified regions. The success of the study demonstrates the vast potential of marker-assisted selection for gene stacking and recovery of the parental genome with high precision.  相似文献   

6.
Defense responses triggered by dominant and recessive disease resistance ( R) genes are presumed to be regulated by different molecular mechanisms. In order to characterize the genes activated in defense responses against bacterial blight mediated by the recessive R gene xa13, two pathogen-induced subtraction cDNA libraries were constructed using the resistant rice line IRBB13—which carries xa13 —and its susceptible, near-isogenic, parental line IR24. Clustering analysis of expressed sequence tags (ESTs) identified 702 unique expressed sequences as being involved in the defense responses triggered by xa13; 16% of these are new rice ESTs. These sequences define 702 genes, putatively encoding a wide range of products, including defense-responsive genes commonly involved in different host-pathogen interactions, genes that have not previously been reported to be associated with pathogen-induced defense responses, and genes (38%) with no homology to previously described functional genes. In addition, R -like genes putatively encoding nucleotide-binding site/leucine rich repeat (NBS-LRR) and LRR receptor kinase proteins were observed to be induced in the disease resistance activated by xa13. A total of 568 defense-responsive ESTs were mapped to 588 loci on the rice molecular linkage map through bioinformatic analysis. About 48% of the mapped ESTs co-localized with quantitative trait loci (QTLs) for resistance to various rice diseases, including bacterial blight, rice blast, sheath blight and yellow mottle virus. Furthermore, some defense-responsive sequences were conserved at similar locations on different chromosomes. These results reveal the complexity of xa13 -mediated resistance. The information obtained in this study provides a large source of candidate genes for understanding the molecular bases of defense responses activated by recessive R genes and of quantitative disease resistance.Electronic Supplementary Material Supplementary material is available in the online version of this article at The first two authors contributed equally to this workCommunicated by R. Hagemann  相似文献   

7.
Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC3F3 generation onwards. The selected plants were subjected to yield trials at the BC3F8 generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.  相似文献   

8.
 The recessive gene, xa13, confers resistance to Philippine race 6 (PXO99) of the bacterial blight pathogen Xanthomonas oryzae pv oryzae. Fine genetic mapping and physical mapping were conducted as initial steps in an effort to isolate the gene. Using nine selected DNA markers and two F2 populations of 132 and 230 plants, xa13 was fine-mapped to a genomic region <4 cM on the long arm of rice chromosome 8, flanked by two RFLP markers, RG136 and R2027. Four DNA markers, RG136, R2027, S14003, and G1149, in the target region were used to identify bacterial artificial chromosome (BAC) clones potentially harboring the xa13 locus from a rice BAC library. A total of 11 BACs were identified, forming four separate contigs including a single-clone contig, 29I3, associated with the RG136 STS marker, the S14003 contig consisting of four clones (44F8, 41O2, 12A16, and 12F20), the G1149 contig with two clones, 23D11 and 21H18, and the R2027 contig consisting of four overlapping clones, 42C23, 30B5, 6B7 and 21H14. Genetic mapping indicated that the xa13 locus was contained in the R2027 contig. Chromosomal walking on the R2027 contig resulted in two more clones, 33C7 and 14L3. DNA fingerprinting showed that the six clones of the R2027 contig were overlapping. Clone 44F8 hybridized with a single fragment from the clone 14L3, integrating the R2027 and S14003 contigs into a single contig consisting of ten BAC clones with a total size of approximately 330 kb. The physical presence of the xa13 locus in the contig was determined by mapping the ends of the BAC inserts generated by TAIL-PCR. In an F2 population of 230 plants, the BAC-end markers 42C23R and 6B7F flanked the xa13 locus. The probes 21H14F and 21H14R derived from BAC clone 21H14 were found to flank xa13 at a distance of 0.5 cM on either side, using a second F2 population of 132 plants. Thus, genetic mapping indicated that the contig and the 96-kb clone, 21H14, contained the xa13 locus. Received: 15 August 1998 / Accepted: 29 September 1998  相似文献   

9.

Absence of resistance/tolerance against bacterial leaf blight (BLB), incited by Xanthomonas oryzae pv. oryzae, in famous basmati varieties is one of the main reason for BLB epidemic in Punjab in 2007–2008. For developing resistance against BLB, the response of 26 IRBB lines of IRRI including 10 near isogenic lines (NILs) and 16 gene pyramids carrying two to five resistance genes (Xa series) was evaluated against 61 indigenous Xoo isolates under artificial inoculation field conditions. None of the NILs or gene pyramid provides complete protection against all the isolates. However, Xa21 and xa13 were found resistant against the majority of Xoo isolates, followed by Xa14 and Xa7. Of the 16 gene pyramids used in this study, IRBB-54 (Xa5 + Xa21), IRBB-55 (Xa13 + Xa21) followed by IRBB-58 (Xa4 + Xa13 + Xa21) were found effective against the majority of the Xoo isolates. These resistance genes (individually and in combinations) can be incorporated for the improvement of basmati rice cultivars cultivated in Punjab province of Pakistan. Effectiveness of gene combination supports the strategy of pyramiding appropriate resistance genes. Newly identified resistant genes may also be evaluated for achieving broad spectrum resistance against more Xoo isolates of the area.  相似文献   

10.
Targeting xa13, a recessive gene for bacterial blight resistance in rice   总被引:2,自引:0,他引:2  
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most serious diseases of rice worldwide. Thirty bacterial blight resistance (R) genes (21 dominant genes and 9 recessive genes) in rice have been identified. They are the main sources for the genetic improvement of rice for resistance to Xoo. However, little is known about the recessive R genes. To clone and characterize the recessive R genes, we fine-mapped xa13, a fully recessive gene for Xoo resistance, to a DNA fragment of 14.8 kb using the map-based cloning strategy and a series of sequence-based molecular markers. Sequence analysis of this fragment indicated that this region contains only two apparently intact candidate genes (an extensin-like gene and a homologue of nodulin MtN3) and the 5′ end of a predicted hypothetical gene. These results will greatly facilitate the isolation and characterization of xa13. Four PCR-based markers, E6a, SR6, ST9 and SR11 that were tightly linked to the xa13 locus, were also developed. These markers will be useful tools for the marker-assisted selection of xa13 in breeding programs.  相似文献   

11.
Bacterial blight of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most devastating disease of rice (Oryza sativa L). Rice lines that carry resistance (R) gene Xa10 confer race-specific resistance to Xoo strains harboring avirulence (Avr) gene avrXa10. Here we report on genetic study, disease evaluation and fine genetic mapping of the Xa10 gene. The inheritance of Xa10-mediated resistance to PXO99A(pHM1avrXa10) did not follow typical Mendelian inheritance for single dominant gene in F2 population derived from IR24 × IRBB10. A locus might be present in IRBB10 that caused distorted segregation in F2 population. To eliminate this locus, an F3 population (F3-65) was identified, which showed normal Mendelian segregation ratio of 3:1 for resistance and susceptibility. A new near-isogenic line (F3-65-1743) of Xa10 in IR24 genetic background was developed and designated as IRBB10A. IRBB10A retained similar resistance specificity as that of IRBB10 and provided complete resistance to PXO99A(pHM1avrXa10) from seedling to adult stages. Linkage analysis using existing RFLP markers and F2 mapping population mapped the Xa10 locus to the proximal side of E1981S with genetic distance at 0.93 cM. With five new RFLP markers developed from the genomic sequence of Nipponbare, Xa10 was finely mapped at genetic distance of 0.28 cM between proximal marker M491 and distal marker M419 and co-segregated with markers S723 and M604. The physical distance between M491 and M419 on Nipponbare genome is 74 kb. Seven genes have been annotated from this 74-kb region and six of them are possible Xa10 candidates. The results of this study will be useful in Xa10 cloning and marker-assisted breeding.  相似文献   

12.
Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in several countries. Three BB resistance genes, xa5, xa13 and Xa21, were pyramided into cv. PR106, which is widely grown in Punjab, India, using marker-assisted selection. Lines of PR106 with pyramided genes were evaluated after inoculation with 17 isolates of the pathogen from the Punjab and six races of Xoo from the Philippines. Genes in combinations were found to provide high levels of resistance to the predominant Xoo isolates from the Punjab and six races from the Philippines. Lines of PR106 with two and three BB resistance genes were also evaluated under natural conditions at 31 sites in commercial fields. The combination of genes provided a wider spectrum of resistance to the pathogen population prevalent in the region; Xa21 was the most effective, followed by xa5. Resistance gene xa13 was the least effective against Xoo. Only 1 of the BB isolates, PX04, was virulent on the line carrying Xa21 but avirulent on the lines having xa5 and xa13 genes in combination with Xa21. Received: 26 May 2000 / Accepted: 16 August 2000  相似文献   

13.
Powdery mildew (PM) is a common and serious disease of mungbean [Vigna radiata (L.) Wilczek]. A few quantitative trait loci (QTL) for PM resistance in mungbean have been reported. The objective of this study was to locate QTL for PM resistance in two resistant accessions V4718 and RUM5. Simple sequence repeat markers were analyzed in an F2 population from a cross between Kamphaeng Saen 1 (KPS1; susceptible to PM) and V4718 (resistant to PM), and in F2 and BC1F1 populations from a cross between Chai Nat 60 (CN60; susceptible to PM) and RUM5 (resistant to PM). Progenies of 134 F2:3 and F2:4 lines derived from KPS1 × V4718, and 190 F2:3 and 74 BC1F1:2 lines derived from CN60 × RUM5 and CN60 × (CN60 × RUM5), respectively, were evaluated for response to PM under field conditions. Multiple interval mapping identified a major QTL on linkage group (LG) 9 and two minor QTL on LG4 for the resistance in V4718, and detected two major QTL on LG6 and LG9 and one minor QTL on LG4 for the resistance in RUM5. Comparative linkage analysis of the QTL for PM resistance in this study and in previous reports suggests that the resistance QTL on LG9 in V4718, RUM5, ATF3640 and VC6468-11-1A are the same locus or linked. One QTL on LG4 is the same in three sources (V4718, RUM5 and VC1210A). Another QTL on LG6 is the same in two sources (RUM5 and VC6468-11-1A). In addition, one QTL in V4718 on LG4 appears to be a new resistance locus. These different resistance loci will be useful for breeding durably PM-resistant mungbean cultivars.  相似文献   

14.
Improved Samba Mahsuri (ISM) is a popular, high-yielding, bacterial blight resistant rice variety possessing medium-slender grain type. As ISM is highly susceptible to blast disease of rice, through the present study we have transferred two major blast resistance genes, Pi2 and Pi54 into the elite variety by marker-assisted backcross breeding. The two blast resistance genes were transferred to ISM through sets of backcrosses. In every backcross generation, PCR-based markers, specific for the blast resistance genes (Pi2 and Pi54) and bacterial blight resistance genes (Xa21, xa13 and xa5) were utilized for foreground selection, while a set of 144 parental polymorphic SSR markers were used for background selection and backcrossing was carried out until BC2 generation. A solitary BC2F1 plant possessing Pi2 or Pi54 along with Xa21, xa13 and xa5 and >?90% recovery of ISM genome was selected from the two sets of backcrosses were crossed and the intercross F1s (ICF1s) thus obtained were selfed to generate ICF2s. Homozygous ICF2 plants carrying all the five resistance genes were identified through markers and advanced through selfing till ICF5 generation by adopting pedigree method of selection. Three best lines at ICF5, possessing excellent resistance against bacterial blight and blast and closely resembling or superior to ISM in terms of grain quality: yield and agro-morphological traits have been identified and advanced for multi-location trials.  相似文献   

15.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice in the tropics for which genetic resistance in the host plants is the only effective solution. This study aimed at identification of resistance gene combinations effective against Xoo isolates and fingerprinting of the Xoo isolates of Andaman Islands (India). Here, we report the reaction of 21 rice BB differentials possessing Xa1 to Xa21 genes individually and in different combinations to various isolates of pathogen collected from Andaman Islands. Pathological screening results of 14 isolates revealed that among individual genes tested across 2 years, Xa4, Xa7 and Xa21 conferred resistance reaction across all isolates, whereas among combinations, IRBB 50 (Xa4 + xa5), IRBB 52 (Xa4 + Xa21) and IRBB 60 (Xa4 + xa5 + xa13 + Xa21) conveyed effective resistance against tested isolates. The nature of genetic diversity among four isolates selected on the basis of geographical isolation in the islands was studied through DNA finger printing. The RAPD primers S111, S119, S1117, S1109, S1103, S109 and S105 were found to be better indicators of molecular diversity among isolates than JEL primers. The diversity analysis grouped 14 isolates into three major clusters based on disease reaction wherein isolate no. 8 was found the most divergent as well as highly virulent. The remaining isolates were classified into two distinct groups. The importance of the study in the context of transfer of resistance gene(s) in the local cultivars specifically for tropical island conditions is presented and discussed.  相似文献   

16.
17.
Bacterial leaf blight (BB), caused by the bacterium Xanthomonas oryzae pv. Oryzae (Xoo), is the major constraint amongst rice diseases in India. CSR-30 is a very popular high-yielding, salt-tolerant Basmati variety widely grown in Haryana, India, but highly susceptible to BB. In the present study, we have successfully introgressed three BB resistance genes (Xa21, xa13 and xa5) from BB-resistant donor variety IRBB-60 into the BB-susceptible Basmati variety CSR-30 through marker-assisted selection (MAS) exercised with stringent phenotypic selection without compromising the Basmati traits. Background analysis using 131 polymorphic SSR markers revealed that recurrent parent genome (RPG) recovery ranged up to 97.1% among 15 BC3F1 three-gene-pyramided genotypes. Based on agronomic evaluation, BB reaction, aroma, percentage recovery of RPG, and grain quality evaluation, four genotypes, viz., IC-R28, IC-R68, IC-R32, and IC-R42, were found promising and advanced to BC3F2 generation.  相似文献   

18.
 The inheritance of resistance to southern rust (caused by Puccinia polysora Underw.) was investigated in two F2:3 populations derived from crossing two temperate-adapted, 100% tropical maize (Zea mays L.) inbred lines (1416-1 and 1497-2) to a susceptible Corn Belt Dent hybrid, B73Ht×Mo17Ht. The inbred lines possess high levels of resistance to southern rust and may be unique sources of resistance genes. Heritability for resistance was estimated as 30% and 50% in the two populations from regression of F2:3 family mean scores on F2 parent scores, and as 65% and 75% from variances among F2:3 families on a single-plot basis. RFLP loci on three chromosomal regions previously known to possess genes for resistance to either southern rust or common rust (P. sorghi Schw.) were used to localize genes affecting resistance to southern rust in selected genotypes of both populations, and to estimate their genetic effects. A single locus on 10S, bnl3.04, was associated with 82–83% of the variation among field resistance scores of selected F2:3 families in the two populations. Loci on chromosomes 3 (umc26) and 4 (umc31) were significantly associated with resistance in the 1497-2 population, each accounting for 13–15% of the phenotypic variation for F2:3 field scores. Multiple-marker locus models, including loci from chromosomes 3, 4, and 10 and their epistatic interactions, accounted for 96–99% of the variation in F2:3 field scores. Similar results were obtained for resistance measured by counting pustules on juvenile plants in the greenhouse. An attempt was made to determine if the major gene for resistance from 1416-1 was allelic to Rpp9, which is also located on 10S. Testcross families from the cross (1416-1×B37Rpp9)×B14AHt were evaluated for resistance to southern rust in Mexico. Neither source of resistance was completely effective in this environment, preventing determination of allelism of the two genes; however, both sources of resistance had better partial resistance to southern rust than did B14AHt. Received: 6 May 1997/Accepted: 19 September 1997  相似文献   

19.
Genetic effects on controlling stripe rust resistance were determined in two wheat crosses, Bakhiawar-92 × Frontana (cross 1) and Inqilab-91 × Fakhre Sarhad (cross 2) using Area under Disease Progress Curve (AUDPC) as a measure of stripe rust resistance. The resistant and susceptible genotypes for crosses were identified by initial assessment of 45 wheat accessions for stripe rust resistance. Mixed inheritance model was applied to the data analysis of six basic populations P 1, F 1, P 2, B 1, B 2, and F 2 in the crosses. The results indicated that AUDPC in cross 1 was controlled by two major genes with additive-dominance epistatic effect plus polygenes with additive-dominance epistatic effects (model E). Whereas in case of cross 2, it was under the control of two major genes with additive-dominance epistatic effect plus additive-dominant polygenes (model E-1). Additive effect was predominant then all other types of genetic effects suggesting the delay in selection for resistance till maximum positive genes are accumulated in the individuals of subsequent generations. Occurrence of transgressive segregants for susceptibility and resistance indicated the presence of resistance as well as some negative genes for resistance in the parents. The major gene heritability was higher than the polygene heritability in B 1, B 2 and F 2 for the crosses. The major gene as well as the polygene heritability was ranging from 48.99 to 87.12% and 2.26 and 36.80% for the two crosses respectively. The highest phenotypic variations in AUDPC (2504.10 to 5833.14) for segregating progenies (BC 1, BC 2 and F 2) represent that the character was highly influenced by the environment. The article is published in the original.  相似文献   

20.
Rice bacterial leaf blight, caused by Xanthomonas oryzae pv. oryzae [(Ishiyama) Swings et al. 1990] (Xoo), is a major rice disease of the second crop season in Taiwan. A total of 88 Xoo strains collected from 10 major rice cultivating areas in Taiwan from 1986, 1997, 2000, 2004, and 2011 were characterized by repetitive‐element PCR (REP‐PCR) fingerprinting and virulence analyses. Among the five genetic clusters identified by the pJEL1/pJEL2 (IS1112‐based) and REP1R‐Dt/REP2‐D [repetitive extragenic palindromic (REP)‐based] primer sets, clusters A, C and D contained Xoo strains from geographically distant regions, which suggests a high frequency of Xoo dispersal in Taiwan. The 88 Xoo strains were evaluated by inoculations on IRBB near‐isogenic lines and five Taiwan rice cultivars. A subset of 45 moderately or highly virulent strains were classified into 15 pathotypes by their compatible or incompatible reactions on IR24 and 12 IRBB near‐isogenic lines, each containing a single resistance gene. Analysis of molecular haplotypes and pathotypes revealed a partial relationship. IRBB5, IRBB21 and IRBB4 were incompatible with 96%, 96% and 73% of the strains, so xa5, Xa21 and Xa4 can recognize most of the Xoo strains in Taiwan and elicit resistance. In contrast, IRBB3 (Xa3), IRBB8 (xa8), IRBB10 (Xa10), IRBB11 (Xa11), IRBB13 (xa13) and IRBB14 (Xa14) were susceptible to almost all of the 45 Xoo strains. Inoculation trials revealed significant differences in the susceptibility of five Taiwan cultivars to Xoo (from high to low susceptibility: Taichung Sen 10 >  IR24, Taichung Native 1 >  Taichung 192, Taikeng 9, Tainan 11). This study provides useful information for resistance breeding and the development of disease management strategies against bacterial blight disease of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号