首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host resistance is the most economical way to manage wheat stripe rust caused by Puccinia striiformis f. sp. tritici. Slow rusting, a type of quantitative resistance, has been reported to last for a long time. Quantitative resistance, in terms of slow rusting parameters including final rust severity (FRS), apparent infection rate (r), relative area under disease progress curve (rAUDPC) and coefficient of infection (CI), was evaluated in a set of 29 wheat genotypes along with susceptible control during 2008–2009 and 2009–2010 cropping seasons. This study was conducted in field plots at Ardabil Agricultural Research Station (Iran) under natural infection conditions with two times artificial inoculation. Artificial inoculation was carried out by yellow rust inoculum having virulent genes against Yr2, Yr6, Yr7, Yr9, Yr22, Yr23, Yr24, Yr25, Yr26, Yr27, YrA and YrSU. Results of mean comparison for resistance parameters showed that lines C-86-1, C-86-2, C-87-1 and C-87-3 along with susceptible had the highest values of FRS, CI, r and rAUDPC, therefore were selected as susceptible lines. The lines C-86-3, C-86-9, C-87-2, C-87-6, C-87-8, C-87-11 and C-87-18 were susceptible at the seedling stage and had low level infection at adult plant stage. Consequently, these lines with low different parameters most probably have slow rusting resistance. The remaining lines had no infection or were at low level of infection. Thus, they were selected as resistant or moderately resistant lines. In this study, correlation coefficient between different parameters of slow rusting was significantly high (r = 0.92–0.99).  相似文献   

2.
The emergence and rapid spread of virulent races of wheat stem rust has driven a search for sources of resistance for durable resistance breeding. This study was carried out to identify possible sources of stem rust resistance between Ethiopian wheat lines. Two hundred and fifty‐two wheat accessions and a universal suscept, cultivar Morocco were evaluated for their resistance at the seedling stage to the stem rust isolate Ug99 in a controlled environment. Ninety‐one lines that exhibited intermediate and susceptible seedling reactions were further field tested in 2012 main season for their slow rusting characteristics. Among the 91, 38 genotypes that had high to moderate level of slow rusting were advanced to a 2013 off season field evaluation. Slow rusting resistance at the adult‐plant stage was assessed through the determination of final disease severity (FRS), coefficient of infection (CI), and relative area under disease progressive curve (rAUDPC). The results revealed that wheat lines H04‐2, 204408‐3, 214551‐1, 231545‐1, 7041‐1, 7514‐1, 226385‐1, 226815‐1, 7579‐1 and 222495‐1 had low values of FRS, CI and rAUDPC and were regarded as good slow rusting lines. Of these 231545‐1, 7041‐1, 226815‐1 and 7579‐1 exhibited complete susceptibility at the seedling stage, with infection types ranging from 3? to 3+, which suggests that they possess true slow rusting resistance. Lines 237886‐1, 227059‐1, 203763‐1, 226275‐1, 227068‐2, 226278‐1 and 7994‐1 had moderate values for the stem rust resistance parameters and were identified as possessing a moderate level of slow rusting. High correlations were observed between different parameters of slow rusting. Among the slow rusting lines 231545‐1, H04‐2 and 222495‐1 had high yields and kernel weight in both seasons. The slow rusting lines identified from this study can be used to breed for stem rust resistance in wheat.  相似文献   

3.
Race‐specific resistance of wheat (Triticum aestivum L.) to yellow rust caused by Puccinia striiformis Westend. f.sp. tritici is often short‐lived. Slow‐rusting resistance has been reported to be a more durable type of resistance. A set of sixteen bread wheat varieties along with a susceptible control Morocco was tested during 2004–05 to 2006–07 in field plots at Peshawar (Pakistan) to identify slow rusting genotypes through epidemiological variables including final rust severity (FRS), apparent infection rate (r), area under disease progress curve (AUDPC), average coefficients of infection (ACI) and leaf tip necrosis (LTN). Epidemiological parameters of resistance were significantly (P < 0.01) different for years/varieties in three seasons, while variety × year interactions remained non‐significant. Sequence tagged site (STS) marker, csLV34 analyses revealed that cultivars Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93, Faisalabad‐85, Shahkar‐95 and Kohsar‐95 possessed Yr18 linked allele. Faisalabad‐83, Bahawalpur‐95, Suleman‐96, Punjab‐96, Bakhtawar‐93 and Faisalabad‐85 were relatively more stable over 3‐years where FRS, AUDPC and r values reduced by 80, 84 and 70% respectively compared to control Morocco. These six varieties therefore could be exploited for the deployment of Yr18 in breeding for slow rusting in wheat. Both FRS and ACI are suitable parameters for phenotypic selection.  相似文献   

4.
The inheritance of resistance in red raspberry (Rubus idaeus) to yellow rust (Phragmidium rubi-idaei) was studied in a diallel cross among the cultivars Boyne, Meeker, Mailing Jewel, Glen Prosen and Glen Clova. The progenies and clonally propagated parents were exposed initially in a rust-infected plantation where the incidence and severity of infection was assessed at the telial stage. The following spring leaves on new canes of the same plants were inoculated with urediniospores in a glasshouse at 18 ± 2 °C. The latent period and number of uredinia per cm2 of abaxial leaf surface were determined 13 and 18 days after inoculation. Cv. Boyne developed only chlorotic flecking on inoculated leaves in the glasshouse and no sporulation was observed. It is postulated that this reaction was determined by a major gene which is designated Yr. Some of the other parents showed incomplete resistance of the slow rusting type, and segregants of Boyne selfed that were susceptible also showed low levels of rust, which suggests that Boyne carries both major- and minor-gene resistance. Diallel analyses of both the field and glasshouse data from the susceptible segregates indicated that the degree of incomplete resistance present was determined predominantly by additive gene action, though small but significant non-additive effects also occurred: cv. Meeker was the most resistant parent and contributed the most resistance to the progenies. The Meeker progenies also segregated for gene H, which determines cane hairiness and is known to be associated with resistance to other diseases. Segregants without hairs (genotypes hh) were found to be the more resistant to rust.  相似文献   

5.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

6.
Expressed sequenced tags containing simple sequence repeats (EST-SSRs) were used to identify molecular markers associated with yellow rust resistance in wheat (Triticum aestivum L.). A cross between yellow rust resistant (PI178383) and susceptible (Harmankaya99) wheat genotypes was performed and respective DNA pools from the resistant and susceptible F2 seedlings were constructed. 78 EST-SSR primers were used for bulked segregant analysis and one EST-SSR marker (Pk54), identified as 200 bp fragment, was present in the resistant parent and resistant F2 hybrids but not in the susceptible ones. 108 wheat genotypes differing in yellow rust resistance were screened with Pk54 and 68 % of the wheat genotypes, known to be yellow rust resistant, had the Pk54 marker, further suggesting that the presence of this marker correlates with yellow rust resistance.  相似文献   

7.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

8.
An F2 population from a cross between barley accession Q21861 and the Australian barley variety Galleon was used to develop RAPD markers for resistance to barley leaf rust (Puccinia hordei). Resistant and susceptible DNA bulks were constructed following the classification of F2 plants by leaf rust infection type. Bulked segregant analysis was then used to identify a 2.7-kb marker, designated OU022700 and located approximately 12cM from RphQ, a leaf rust resistance gene in Q21861. The marker was generated by PCR with the oligonucleotide primer OPU-02 (Operon). Infection types of F3 progeny were used to confirm assignment of F2 genotypes. OU022700 was shown, retrospectively, to be useful in the identification of individual F2 plants that had been originally misclassified as having susceptible infection types. Both the RAPD marker and RphQ will be potentially useful in the development of new barley cultivars.  相似文献   

9.
Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat   总被引:2,自引:0,他引:2  
The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F6 RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F4-derived F5 RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.  相似文献   

10.
Coffee leaf rust caused by the fungus Hemileia vastatrix causes considerable economic losses for coffee producers. Although agrochemical products can provide sufficient disease control, the use of resistant cultivars is a safer alternative. This resistance may be constrained by one or a few genetic factors, mainly those found in material originating from interspecific hybrids. In this study, the genetic analysis of an F 2 population consisting of 224 plants derived from a crossing of Híbrido de Timor UFV 427-15 (resistant) with Catuaí Amarelo IAC 30 (susceptible) showed that a dominant gene confers the resistance of coffee to race II of H. vastatrix. From a genetic map saturated with 25 amplified fragment length polymorphism (AFLP) markers linked to the resistance gene, we developed a high-density genetic map with six sequence-characterized amplified region (SCAR) markers delimiting a chromosomal region of 9.45 cM and flanking the dominant gene at 0.7 and 0.9 cM. This is the first saturated and high-density genetic map obtained from this region containing the resistance gene. The results of this study are of great importance for the introduction of molecular markers for marker-assisted selection; they will also facilitate studies related to the cloning, structure, and function of race-specific genes involved in the resistance of coffee trees to H. vastatrix.  相似文献   

11.
The genetics of non-host disease resistance in wheat to barley yellow rust   总被引:1,自引:0,他引:1  
Non-host resistance is investigated as a potential source of durable resistance. However, the genetics of non-host resistance between closely related plant species and their corresponding pathogens would indicate that in these interactions, non-host resistance primarily involves major genes that operate on a gene-for-gene principal similar to that seen in host resistance. Wheat is a non-host of the barley-attacking form of the fungus responsible for yellow rust, i.e. Puccinia striiformis f. sp. hordei. While P. striiformis f. sp. hordei is generally unable to infect wheat, a partial susceptibility was exhibited by the wheat variety Chinese 166. Consequently, in the cross Lemhi × Chinese 166 two major QTLs for resistance to P. striiformis f. sp. hordei were identified: one on chromosome 1D and a second on 2B. These two QTLs accounted for 43.5% and 33.2% of the phenotypic variance for resistance to barley yellow rust, respectively. In addition, two QTLs of smaller effect were also identified: one on chromosome 5A, contributing 5.1% of the variance and a second on chromosome 6A, contributing 10.9% to the phenotype. The QTL on 6A was derived from the susceptible variety, Chinese 166. In all cases the resistance towards P. striiformis f. sp. hordei was associated with a visual chlorosis/necrosis response typical of race-specific host resistance.  相似文献   

12.
Summary The hypothetical leaf rust progress curves of 15 genotypes of wheat were generated by integrating the components of slow rusting resistance determined in the glasshouse. The area under the disease progress curve (AUDPC) from the hypothetical and observed leaf rust progress curves were compared. It was found that the hypothetical AUDPC values of all the genotypes studied were smaller than their respective observed AUDPC values. Possible causes for the discrepancies in the observed and hypothetical values are discussed.  相似文献   

13.
Abstract

The results of studying the types of resistance in 44 recognized and promising winter wheat cultivars for the North Caucasus region are presented. Relatively high levels of race-specific resistance at the germination stage were found in the cultivars Batko, Bystritsa, Krasota, Knyazhna, Polovchanka, Fisht and Yara; low race-specific resistance levels were reported for the most of cultivars studied. Under simulated infection conditions of wheat plants in fields, most cultivars had resistance similar to that one in adult plants. The cultivar Rufa demonstrated slow leaf rust progress, while the cultivar Yuna was highly susceptible to the North Caucasus leaf rust population. The analysis of leaf rust resistance in the cultivars tested makes it possible for agricultural producers to continuously improve their zoning structure according to preferable types of genetic resistance control.  相似文献   

14.
TheRpg1 gene in barley has provided satisfactory levels of stem rust resistance for the last 50 years. The appearance of a new race of stem rust that is virulent toRpg1 has resulted in efforts to incorporate new stem rust resistance genes into barley. Marker-assisted selection may provide the only means of combining this useful gene with resistance genes for which no virulent races have been identified. Several RFLP markers have been identified as linked to theRpg1 locus. One of these, ABG704 was converted into a post-amplification restriction polymorphism. To generate a specific PCR-amplifiable polymorphism the sequence of the ABG704 locus from four barley cultivars was determined. Primers were developed that can detect a single-base difference between resistant and susceptible cultivars. The successful conversion of an RFLP marker to an allele-specific PCR-based marker not only demonstrates that this type of conversion is possible for cereals, but also results in an immediately useful marker for application to plant breeding programmes.  相似文献   

15.
Stripe rust of barley (Hordeum vulgare L.), caused by Puccinia striiformis f. sp. hordei, is a serious problem of barley production in many parts of the world. Monitoring of the pathogen virulence factors and their changes provides basic information for development of an early warning system to breeders and researchers. To monitor the regular virulence changes, trap nurseries comprising of 12 barley differential sets were planted at different parts of Iran in six consecutive years 2007–2012. When the infection and severity under natural infection on susceptible cultivar Afzal as the check was high, then the response of each line was assessed using modified Cobbs scale. Results revealed that no virulence was observed on plants with resistance genes rpsEm1, rpsEm2, rpsHF, Rps4, rpsVa1, rpsVa2 and rpsAst. Therefore, these genes were considered effective genes and can be used to pyramid with those for race-non-specific resistance genes to achieve more durable and highly effective resistance to stripe rust. The plants with the resistance genes rps2, Rps1.b, Rps3 and rpsI5 showed susceptible reaction and virulence was observed on them, thus their resistance genes were considered ineffective.  相似文献   

16.
Thirty-seven wheat germplasm were screened under artificial epiphytotic conditions against stripe rust of wheat at University Research Farm, Chatha, during Rabi, 2013–2014 and 2014–2015. On the basis of final rust severity (FRS), AURPC (Area Under Rust Progress Curve) and CI (Coefficient of Infection), 8 genotypes ((DWR 16, HD2281, VL616, K65, UP2121, HD2329, HD2307 and Lal Bahadur) exhibited partial resistance against the disease. PCR profiles revealed co-dominant pattern with distinct fragment of 150 bp in 14 germplasm, showing the presence of Yr18 gene and 229 bp band in 16 germplasm exhibited absence of Yr18.  相似文献   

17.
In a transposon tagging experiment, lines of Antirrhinum majus exhibiting both race-specific resistance (homozygous for the dominant R gene) to the rust pathogen Puccinia antirrhini and a high frequency of transposition were crossed with homozygous susceptible lines. From a screen of 11153 F1 progeny, 15 individuals were detected showing susceptibility to rust race α. Six of these exhibited a susceptibility phenotype (classified as type B) not previously observed. A control experiment involving the same tagging strategy but employing lines that do not exhibit high rates of transposition did not yield any susceptible mutants from a screen of 6243 progeny. In experiments on the heritability and stability of the mutation, the six plants exhibiting susceptibility phenotype B produced progeny in which the R locus had reverted to an active form (i.e. some of the progeny were resistant), a classic characteristic of transposon-tagged plant genes. Reversion was shown to occur somatically, and its rate was temperature dependent. Inheritance studies showed that the mutations in two of the susceptible plants from the tagging protocol map at, or very close to, the race α-specific resistance gene. The results are consistent with the transposon tagging of a race-specific gene for rust resistance.  相似文献   

18.
新疆的小麦品种(系)苗期和成株期抗叶锈性鉴定   总被引:1,自引:0,他引:1  
对来自新疆的104个小麦品种、高代品系及35个含有已知抗叶锈基因载体品种,在苗期接种12个中国小麦叶锈菌生理小种进行抗叶锈基因推导分析和分子检测;2007-2008年和2008-2009年连续2年度对这些材料进行成株抗叶锈性鉴定并筛选慢叶锈性品种。研究结果显示,在41个品种中共鉴定出6个已知抗叶锈基因Lr26、Lr34、Lr50、Lr3ka、Lr1和Lr14a,其中Lr26存在于21个品种中,Lr34在17个品种被发现,Lr1和Lr14a分别存在于3个品种中,还有2个品种携带Lr3ka以及1个品种携带Lr50。2年田间抗叶锈性鉴定筛选出7个慢叶锈性品种,可用于小麦抗病育种。  相似文献   

19.
The use of resistant genotypes is the preferred method to control orange rust of sugarcane (Saccharum spp) caused by Puccinia kuehnii. This approach has been adopted in Brazil but outbreaks of the disease on previously resistant varieties showed that the efficacy of this method is limited and requires a better understanding of pathogen diversity. Nevertheless, adequate molecular markers for examining pathogen diversity at population level are not available, which limits the success of orange rust control by genetic resistance. Therefore, two independent investigations were conducted to examine genetic diversity of P. kuehnii from São Paulo state, the most important sugarcane growing state of Brazil. First, simple-sequence repeat (SSR) markers were developed in the present work and genotypic diversity of orange rust isolates from different locations investigated. Second, phenotypic diversity was examined by the single-pustule inoculation technique on P. kuehnii isolates retrieved from three susceptible commercial sugarcane cultivars. A total of 96 SSR markers were generated and tested for this species. Subsequently, 29 isolates of P. kuehnii were fingerprinted with nine SSR markers to estimate the genotypic diversity by neighbour-joining and 3D principal coordinates. The 29 isolates of the pathogen clustered into four main groups, which were identified by three SSR markers (NPRL_PK_108a, NPRL_PK_162_spka and NPRL_PK_221_spka). Phenotypic data at 21 days after the single-pustule inoculation showed that P. kuehnii from highly susceptible commercial cultivars harboured a small proportion of variants capable of causing disease on resistant cultivars. A differential reaction was demonstrated for the most virulent variant in a repeated experiment confirming the existence of races within P. kuehnii in Brazil.  相似文献   

20.
The content of Barley yellow dwarf virus (BYDV) in roots and leaves of barley seedling plants differing in their level of resistance was assessed by quantitative ELISA 1–42 days after inoculation with the strain of BYDV (PAV). High virus accumulation in roots and low concentration in leaves was characteristic of the period 9–15 days after inoculation. In leaves, the differences in virus content between resistant and susceptible genotypes became significant after 15 days and resistance to virus accumulation was better expressed 30–39 days after inoculation. Roots of resistant materials exhibited evident retardation of virus accumulation and the greatest difference in virus content between resistant and susceptible plants was detected 9 days after inoculation. By these criteria, the selected winter and spring barley cultivars and lines (in total 44 materials) fell in to five groups according to field reactions and the presence or absence of the Yd2 resistance gene. There were highly significant and positive relations between ELISA values and 5‐year field data on symptomatic reactions and grain‐yield reductions due to infection. Using the described method, resistant and moderately resistant genotypes (both Yd2 and non‐Yd2) were significantly differentiated from susceptible genotypes. The possible use of this method in screening for BYDV resistance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号