首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photofootprinting of DNA triplexes.   总被引:11,自引:10,他引:1       下载免费PDF全文
We have used a photofootprinting assay to study intermolecular and intramolecular DNA triplexes. The assay is based on the fact that the DNA duplex is protected against photodamage (specifically, against the formation of the (6-4) pyrimidine photoproducts) within a triplex structure. We have shown that this is the case for PyPuPu (YRR) as well as PyPuPy (YRY) triplexes. Using the photofootprinting assay, we have studied the triplex formation under a variety of experimentally defined conditions. At acid pH, d(C)n.d(G)n.d(C)n and d(CT)n.d(GA)n.d(CT)n triplexes are detected by this method. The d(CT)n.d(GA)n.d(CT)n triplexes are additionally stabilized by divalent cations and spermidine. PyPuPu triplexes are pH-independent and are stabilized by divalent cations, such as Mg++ and Zn++. The effect depends on the type of cation and on the DNA sequence. The d(CT)n.d(GA)n.d(GA)n triplex is stabilized by Zn++, but not by Mg++, whereas the d(C)n.d(G)n.d(G)n triplex is stabilized by Mg++. In H-DNA, virtually the entire pyrimidine chain is protected against photodimerization, whereas only half of the pyrimidine chain participating in a triplex is protected in the CGG intramolecular triplex.  相似文献   

2.
A differential effect is found of various bivalent cations (Ba2+, Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+, Zn2+ and Hg2+) on stability of intermolecular Py-Pu-Pu triplex with different sequence of base triads. Ca2+, Mg2+, Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ do stabilize the d(C)n d(G)n d(G)n triplex whereas Ba2+ and Hg2+ do not. Ba2+, Ca2+, Mg2+ and Hg2+ destabilize the d(TC)n d(GA)n d(AG)n triplex whereas Cd2+, Co2+, Mn2+, Ni2+ and Zn2+ stabilize it. The complexes we observe are rather stable because they do not dissociate during time of gel electrophoresis in the co-migration experiments. Chemical probing experiments with dimethyl sulfate as a probe indicate that an arbitrary homopurine-homopyrimidine sequence forms triplex with corresponding purine oligonucleotide in the presence of Mn2+ or Zn2+, but not Mg2+. In the complex the purine oligonucleotide has antiparallel orientation with respect to the purine strand of the duplex. Specifically, we have shown the formation of the Py-Pu-Pu triplex in a fragment of human papilloma virus HPV-16 in the presence of Mn2+.  相似文献   

3.
Stabilization of PyPuPu triplexes with bivalent cations.   总被引:3,自引:0,他引:3  
We studied the formation of stable PyPuPu intermolecular triplexes under neutral pH in the presence of bivalent cations (Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd, and Ba) with the help of the photo- and DMS footprinting assays. The cations which stabilize d(C)n.d(G)n.d(G)n and d(TC)n.d(GA)n.d(AG)n triplexes were determined. Among them, Zn++ ions stabilized both triplexes, whereas Mg++ ions stabilize CGG triplexes, but do not stabilize TC.GA.AG triplexes. We have shown that an arbitrary purine sequence forms the PyPuPu triplex in the presence of Zn++ ions, and that the purine third strand is antiparallel with respect to the purine strand within the duplex.  相似文献   

4.
Protonated pyrimidine-purine-purine triplex.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have studied a protonated pyrimidine-purine-purine (Py-Pu-Pu) triplex, which is formed between the d(C)nd(G)n duplex and the d(AG)m oligonucleotide as the third strand and carries the CG*A+ protonated base-triads. We have observed such an intermolecular complex between a plasmid carrying the d(C)18 d(G)18 insert and the d(AG)5 oligonucleotide without bivalent cations in 200 mM of Na+ at pH4.0. Bivalent cations additionally stabilize the complex. We propose the structures for nearly isomorphous base-triads TA*A, CG*G and CG*A+. To identify the H-DNA-like structure, which includes the triplex between d(C)n d(G)n duplex and the AG-strand, we have cloned in a superhelical plasmid the insert: G10TTAA(AG)5. The data on photofootprinting and chemical modification with diethyl pyrocarbonate, potassium permanganate and dimethyl sulfate demonstrate that the H-like structure with triplex carrying CG*G and CG*A+ base triads is actually formed under acid conditions. In the course of this study we have come across unexpected results on probing of Py-Pu-Pu triplexes by dimethyl sulfate (DMS): the protection effect is observed not only for guanines entering the duplex but also for guanines in the third strand lying in the major groove. We have demonstrated this effect not only for the case the novel protonated Py-Pu-Pu triplex but also for the traditional non-protonated Py-Pu-Pu intramolecular triplex (H*-DNA) formed by the d(C)37 d(G)37 insert in supercoiled plasmid in the presence of Mg2+ ions.  相似文献   

5.
Intercalating ligands may improve both the stability and sequence specificity of triple helices. Numerous intercalating drugs have been described, including coralyne, which preferentially binds triple helices, though its sequence specificity has been reported to be low [Lee,J.S., Latimer,L.J.P. and Hampel,K.J. (1993) Biochemistry , 32, 5591-5597]. In order to analyse the sequence preferences of coralyne we have used a combination of DNase I footprinting, UV melting, UV-visible spectrophotometry, circular dichroism and NMR spectroscopy to examine defined intermolecular triplexes and intramolecular triplexes linked either by hexaethylene glycol chains or by octandiol chains. DNase I footprinting demonstrated that coralyne has a moderate preference for triplexes over duplexes, but a substantial preference for TA.T triplets compared with CG. C+triplets. The drug was found to have essentially no effect on the melting temperatures of duplexes of the kind d(A)n.d(T)n or d(GA)n.d(TC)n. In contrast, it increased the T m for triplexes of the kind d(T)nd(A)n.dTn, but had little effect on the stability of d(TC)nd(GA).d(CT)n at either low or high pH. On binding to DNA triplexes, there is a large change in the absorption spectrum of coralyne and also a substantial fluorescence quenching that can be attributed to intercalation. The changes in the optical spectra have been used for direct titration with DNA. For triplexes d(T)6d(A)6.d(T)6, the Kd at 298 K was 0.5-0.8 microM. In contrast, the affinity for d(TC) nd(GA)n.d(CT)n triplexes was 6- to 10-fold lower and was characterized by smaller changes in the absorption and CD spectra. This indicates a preference for intercalation between TAT triples over CG.C+/TA.T triples. NMR studies confirmed interaction by intercalation. However, a single, secondary binding was observed at high concentrations of ligand to the triplex d(AGAAGA-L-TCTTCT-L-TCTTCT), presumably owing to the relatively low difference in affinity between the TA.T site and the competing, neighbouring sites.  相似文献   

6.
Branch-migration is a fundamental step in the process of DNA recombination that determines the location, and extent, of the exchange between the recombining duplexes. Four-way Holliday junctions assembled in vitro can migrate spontaneously in an uncatalysed reaction that mimics some of the aspects involved in branch-migration. Here, we have analysed the effects of a d(GA.TC)22 and a d(CA.TG)30 sequence on the rate of spontaneous branch-migration. Under most of the experimental conditions assayed, no significant effect was observed. However, the d(GA.TC)22 sequence induces a very strong arrest when branch-migration is performed at low pH, under conditions where the repeated sequence is forming an intramolecular [C(+)T(GA.TC)] triplex. A similar arrest is observed when the recombining duplexes contain intermolecular triplexes arising from the annealing of a d(GA.TC)22 duplex and a d(TC)22 oligonucleotide, indicating that the formation of triplex DNA constitutes a strong barrier for the progression of the Holliday junction. These results are discussed in the context of the possible contribution of triplex DNA to DNA recombination.  相似文献   

7.
Intramolecular triplex formation of the purine.purine.pyrimidine type   总被引:4,自引:0,他引:4  
F M Chen 《Biochemistry》1991,30(18):4472-4479
Six octadecamers with hairpin motifs have been synthesized and investigated for possible intramolecular triplex formation. Electrophoretic, hypochromic, and CD evidence suggest that d(CCCCTTTGGGGTTTGGGG) and d(GGGGTTTGGGGTTTCCCC) can form G.G.C intramolecular triplexes via double hairpin formation in neutral solutions, presumably with the terminal G tract folding back along the groove of the hairpin duplex. In contrast, d(GGGGTTTCCCCTTTGGGG) and the three corresponding 18-mers containing one G and two C tracts each forms a single hairpin duplex with a dangling single strand. The design of the sequences has led to the conclusion that the two G tracts are antiparallel to each other in such a triplex. Magnesium chloride titrations indicate that Mg2+ is not essential for such an intramolecular triplex formation. The main advantage of our constructs when compared to the intermolecular triplex formation is that the shorter triplex stem can be formed in a much lower DNA concentration. The merit of G.G.C triplex, in contrast to that of C+.G.C, lies in the fact that acidic condition is not required in its formation and will, thus, greatly expand our repertoire in the triplex strategy for the recognition and cleavage of duplex DNA. Spectral binding studies with actinomycin D (ACTD) and chromomycin A3 (CHR) as well as fluorescence lifetime measurements with ethidium bromide (EB) suggest that although hairpin duplexes bind these drugs quite well, the intramolecular triplexes bind poorly. Interestingly, the binding densities for the strong-binding hairpins obtained from Scatchard plots are about one ACTD molecule per oligomeric strand, whereas more than two drug molecules are found in the case of CHR, in agreement with the recent NMR studies indicating that CHR binds to DNA in the form of a dimer.  相似文献   

8.
It was observed that a group of unusually stable DNA hairpins (Hn: 5'-d-(AG)nT4(CT)n, n = 2-4) were directed to homopyrimidine sequences (Pn: 5'-d-(TC)n) by py x pu x py-type triplex formation, resulting in high binding affinity and specificity. The spectroscopic results (UV and CD) showed that the short bimolecular triplex Hn:Pn could be formed in acidic conditions (pH 4.5-6.0) as helix length n > 2, and further extending to neutral pH as n = 4. This hairpin strategy for recognition of a pyrimidine strand has a substantial binding advantage over either the conventional linear analog or simple Watson-Crick complement. Triplex stability of Hn with Pn is not only pH-dependent, as expected for triplexes involving C+. GC triads, but also sensitive to the buffer. The triplex H4:P4 was formed in the phosphate buffers of pH 6.0-7.0 but already dissociated above pH 6.5 in the buffer of cacodylate, MOPSO or PIPES. By contrast, the nature of a buffer had no major influence on stability of a hairpin duplex. Here we provide a simple triplex system, and the data presented here may be useful in defining the experimental conditions necessary to stabilize triplex DNA.  相似文献   

9.
DNA triple helices offer exciting new perspectives toward oligonucleotide-directed inhibition of gene expression. Purine and GT triplexes appear to be the most promising motifs for stable binding under physiological conditions compared to the pyrimidine motif, which forms at relatively low pH. There are, however, very little data available for comparison of the relative stabilities of the different classes of triplexes under identical conditions. We, therefore, designed a model system which allowed us to set up a competition between the oligonucleotides of the purine and pyrimidine motifs targeting the same Watson-Crick duplex. Several conclusions may be drawn: (i) a weak hypochromism at 260 nm is associated with purine triplex formation; (ii) delta H degree of GA, GT and TC triplex formation (at pH 7.0) was calculated as -0.1, -2.5 and -6.1 kcal/mol per base triplet, respectively. This unexpectedly low delta H degree for the purine triple helix formation implies that its delta G degree is nearly temperature-independent and it explains why these triplexes may still be observed at high temperatures. In contrast, the pyrimidine triplex is strongly favoured at lower temperatures; (iii) as a consequence, in a system where two third-strands compete for triplex formation, displacement of the GA or GT strand by a pyrimidine strand may be observed at neutral pH upon lowering the temperature. This original purine-to-pyrimidine triplex conversion shows a significant hypochromism at 260 nm and a hyperchromism at 295 nm which is similar to the duplex-to-triplex conversion in the pyrimidine motif. Further evidence for this triplex-to-triplex conversion is provided by mung bean-nuclease foot-printing assay.  相似文献   

10.
Triple helices with G*G.C and A*A.T base triplets with third GA strands either parallel or antiparallel with respect to the homologous duplex strand have been formed in presence of Na (+) or Mg(2+) counterions. Antiparallel triplexes are more stable and can be obtained even in presence of only monovalent Na(+) counterions. A biphasic melting has been observed, reflecting third strand separation around 20 degrees C followed by the duplex -> coil transition around 63 degrees C. Parallel triplexes are far less stable than the antiparallel ones. Their formation requires divalent ions and is observed at low temperature and in high concentration conditions. Different FTIR signatures of G*G.C triplets in parallel and antiparallel triple helices with GA rich third strands have been obtained allowing the identification of such base triplets in triplexes formed by nucleic acids with heterogeneous compositions. Only S-type sugars are found in the antiparallel triplex while some N-type sugar conformation is detected in the parallel triplex.  相似文献   

11.
Modulation of endogenous gene function, through sequence-specific recognition of double helical DNA via oligonucleotide-directed triplex formation, is a promising approach. Compared to the formation of pyrimidine motif triplexes, which require relatively low pH, purine motif appears to be the most gifted for their stability under physiological conditions. Our previous work has demonstrated formation of magnesium-ion dependent highly stable intermolecular triplexes using a purine third strand of varied lengths, at the purine?pyrimidine (Pu?Py) targets of SIV/HIV-2 (vpx) genes (Svinarchuk, F., Monnot, M., Merle, A., Malvy, C., and Fermandjian, S. (1995) Nucleic Acids Res. 23, 3831-3836). Herein, we show that a designed intramolecular version of the 11-bp core sequence of the said targets, which also constitutes an integral, short, and symmetrical segment (G(2)AG(5)AG(2))?(C(2)TC(5)TC(2)) of human c-jun protooncogene forms a stable triplex, even in the absence of magnesium. The sequence d-C(2)TC(5)TC(2)T(5)G(2)AG(5)AG(2)T(5)G(2)AG(5)AG(2) (I-Pu) folds back twice onto itself to form an intramolecular triple helix via a double hairpin formation. The design ensures that the orientation of the intact third strand is antiparallel with respect to the oligopurine strand of the duplex. The triple helix formation has been revealed by non-denaturating gel assays, UV-thermal denaturation, and circular dichroism (CD) spectroscopy. The monophasic melting curve, recorded in the presence of sodium, represented the dissociation of intramolecular triplex to single strand in one step; however, the addition of magnesium bestowed thermal stability to the triplex. Formation of intramolecular triple helix at neutral pH in sodium, with or without magnesium cations, was also confirmed by gel electrophoresis. The triplex, mediated by sodium alone, destabilizes in the presence of 5'-C(2)TC(5)TC(2)-3', an oligonucleotide complementary to the 3'-oligopurine segments of I-Pu, whereas in the presence of magnesium the triplex remained impervious. CD spectra showed the signatures of triplex structure with A-like DNA conformation. We suggest that the possible formation of pH and magnesium-independent purine-motif triplexes at genomic Pu?Py sequences may be pertinent to gene regulation.  相似文献   

12.
Alternating d(GA.TC)(n)DNA sequences, which are abundant in eukaryotic genomes, can form altered DNA structures. Depending on the environmental conditions, the formation of (GA.GA) hairpins or [C+T(GA.TC)] and [GA(GA.TC)] intramolecular triplexes was observed in vitro. In vivo, the formation of these non-B-DNA structures would likely require the contribution of specific stabilizing factors. Here, we show that Friend's nuclear extracts are rich in proteins which bind the pyrimidine d(TC)(n)strand but not the purine d(GA)n strand (NOGA proteins). Upon chromatographic fractionation, four major proteins were detected (NOGA1-4) that have been purified and characterized. Purified NOGAs bind single-stranded d(TC)n with high affinity and specificity, showing no significant affinity for either d(GA)n or d(GA.TC)nDNA sequences. We also show that NOGA1, -2 and -3, which constitute the three most abundant and specific NOGA proteins, correspond to the single-stranded nucleic acid binding proteins hnRNP-L, -K and -I, respectively. These results are discussed in the context of the possible contribution of the NOGA proteins to the stabilization of the (GA.GA) and [GA(GA.TC)] conformers of the d(GA.TC)n DNA sequences.  相似文献   

13.
The effects of interruptions in the homopurine bias and the G+C content of the homopurine.homopyrimidine (pur.pyr) sequences on intramolecular triplex formation and stability in supercoiled plasmids were evaluated. In addition, the interconversion of triplex and duplex, after altering the stabilizing factors (low pH or supercoiling), was studied. We conclude: (a) a 42-base pair pur.pyr sequence with three consecutive interruptions does not form a large triplex with three unpaired nucleotides in the stem. Instead, a mixture of two smaller (27- and 28-nucleotide) triplexes forms. (b) A 28-nucleotide sequence with a single interruption forms a triplex with one unpaired nucleotide in the stem. This interruption causes the triplex to be 7 degrees C less thermostable and requires more superhelical energy for formation than the control triplex. (c) As the G+C content of a pur.pyr sequence increases, the thermostability of the triplex increases and the triplex requires less supercoiling for formation. (d) The interconversion between duplex and triplex is fast. After negative supercoiling is removed, all triplex becomes duplex in about 3 min. When the pH is shifted from 8.0 to 5.2, the conversion of duplex to triplex in a negatively supercoiled plasmid is complete in less than 2 min. Hence, these kinetic properties are consistent with important biological roles for triplexes. In summary, the results from both this and the accompanying paper show that a substantial amount of sequence imperfections is tolerated for triplex formation and stability.  相似文献   

14.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc.  相似文献   

15.
P Rajagopal  J Feigon 《Biochemistry》1989,28(19):7859-7870
The complexes formed by the homopurine and homopyrimidine deoxyribonucleotides d(GA)4 and d(TC)4 have been investigated by one- and two-dimensional 1H NMR. Under appropriate conditions [low pH, excess d(TC)4 strand] the oligonucleotides form a triplex containing one d(GA)4 and two d(TC)4 strands. The homopurine and one of the homopyrimidine strands are Watson-Crick base paired, and the second homopyrimidine strand is Hoogsteen base paired in the major groove to the d(GA)4 strand. Hoogsteen base pairing in GC base pairs requires hemiprotonation of C; we report direct observation of the C+ imino proton in these base pairs. Both homopyrimidine strands have C3'-endo sugar conformations, but the purine strand does not. The major triplex formed appears to have four TAT and three CGC+ triplets formed by binding of the second d(TC)4 strand parallel to the d(GA)4 strand with a 3' dangling end. In addition to the triplexes formed, at least one other heterocomplex is observed under some conditions.  相似文献   

16.
G-G base-paired hairpin DNA structures on template strands offer potential "road-blocks" to a traversing polymerase. Klenow polymerase (exo+) pauses while replicating through G-G base-paired hairpin DNA due to the generation of G-G:C triplex. However, exonuclease-deficient Klenow traverses through de novo generated G-G:C triplexes leading to full-length C:G duplexes. Alleviation of such road-blocks by exo- Klenow ensues faster at lower Mg2+, a kinetic effect consistent with the role of Mg2+ in stabilizing G-G:C triplex fold. The ability of exonuclease-deficient polymerase to go past the de novo generated G-G:C triplexes suggests that the "idling" of exo+ polymerase at G-G road-block is due to the reiterative polymerase/exonuclease action. The full-length replication product carrying a C(n)-G(n) duplex at one end is further "expanded" by exo- Klenow through C-strand "slippage" leading to the generation of C+-G:C triplex, which is exemplified by the premature arrest of the same at low pH that further stabilizes the C+-G:C triplex.  相似文献   

17.
Triplex DNA in plasmids and chromosomes   总被引:2,自引:0,他引:2  
Circular plasmids containing pyrimidine purine tracts can form both inter-and intramolecular triplexes. Addition of poly(dTC) to plasmid pTC45, which contains a (TC)45.(GA)45 insert, results in intermolecular triplex formation. Agarose-gel electrophoresis gives rise to many well-resolved bands, which correspond to 1, 2, 3, 4... plasmid molecules attached to the added pyrimidine strand. In the electron microscope these complexes appear as a rosette of petals. The mobility of these triplex-containing complexes can be retarded by the addition of a triplex-specific monoclonal antibody, Jel318. Intramolecular triplex formation can be demonstrated at pH 5 in pTC45 and also in pT463-I, a plasmid containing a segment of a crab satellite DNA with both (G)n.(C)n and (TCC)n.(GGA)n inserts. However, although the intermolecular triplex remains stable for some time at pH 8, intramolecular triplex formation only occurs at low pH. Triplexes can also be detected by an immunoblotting procedure with Jel318. This unfamiliar structure is readily demonstrated in eukaryotic extracts, but not in cell extracts from Escherichia coli. Triplexes may thus be an inherent feature of eukaryotic chromosome structure.  相似文献   

18.
Previous studies have indicated that d(TC)n.d(GA)n microsatellites may serve as arrest signals for mammalian DNA replication through the ability of such sequences to form DNA triple helices and thereby inhibit replication enzymes. To further test this hypothesis, we examined the ability of d(TC)i.d(GA)i.d(TC)i triplexes to inhibit DNA unwinding in vitro by a model eukaryotic DNA helicase, the SV40 large T-antigen. DNA substrates that were able to form triplexes, and non-triplex-forming control substrates, were tested. We found that the presence of DNA triplexes, as assayed by endonuclease S1 and osmium tetroxide footprinting, significantly inhibited DNA unwinding by T-antigen. Strong inhibition was observed not only at acidic pH values, in which the triplexes were most stable, but also at physiological pH values in the range 6.9-7.2. Little or no inhibition was detected at pH 8.7. Based on these results, and on previous studies of DNA polymerases, we suggest that DNA triplexes may form in vivo and cause replication arrest through a dual inhibition of duplex unwinding by DNA helicases and of nascent strand synthesis by DNA polymerases. DNA triplexes also have the potential to inhibit recombination and repair processes in which helicases and polymerases are involved.  相似文献   

19.
The vacuum UV CD spectra of G.G.C triplexes.   总被引:1,自引:1,他引:0       下载免费PDF全文
Vacuum UV circular dichroism (CD) spectra were measured down to 175 nm for d(C)10, d(G)10, the d(G)10.d(C)10 duplex, and the d(G)10.d(G)10.d(C)10 triplex. A CD difference spectrum was calculated for d(G)10.d(C)10 giving the change in CD induced by forming the duplex from d(G)10 and d(C)10. The d(G)10.d(G)10.d(C)10 CD difference spectrum gave the CD induced by triplex formation from binding of d(G)10 to the d(G)10.d(C)10 duplex. In the near-UV, the d(G)10.d(C)10 and d(G)10.d(G)10.d(C)10 difference spectra resembled the difference spectrum for poly[r(G).r(C)] (Biopolymers 29, 325-333). This similarity may be an indication of similar purine base stacking. The d(G)10.d(G)10.d(C)10 vacuum UV difference spectrum had a negative band at 195 nm and a positive band at 180 nm, making it similar to difference spectra for homopolymer triplexes containing T.A.T and U.A.U triplets (Nucl. Acids Res. 19, 2275-2280). The appearance of these bands in difference spectra should be good indicators of triplex formation. The complementary oligonucleotides c-mycI d(CCCCACCCTCCC) and c-mycII d(GGGAGGGTGGGG) are part of the regulatory sequences of the human c-myc gene. G.G.C rich triplexes formed by binding c-mycII or c-mycIII d(GGGGTGGGTGGG) to the c-mycI.c-mycII duplex had CD difference spectra similar to that of d(G)10.d(G)10.d(C)10 in both the vacuum UV and near UV regions, indicating similar triplet structures.  相似文献   

20.
In this work we selected double-stranded DNA sequences capable of forming stable triplexes at 20 or 50 degrees C with corresponding 13mer purine oligonucleotides. This selection was obtained by a double aptamer approach where both the starting sequences of the oligonucleotides and the target DNA duplex were random. The results of selection were confirmed by a cold exchange method and the influence of the position of a 'mismatch' on the stability of the triplex was documented in several cases. The selected sequences obey two rules: (i) they have a high G content; (ii) for a given G content the stability of the resulting triplex is higher if the G residues lie in stretches. The computer simulation of the Mg2+, Na+and Cl-environment around three triplexes by a density scaled Monte Carlo method provides an interpretation of the experimental observations. The Mg2+cations are statistically close to the G N7 and relatively far from the A N7. The presence of an A repels the Mg2+from adjacent G residues. Therefore, the triplexes are stabilized when the Mg2+can form a continuous spine on G N7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号