首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stabilization of PyPuPu triplexes with bivalent cations.   总被引:3,自引:0,他引:3  
We studied the formation of stable PyPuPu intermolecular triplexes under neutral pH in the presence of bivalent cations (Mg, Ca, Mn, Co, Ni, Cu, Zn, Cd, and Ba) with the help of the photo- and DMS footprinting assays. The cations which stabilize d(C)n.d(G)n.d(G)n and d(TC)n.d(GA)n.d(AG)n triplexes were determined. Among them, Zn++ ions stabilized both triplexes, whereas Mg++ ions stabilize CGG triplexes, but do not stabilize TC.GA.AG triplexes. We have shown that an arbitrary purine sequence forms the PyPuPu triplex in the presence of Zn++ ions, and that the purine third strand is antiparallel with respect to the purine strand within the duplex.  相似文献   

2.
We have studied the effect of intermolecular triplexes formation on the yield of cyclobutane photodimers in DNA. DNA duplex within the pyrimidine-purine-pyrimidine triplex d(TC)nd(GA)nd(CT)n is protected from the formation of cyclobutane photodimers in the case of the stabilization of this triplex by acid pH, and in the case of supplementary stabilization by Mg2+ or Zn2+. We have studied pH-independent pyrimidine-purine-purine triplexes stabilized by bivalent cations. In such triplexes, the protection from the formation of [6-4] photodimers is observed, whereas the protection from cyclobutane dimer formation does not take place. The formation of the d(TC)nd(GA)nd(GA)n triplex leads to an inversion of the intensities of cyclobutane CT and TC photodimers. We observed a sharp decrease in photoreactivity with respect to cyclobutane dimers in the duplex tract d(C)18d(G)18 in the presence of Ba2+, Cd2+, Co2+, Mn2+, Zn2+ and Ni2+. The formation of the d(C)nd(G)nd(G)n triplex leads to 'antifootprinting', i.e. an increase in the yield of cyclobutane photodimers.  相似文献   

3.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

4.
Several divalent cations were studied as agonists of a Ca2+-activated K+ channel obtained from rat muscle membranes and incorporated into planar lipid bilayers. The effect of these agonists on single-channel currents was tested in the absence and in the presence of Ca2+. Among the divalent cations that activate the channel, Ca2+ is the most effective, followed by Cd2+, Sr2+, Mn2+, Fe2+, and Co2+. Mg2+, Ni2+, Ba2+, Cu2+, Zn2+, Hg2+, and Sn2+ are ineffective. The voltage dependence of channel activation is the same for all the divalent cations. The time-averaged probability of the open state is a sigmoidal function of the divalent cation concentration. The sigmoidal curves are described by a dissociation constant K and a Hill coefficient N. The values of these parameters, measured at 80 mV are: N = 2.1, K = 4 X 10(-7) mMN for Ca2+; N = 3.0, K = 0.02 mMN for Cd2+; N = 1.45, K = 0.63 mMN for Sr2+; N = 1.7, K = 0.94 mMN for Mn2+; N = 1.1, K = 3.0 mMN for Fe2+; and N = 1.1 K = 4.35 mMN for Co2+. In the presence of Ca2+, the divalent cations Cd2+, Co2+, Mn2+, Ni2+, and Mg2+ are able to increase the apparent affinity of the channel for Ca2+ and they increase the Hill coefficient in a concentration-dependent fashion. These divalent cations are only effective when added to the cytoplasmic side of the channel. We suggest that these divalent cations can bind to the channel, unmasking new Ca2+ sites.  相似文献   

5.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

6.
The microbial chelating compound proferrorosamine A, produced by Pseudomonas roseus fluorescens, formed a complex with Fe2+ of which the apparent stability constant was found to be 10(23). The following order of increasing stability constants of metal complexes with proferrorosamine was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was established as: Ba2+, Ca2+, Mg2+, Mn2+ less than Hg2+ less than Zn2+ less than Pb2+ less than Co2+ less than Cu2+ congruent to Fe2+ less than Ni2+. Only Ni(2+)-proferrorosamine had a stability constant which was ca 32 times higher than Fe(2+)-proferrorosamine. Because of the production of proferrorosamine the growth of Ps. roseus fluorescens was not inhibited in iron limiting media by the addition of 0.15 mmol/l of the weaker chemical Fe2+ chelator 2,2'-dipyridyl. This contrasted with the proferrorosamine-negative mutant K2 and Ps. stutzeri, which only produces Fe(3+)-chelating siderophores. Furthermore, it was found that proferrorosamine was able to dissolve Fe2+ from stainless steel. These results show that proferrorosamine is a strong and selective Fe2+ chelator which could be used as an alternative for the toxic 2,2'-dipyridyl to control lactic acid fermentations.  相似文献   

7.
The Ca2+-sensitive ATPase (adenosine triphosphatase) of human erythrocyte membranes is activated, not only by Ca2+ ions, but also by a series of other bivalent metal ions including Sr2+, Ba2+, Mn2+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+ and Pb2+. The degree of activation is dependent on the radius of the ion rather than on its nature, in contrast with the dissociation constant of the enzyme--metal ion complex.  相似文献   

8.
Protonated pyrimidine-purine-purine triplex.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have studied a protonated pyrimidine-purine-purine (Py-Pu-Pu) triplex, which is formed between the d(C)nd(G)n duplex and the d(AG)m oligonucleotide as the third strand and carries the CG*A+ protonated base-triads. We have observed such an intermolecular complex between a plasmid carrying the d(C)18 d(G)18 insert and the d(AG)5 oligonucleotide without bivalent cations in 200 mM of Na+ at pH4.0. Bivalent cations additionally stabilize the complex. We propose the structures for nearly isomorphous base-triads TA*A, CG*G and CG*A+. To identify the H-DNA-like structure, which includes the triplex between d(C)n d(G)n duplex and the AG-strand, we have cloned in a superhelical plasmid the insert: G10TTAA(AG)5. The data on photofootprinting and chemical modification with diethyl pyrocarbonate, potassium permanganate and dimethyl sulfate demonstrate that the H-like structure with triplex carrying CG*G and CG*A+ base triads is actually formed under acid conditions. In the course of this study we have come across unexpected results on probing of Py-Pu-Pu triplexes by dimethyl sulfate (DMS): the protection effect is observed not only for guanines entering the duplex but also for guanines in the third strand lying in the major groove. We have demonstrated this effect not only for the case the novel protonated Py-Pu-Pu triplex but also for the traditional non-protonated Py-Pu-Pu intramolecular triplex (H*-DNA) formed by the d(C)37 d(G)37 insert in supercoiled plasmid in the presence of Mg2+ ions.  相似文献   

9.
The interaction of DNA polymerase from Thermus thermophilus B35 (Tte-pol) with deoxynucleoside triphosphates in the presence of different divalent metal ions has been studied. DNA synthesis and competitive inhibition of the polymerase reaction by non-complementary dNTPs are described with corresponding kinetic schemes. The co-factor properties of some metals (Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Ca2+, Cd2+, and Zn2+) were investigated, and their activating concentration ranges were determined. It was found that kcat values are significantly decreased and Km values slowly decrease when Mn2+ displaces Mg2+. The value of Kd for DNA template-primer is Me2+-independent, whereas Kd values for non-complementary dNTPs decrease in the presence of Mn2+. Tte-pol processivity but not DNA synthesis efficiency is Me2+-type independent.  相似文献   

10.
The R-form lipopolysaccharide from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was previously shown to form a hexagonal lattice structure with the lattice constant of 14 to 15 nm when suspended in 50 mM tris(hydroxymethyl)aminomethane buffer at pH 8.5 containing 10 mM Mg2+. Under this experimental condition, effects of other divalent metal cations on the hexagonal assembly of the electrodialyzed LPS were compared with that of Mg2+. The Zn2+, Hg2+, Cu2+, and Ni2+ could produce essentially the same hexagonal lattice structure with the lattice constant of 14.5 to 15.0 nm as that formed with Mg2+. The Cd2+, Co2+, and Fe2+ produced the hexagonal lattice structure with the lattice constant of 15.5 to 16.0 nm, and Ba2+, Sr2+, and Ca2+ produced that with the lattice constant of 18 to 19 nm. In addition, the hexagonal lattice structures formed with the latter three cations were less orderly than those formed with the other cations. When the higher concentrations of Ba2+, Sr2+, and Ca2+ were used, the lattice constants were not shortened. The length of lattice constants of the hexagonal lattice structures formed with the divalent cations did not relate to the quantity of the cations bound to the LPS. Among the divalent cations tested, Hg2+ was bound to the LPS in the smallest amount (its atomic ratio to P, 0.07), and Zn2+ and Fe2+ were bound in very large amounts (their atomic ratios to P, 2.94 and 8.28, respectively).  相似文献   

11.
The effects of ATP and divalent cations on a divalent cation-independent phosphorylase phosphatase of Mr = 35,000 (phosphatase S) purified from canine cardiac muscle have been studied. The enzyme can be rapidly inactivated by ATP or other nucleoside di- and triphosphates and PPi, but not by AMP, adenosine, adenine, Pi, EDTA, ethylene glycol bis(beta-aminoethyl ether)N,N' -tetraacetic acid, 1,10-phenanthroline, or 8-hydroxyquinoline. After removing the inactivating agent, such as ATP or PPi, by gel filtraiton followed by exhaustive dialysis, the inactivated enzyme (apophosphatase S) can be reactivated by preincubating with Mn2+ or Co2+, but not with Mg2+, Ca2+, Ni2+, Zn2+, Fe2+, Cu2+, Ba2+, Hg2+, Pb2+, or Cd2+. The Mn2+ -reactivated enzyme, which is less active than the Co2+ -reactivated enzyme, can be again inactivated by preincubating with ATP. The present findings indicate that phosphatase S contains a tightly bound divalent cation, probably Mn2+, in the active site. ATP and PPi, due to their structural similarity to the phosphoprotein substrate and their ability to chelate metal ions, can readily enter the active site to remove the divalent cation(s) essential for the catalytic function. The present findings also indicate that phosphatase S, a common catalytic subunit of several larger molecular forms of nospecific phosphoprotein phosphatase in cardiac muscle, can exist in two interconvertible forms, a metallized form (active) and a demetallized form (inactive). ATP and metal ions may regulate this class of isozymes by mediating the interconversions.  相似文献   

12.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

13.
Sun G  Budde RJ 《Biochemistry》1999,38(17):5659-5665
In addition to a magnesium ion needed to form the ATP-Mg complex, we have previously determined that at least one more free Mg2+ ion is essential for the activation of the protein tyrosine kinase, Csk [Sun, G., and Budde, R. J. A. (1997) Biochemistry 36, 2139-2146]. In this paper, we report that several divalent metal cations, such as Mn2+, Co2+, Ni2+, and Zn2+ bind to the second Mg2+-binding site of Csk with up to 13200-fold higher affinity than Mg2+. This finding enabled us to substitute the free Mg2+ at this site with Mn2+, Co2+, Ni2+, or Zn2+ while keeping ATP saturated with Mg2+ to study the role of the free metal cation in Csk catalysis. Substitution by these divalent metal cations resulted in varied levels of Csk activity, with Mn2+ even more effective than Mg2+. Co2+ and Ni2+ supports reduced levels of Csk activity compared to Mg2+. Zn2+ has the highest affinity for the second Mg2+-binding site of Csk at 0.65 microM, but supports no kinase activity, acting as a dead-end inhibitor. The inhibition by Zn2+ is reversible and competitive against free Mg2+, noncompetitive against ATP-Mg, and mixed against the phosphate accepting substrate, polyE4Y, significantly increasing the affinity for this substrate. Substitution of the free Mg2+ with Mn2+, Co2+, or Ni2+ also results in lower Km values for the peptide substrate. These results suggest that the divalent metal activator is an important element in determining the affinity between Csk and the phosphate-accepting substrate.  相似文献   

14.
Ions of bivalent metals are shown to arrange in the Sr2+ greater than Ca2+ greater than Ba2+ greater than Mn2+ series as to their ability to induce ion flow vibration in the rat liver mitochondria. Application of Sr2+ results in the most stable prolonged vibrations of ion flows in mitochondria. Ca2+, Ba2+ and Mn2+ induce slightly pronounced and intensively damped vibrations. The studied Mg2+, Co2+, Ni2+, Pb2+ Fe2+ cations have effect on valinomycin-induced K+ transport in mitochondria and do not induce vibrations. It is established that the ability of bivalent cations to induce vibrations is associated with the possibility of their transfer through the mitochondrion membrane and accumulation in the matrix. Inhibitors of the electrogenic Ca2+ transport in mitochondria produce the similar effect on vibrations induced by Sr2+, Ca2+, Ba2+ and Mn2+.  相似文献   

15.
Multivalent cations were tested for their ability to replace the Ca2+ requirements of aggregation factor (AF) complex in activity, stability, and integrity assays. The ability of each cation to replace the Ca2+ required for the cell aggregation-enhancing activity of AF was examined by replacing the usual 10 mM Ca2+ with the test cation at various concentrations in the serial dilution assay of the AF. The other alkaline earth cations, Mg2+, Sr2+, and Ba2+, could not replace Ca2+; two transition elements, Mn2+ and Cd2+, partially replaced calcium. All 15 of the available lanthanides (including La3+ and Y3+) produced normal activity but only at 10-400-fold lower cation concentrations than Ca2+. An AF preparation is stable and remains active for months in 1 mM Ca2+ but decays rapidly when Ca2+ is lowered. Sr2+ and Ba2+ at 20 mM but not at 1 mM could replace 1 mM Ca2+ and give long term stability. AF was not stable in the presence of Mg2+, even at 100 mM. High Mn2+ concentrations did not stabilize AF even though AF was partially active in Mn2+. Cd2+ gave full stability at 75 mM and La3+ at about 0.1 mM. When Ca2+ is chelated, the macromolecular subunits of the AF slowly dissociate. Permeation chromatography and analytical ultracentrifugation showed that the cations that stabilized activity maintained the integrity of AF complex while those that failed to stabilize activity allowed the complex to dissociate into subunits, indicating that these two Ca2+ requirements are related. The cation specificities for activity and for stability-integrity are different indicating that these are separate Ca2+-dependent functions.  相似文献   

16.
Zinc is essential to the catalytic activity of angiotensin converting enzyme. The enzyme contains one g-atom of zinc per mole of protein. Chelating agents abolish activity by removing the metal ion to yield the inactive, metal-free apoenzyme. Zinc does not stabilize protein structure since the native and apoenzymes are equally susceptible to heat denaturation. Addition of either Zn2+, Co2+, or Mn2+ to the apoenzyme generates an active metalloenzyme; Fe2+, Ni2+, Cu2+, Cd2+, and Hg2+ fail to restore activity. The activities of the metalloenzymes follow the order Zn greater than Co greater than Mn. The protein binds Zn2+ more firmly than it does Co2+ or Mn2+. Hydrolysis of the chromophoric substrate, furanacryloyl-Phe-Gly-Gly, by the active metalloenzymes is subject to chloride activation; the activation constant is not metal dependent. Metal replacement mainly affects Kcat with very little change in Km, indicating that the role of zinc is to catalyze peptide hydrolysis.  相似文献   

17.
Various metal ions were capable of aggregating and precipitating conglutin gamma, an oligomeric glycoprotein purified from Lupinus albus seeds, at neutral pH values. The most effective metal ions, at 60-fold molar excess to the protein, were Zn2+, Hg2+ and Cu2+; a lower influence on the physical status of conglutin gamma was observed with Cr3+, Fe3+, Co2+, Ni2+, Cd2+, Sn2+, and Pb2+, while Mg2+, Ca2+ and Mn2+ had no effect at all. The insolubilisation of the protein with Zn2+, which is fully reversible, strictly depended on both metal concentration and pH. with middle points of the sharp transitions at three-fold molar excess and pH 6.5, respectively. Conglutin gamma is also fully retained on a metal affinity chromatography column at which Zn2+ and Ni2+ were complexed. A drop of pH below 6.0 and the use of chelating agents, such as EDTA and imidazole, fully desorbed the protein. A slightly lower binding to immobilised Cu2+ and Co2+ and no binding with Mg2+, Cd2+ and Mn2+ were observed. The role of the numerous histidine residues of conglutin gamma in the binding of Zn2+ is discussed.  相似文献   

18.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

19.
The ATPase activity of purified coupling factor 1 (CF1) of spinach chloroplasts [EC 3.6.1.3] was reversibly enhanced in some aqueous organic solvents, notably methanol, ethanol, and acetone. Pretreatment of CF1 with 20% (v/v) methanol did not affect the subsequent activity. The activity depended entirely on the final concentration of methanol in the reaction mixture. In the presence of 20% methanol, the Km of Ca2+-ATPase from ATP was lowered from 0.4 mM to 0.2 mM. Not only Ca2+, but also Cd2+, Mg2+, Mn2+, and Zn2+ supported the ATPase activity at rates of higher than 7 mumol.mg protein-1 . min-1. Co2+, Ni2+, and Pb2+ supported the activity at rates of 0.5-1.0 mumol.mg protein-1 . min-1. The activities supported by the following cations, if any, were less than 0.2 mumol.mg protein-1 . min-1; Ba2+, Cu2+, Fe2+, Hg2+, Sn2+, and Sr2+. The optimum concentration of methanol for Ca2+-ATPase and Mg2+-ATPase activities was about 30% (v/v). The optimum pH values for Ca2+-ATPase and Mg2+-ATPase activities were about 8.0 and 8.8, respectively. The enhancing effect of organic solvents appears to be associated with their relative lipophilic character as defined by the octanol-water partition coefficient. The Ca2+-ATPase activities of th trypsin-activated and the heat-activated CF1 were inhibited and their Mg2+-ATPase activities were enhanced by the presence of methanol in the reaction mixture.  相似文献   

20.
The cation diffusion facilitators (CDF) are a ubiquitous family of metal transporters that play important roles in homeostasis of a wide range of divalent metal cations. Molecular identities of substrate-binding sites and their metal selectivity in the CDF family are thus far unknown. By using isothermal titration calorimetry and stopped-flow spectrofluorometry, we directly examined metal binding to a highly conserved aspartate in the Escherichia coli CDF transporter YiiP (FieF). A D157A mutation abolished a Cd2+-binding site and impaired the corresponding Cd2+ transport. In contrast, substitution of Asp-157 with a cysteinyl coordination residue resulted in intact Cd2+ binding as well as full transport activity. A similar correlation was found for Zn2+ binding and transport, suggesting that Asp-157 is a metal coordination residue required for binding and transport of Cd2+ and Zn2+. The location of Asp-157 was mapped topologically to the hydrophobic core of transmembrane segment 5 (TM-5) where D157C was found partially accessible to thiol-specific labeling of maleimide polyethylene-oxide biotin. Binding of Zn2+ and Cd2+, but not Fe2+, Hg2+, Co2+, Ni2+, Mn2+, Ca2+, and Mg2+, protected D157C from maleimide polyethylene-oxide biotin labeling in a concentration-dependent manner. Furthermore, isothermal titration calorimetry analysis of YiiP(D157A) showed no detectable change in Fe2+ and Hg2+ calorimetric titrations, indicating that Asp-157 is not a coordination residue for Fe2+ and Hg2+ binding. Our results provided direct evidence for selective binding of Zn2+ and Cd2+ for to the highly conserved Asp-157 and defined its functional role in metal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号