首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Interleukin (IL)-1 is an important mediator of acute brain injury and inflammation, and has been implicated in chronic neurodegeneration. The main source of IL-1 in the CNS is microglial cells, which have also been suggested as targets for its action. However, no data exist demonstrating expression of IL-1 receptors [IL-1 type-I receptor (IL-1RI), IL-1 type-II receptor (IL-1RII) and IL-1 receptor accessory protein (IL-1RAcP)] on microglia. In the present study we investigated whether microglia express IL-1 receptors and whether they present target or modulatory properties for IL-1 actions. RT-PCR analysis demonstrated lower expression of IL-1RI and higher expression of IL-1RII mRNAs in mouse microglial cultures compared with mixed glial or pure astrocyte cultures. Bacterial lipopolysaccharide (LPS) caused increased expression of IL-1RI, IL-1RII and IL-1RAcP mRNAs, induced the release of IL-1beta, IL-6 and prostaglandin-E2 (PGE2), and activated nuclear factor kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) p38, and extracellular signal-regulated protein kinase (ERK1/2), but not c-Jun N-terminal kinase (JNK) in microglial cultures. In comparison, IL-1beta induced the release of PGE2, IL-6 and activated NF-kappaB, p38, JNK and ERK1/2 in mixed glial cultures, but failed to induce any of these responses in microglial cell cultures. IL-1beta also failed to affect LPS-primed microglial cells. Interestingly, a neutralizing antibody to IL-1RII significantly increased the concentration of IL-1beta in the medium of LPS-treated microglia and exacerbated the IL-1beta-induced IL-6 release in mixed glia, providing the first evidence that microglial IL-1RII regulates IL-1beta actions by binding excess levels of this cytokine during brain inflammation.  相似文献   

2.
IL-1beta released from activated macrophages contributes significantly to tissue damage in inflammatory, degenerative, and autoimmune diseases. In the present study, we identified a novel mechanism of IL-1beta release from activated microglia (brain macrophages) that occurred independently of P2X(7) ATP receptor activation. Stimulation of LPS-preactivated microglia with lysophosphatidylcholine (LPC) caused rapid processing and secretion of mature 17-kDa IL-1beta. Neither LPC-induced IL-1beta release nor LPC-stimulated intracellular Ca(2+) increases were affected by inhibition of P2X(7) ATP receptors with oxidized ATP. Microglial LPC-induced IL-1beta release was suppressed in Ca(2+)-free medium or during inhibition of nonselective cation channels with Gd(3+) or La(3+). It was also attenuated when Ca(2+)-activated K(+) channels were blocked with charybdotoxin (CTX). The electroneutral K(+) ionophore nigericin did not reverse the suppressive effects of CTX on LPC-stimulated IL-1beta release, demonstrating the importance of membrane hyperpolarization. Furthermore, LPC-stimulated caspase activity was unaffected by Ca(2+)-free medium or CTX, suggesting that secretion but not processing of IL-1beta is Ca(2+)- and voltage-dependent. In summary, these data indicate that the activity of nonselective cation channels and Ca(2+)-activated K(+) channels is required for optimal IL-1beta release from LPC-stimulated microglia.  相似文献   

3.
4.
The P2X7 receptor, mainly expressed by immune cells, is a ionotropic receptor activated by high concentration of extracellular ATP. It is involved in several processes relevant to immunomodulation and inflammation. Among these processes, the production of extracellular interleukin-1beta (IL-1beta), a pro-inflammatory cytokine, plays a major role in the activation of the cytokine network. We have investigated the role of P2X7 receptor and of an associated calcium-activated potassium conductance (BK channels) in IL-1beta maturation and releasing processes by Schwann cells. Lipopolysaccharide-primed Schwann cells synthesized large amounts of pro-IL-1beta but did not release detectable amounts of pro or mature IL-1beta. ATP on its own had no effect on the synthesis of pro-IL-1beta, but a co-treatment with lipopolysaccharide and ATP led to the maturation and the release of IL-1beta by Schwann cells. Both mechanisms were blocked by oxidized ATP. IL-1beta-converting enzyme (ICE), the caspase responsible for the maturation of pro-IL-1beta in IL-1beta, was activated by P2X7 receptor stimulation. The specific inhibition of ICE by the caspase inhibitor Ac-Tyr-Val-Ala-Asp-aldehyde blocked the maturation of IL-1beta. In searching for a link between the P2X7 receptor and the activation of ICE, we found that enhancing potassium efflux from Schwann cells upregulated the production of IL-1beta, while strongly reducing potassium efflux led to opposite effects. Blocking BK channels actually modulated IL-1beta release. Taken together, these results show that P2X7 receptor stimulation and associated BK channels, through the activation of ICE, leads to the maturation and the release of IL-1beta by immune-challenged Schwann cells.  相似文献   

5.
Human monocytes stimulated with LPS produce large quantities of prointerleukin-1beta, but little of this cytokine product is released extracellularly as the mature biologically active species. To demonstrate efficient proteolytic cleavage and export, cytokine-producing cells require a secondary effector stimulus. In an attempt to identify agents that may serve as initiators of IL-1beta posttranslational processing in vivo, LPS-activated human monocytes were treated with several individual antimicrobial peptides. Two peptides derived from porcine neutrophils, protegrin (PTG)-1 and PTG-3, promoted rapid and efficient release of mature IL-1beta. The PTG-mediated response engaged a mechanism similar to that initiated by extracellular ATP acting via the P2X(7) receptor. Thus, both processes were disrupted by a caspase inhibitor, both were sensitive to ethacrynic acid and CP-424,174, two pharmacological agents that suppress posttranslational processing, and both were negated by elevation of extracellular potassium. Moreover, the PTGs, like ATP, promoted a dramatic change in monocyte morphology and a loss of membrane latency. The PTG response was concentration dependent and was influenced profoundly by components within the culture medium. In contrast, porcine neutrophil antimicrobial peptides PR-26 and PR-39 did not initiate IL-1beta posttranslational processing. The human defensin HNP-1 and the frog peptide magainin 1 elicited export of 17-kDa IL-1beta, but these agents were less efficient than PTGs. As a result of this ability to promote release of potent proinflammatory cytokines such as IL-1beta, select antimicrobial peptides may possess important immunomodulatory functions that extend beyond innate immunity.  相似文献   

6.
Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1alpha and -1beta (MIP-1alpha and MIP-1beta), which could be enhanced by interleukin (IL)-1beta at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1beta mRNA expression in NT2-N cells. Anti-IL-1beta antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1beta mRNA expression in NT2-N cells, suggesting that IL-1beta in the MDM culture supernatants is a major factor in the induction of MIP-1beta expression. Investigation of the mechanism(s) responsible for IL-1beta-induced MIP-1alpha and -1beta expression demonstrated that IL-1beta activated nuclear factor kappa B (NF-kappaB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-kappaB, not only blocked IL-1beta-induced activation of the NF-kappaB promoter but also decreased IL-1beta-induced MIP-1alpha and -1beta expression in NT2-N cells. These data suggest that NF-kappaB is at least partially involved in the IL-1beta-mediated action on MIP-1alpha and -1beta in NT2-N cells. IL-1beta-mediated up-regulation of beta-chemokine expression may have important implications in the immunopathogenesis of inflammatory diseases in the CNS.  相似文献   

7.
The migration of vascular smooth muscle cells (VSMCs) from the media to the intima and the proliferation of intimal VSMCs are key events in restenotic lesion development. These events, which are preceded and accompanied by inflammation, are modulated by the proinflammatory cytokine, interleukin-1 beta (IL-1 beta), which induces vascular smooth muscle cells to express adhesion molecules and to proliferate. IL-1 beta action is complex and regulated, in part, by its naturally occurring inhibitor, the IL-1 receptor antagonist (IL-1ra). Whether there was a temporal and spatial correlation between IL-1 beta and IL-1ra expression in, and release by, oxidized low density lipoproteins (oxLDL)-stimulated human aortic smooth muscle cells (HASMCs) was determined by using ELISA and Western blot. In addition, IL-1 beta and IL-1ra expression was detected in the neointima of endothelia-denuded cholesterol-fed New Zealand white rabbits by immunohistochemistry and Western blot. In HASMCs, oxLDL induced IL-beta and IL-1ra expression and release in a dose- and time-dependent manner. Treatment with 20 microg/ml oxLDL resulted in increased IL-1 beta release after 6 h, which peaked at 24 h, and in increased IL-1ra release, first seen after 12 h, but continuing to increase for at least 48 h. In the cells, IL-beta expression showed a similar pattern to release, whereas IL-1ra expression was seen in unstimulated cells and was not increased by oxLDL treatment. Confocal microscopy showed colocalization of IL-beta and IL-1ra expression in oxLDL-stimulated HASMCs. oxLDL caused significant induction of nuclear factor kappa B and activator protein-1 DNA binding activity in HASMCs (6.6- and 3.3-fold, respectively). In cholesterol-fed endothelia-denuded rabbits, the notably thickened intima showed significant IL-1 beta and IL-1ra expression. These results provide further support for the role of IL-1 system in the pathogenesis of restenosis. This is the first demonstration of IL-1 beta and IL-1ra expression and secretion of oxLDL-treated HASMCs and their expression in the rabbit neointima, suggesting that the smooth muscle cells of the intima are an important source of these factors.  相似文献   

8.
Macrophages and their precursors, monocytes, are key cells involved in the innate immune response. Although both monocytes and macrophages produce caspase-1, the key enzyme responsible for pro-IL-1beta processing; macrophages are limited in their ability to activate the enzyme and release functional IL-1beta. In this context, because mutations in the pyrin gene (MEFV) cause the inflammatory disorder familial Mediterranean fever, pyrin is believed to regulate IL-1beta processing. To determine whether variations in pyrin expression explain the difference between monocytes and macrophages in IL-1beta processing and release, pyrin was studied in human monocytes and monocyte-derived macrophages. Although monocytes express pyrin mRNA and protein, which is readily inducible by endotoxin, monocyte-derived macrophages express significantly less pyrin mRNA and protein. Pyrin levels directly correlated with IL-1beta processing in monocytes and macrophages; therefore, we asked whether pyrin might promote IL-1beta processing and release. HEK293 cells were transfected with pyrin, caspase-1, apoptotic speck protein with a caspase recruitment domain, and IL-1beta. Pyrin induced IL-1beta processing and release in a dose-dependent manner. Conversely, pyrin small interference RNA suppressed pro-IL-1beta processing in both THP-1 cells and fresh human monocytes. In summary, both pyrin expression and IL-1beta processing and release are diminished upon the maturation of monocytes to macrophages. When pyrin is ectopically expressed or silenced, IL-1beta processing and release parallels the level of pyrin. In conclusion, in the context of endotoxin-induced activation of mononuclear phagocytes, pyrin augments IL-1beta processing and release.  相似文献   

9.
Endotoxin-dependent release of IL-1 beta from mouse microglial cells is a very inefficient process, as it is slow and leads to accumulation of a modest amount of extracellular cytokine. Furthermore, secreted IL-1 beta is mostly in the procytokine unprocessed form. Addition of extracellular ATP to LPS-primed microglia caused a burst of release of a large amount of processed IL-1 beta. ATP had no effect on the accumulation of intracellular pro-IL-1 beta in the absence of LPS. In LPS-treated cells, ATP slightly increased the synthesis of pro-IL-1 beta. Optimal ATP concentration for IL-1 beta secretion was between 3 and 5 mM, but significant release could be observed at concentrations as low as 1 mM. At all ATP concentrations IL-1 beta release could be inhibited by increasing the extracellular K+ concentration. ATP-dependent IL-1 beta release was also inhibited by 90 and 60% by the caspase inhibitors YVAD and DEVD, respectively. Accordingly, in ATP-stimulated microglia, the p20 proteolytic fragment derived from activation of the IL-1-beta-converting enzyme could be detected by immunoblot analysis. These experiments show that in mouse microglial cells extracellular ATP triggers fast maturation and release of intracellularly accumulated IL-beta by activating the IL-1-beta-converting enzyme/caspase 1.  相似文献   

10.
Pro-inflammatory cytokines are implicated as the main mediators of beta-cell death during type 1 diabetes but the exact mechanisms remain unknown. This study examined the effects of interleukin-1beta (IL-1beta), interferon-gamma (IFNgamma) and tumour necrosis factor alpha (TNFalpha) on a rat insulinoma cell line (RIN-r) in order to identify the core mechanism of cytokine-induced beta-cell death. Treatment of cells with a combination of IL-1beta and IFNgamma (IL-1beta/IFNgamma)induced apoptotic cell death. TNFalpha neither induced beta-cell death nor did it potentiate the effects of IL-1beta, IFNgamma or IL-1beta/IFNgamma . The cytotoxic effect of IL-1beta/IFNgamma was associated with the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide. Adenoviral-mediated expression of iNOS (AdiNOS) alone was sufficient to induce caspase activity and apoptosis. The broad range caspase inhibitor, Boc-D-fmk, blocked IL-1beta/IFNgamma -induced caspase activity, but not nitric oxide production nor cell death. However, pre-treatment with L-NIO, a NOS inhibitor, prevented nitric oxide production, caspase activity and reduced apoptosis. IL-1beta/IFNgamma -induced apoptosis was accompanied by loss of mitochondrial membrane potential, release of cytochrome c and cleavage of pro-caspase-9, -7 and -3. Transduction of cells with Ad-Bcl-X(L) blocked both iNOS and cytokine-mediated mitochondrial changes and subsequent apoptosis, downstream of nitric oxide. We conclude that cytokine-induced nitric oxide production is both essential and sufficient for caspase activation and beta-cell death, and have identified Bcl-X(L) as a potential target to combat beta-cell apoptosis.  相似文献   

11.
P A Krasney  P R Young 《Cytokine》1992,4(2):134-143
Because the cytokine interleukin-1 beta (IL-1 beta) lacks a classical hydrophobic signal sequence, it has been unclear how it is released from cells, and whether release proceeds via a novel mechanism or through non-specific leakage. To address this issue, we have examined the secretion of the recombinant forms of human IL-1 beta from COS monkey kidney cells, which express low levels of endogenous IL-1 beta. Four proteins were expressed: precursor and mature IL-1 beta and precursor and mature IL-1 beta fused to an amino terminal hydrophobic signal sequence from human tissue plasminogen activator. By monitoring the appearance of a known cytosolic protein (ATP citrate lyase) in the medium, we find that the unmodified IL-1 beta s are non-specifically released in very small quantities from the cytosol. On the other hand, the signal sequence-modified IL-1 beta s are glycosylated and efficiently secreted by the ER/Golgi pathway. The secreted, modified-mature protein is also biologically active, suggesting that this pathway has been bypassed for reasons other than maintaining the structural integrity of IL-1 beta. More likely the alternative pathway is a critical aspect of IL-1 biology. The differences in kinetics and quantity of IL-1 beta release from monocytic and COS cells suggest that COS cells lack critical components for the rapid release seen in monocytes.  相似文献   

12.
Both interleukin-1beta (IL-1beta) and prostaglandins (PGs) are important mediators of physiological and pathophysiological processes in the brain. PGE2 exerts its effects by binding to four different types of PGE2 receptors named EP1-EP4. EP3 has found to be expressed in neurons, whereas expression of EP3 in glial cells has not been reported in the brain yet. Here we describe IL-1beta-induced EP3 receptor expression in human astrocytoma cells, primary astrocytes of rat and human origin and in rat brain. Using western blot, we found a marked up-regulation of EP3 receptor synthesis in human and rat primary glial cells. Intracerebroventricular administration of IL-1beta stimulated EP3 receptor synthesis in rat hippocampus. The analysis of involved signal transduction pathways by pathway-specific inhibitors revealed an essential role of protein kinase C and nuclear factor-kappaB in astrocytic IL-1beta-induced EP3 synthesis. Our data suggest that PGE2 signaling in the brain may be altered after IL-1beta release due to up-regulation of EP3 receptors. This might play an important role in acute and chronic conditions such as cerebral ischemia, traumatic brain injury, HIV-encephalitis, Alzheimer's disease and prion diseases in which a marked up-regulation of IL-1beta is followed by a prolonged increase of PGE2 levels in the brain.  相似文献   

13.
In the present study, we have shown that IL-1beta increased BDNF mRNA expression in hypothalamic neuron-enriched cultures whereas it reduced this expression in mixed cultures, i.e. containing astrocytes and neurons. Because functional relationships between stress and immunity signals are well documented we investigated the possible interaction between BDNF and IL-1beta in hypothalamic neurons. Notably, we investigated whether IL-1beta affected BDNF expression in vitro either on hypothalamic mixed cultures or on neuron-enriched cultures. We found that the response to IL-1beta was stimulatory when directly examined in neurons but was inhibitory when astrocytes were present in the cultures. Since it has been documented that astrocytes release PGE2 in response to IL-1beta, we examined the effect of indomethacin (a PGE2 synthesis inhibitor) on mixed or neuron-enriched cultures treated with IL-1beta. Indomethacin blocked both stimulatory and inhibitory IL-1beta effects on BDNF mRNA expression whereas picrotoxin (a GABA(A) blocker) or MK-801 (a NMDA receptor blocker) had no effect on BDNF mRNA levels. About 3 and 6h treatments of cells with exogenous PGE2 reproduced the effects of IL-1beta on neuron-enriched or on mixed cultures suggesting that PGE2 was involved in BDNF mRNA regulation. Analysis of PGE2 receptors mRNA expression revealed that the PGE2 receptor pattern was changed when neuron-enriched cultures were treated with conditioned medium produced by astrocytes treated with IL-1beta. Thus, EP3 mRNA levels were increased while EP1 and EP4 messengers were unchanged. This increased expression of the inhibitory prostaglandin receptor under astrocyte influence can explain the inhibition of BDNF mRNA levels observed in mixed cultures following IL-1beta or PGE2 treatment. Finally, we demonstrated by immunocytochemistry that EP3 receptors had a neuronal localization in the hypothalamic cultures. Taken together, these data contribute to underline an emerging physiological concept postulating that a same molecule may have opposite effects as a function of the cellular context.  相似文献   

14.
ATP has been indicated as a primary factor in microglial response to brain injury and inflammation. By acting on different purinergic receptors 2, ATP is known to induce chemotaxis and stimulate the release of several cytokines from these cells. The activation of purinergic receptors 2 in microglia can be triggered either by ATP deriving from dying cells, at sites of brain injury or by ATP released from astrocytes, in the absence of cell damage. By the use of a biochemical approach integrated with video microscopy experiments, we investigated the functional consequences triggered in microglia by ATP released from mechanically stimulated astrocytes, in mixed glial cocultures. Astrocyte-derived ATP induced in nearby microglia the formation and the shedding of membrane vesicles. Vesicle formation was inhibited by the ATP-degrading enzyme apyrase or by P2X(7)R antagonists. Isolation of shed vesicles, followed by IL-1beta evaluation by a specific ELISA revealed the presence of the cytokine inside the vesicular organelles and its subsequent efflux into the extracellular medium. IL-1beta efflux from shed vesicles was enhanced by ATP stimulation and inhibited by pretreatment with the P2X(7) antagonist oxidized ATP, thus indicating a crucial involvement of the pore-forming P2X(7)R in the release of the cytokine. Our data identify astrocyte-derived ATP as the endogenous factor responsible for microvesicle shedding in microglia and reveal the mechanisms by which astrocyte-derived ATP triggers IL-1beta release from these cells.  相似文献   

15.
16.
Interleukin (IL)-18, a member of the IL-1 cytokine family, is an important mediator of peripheral inflammation and host defence responses. IL-1 is a key proinflammatory cytokine in the brain, but the role of IL-18 in the CNS is not yet clear. The objective of this study was to investigate the actions of IL-18 on mouse glial cells. IL-18 induced intracellular expression of IL-1 alpha and proIL-1 beta, and release of IL-6 from mixed glia. Treatment of lipopolysaccharide-primed microglia with adenosine triphosphate (ATP), an endogenous secondary stimulus, induced IL-1 beta and IL-18 release. Although deletion of the IL-18 gene did not affect IL-1 beta expression or release in this experimental paradigm, IL-1 beta knockout microglia released significantly less IL-18 compared to wild-type microglia. In addition, ATP induced release of mature IL-1 beta from IL-18-primed microglia. These data suggest that IL-18 may contribute to inflammatory responses in the brain, and demonstrate that, in spite of several common features, IL-18 and IL-1 beta differ in their regulation and actions.  相似文献   

17.
Mounting evidence supports the hypothesis that pro-inflammatory cytokines secreted by astrocytes and microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Here we examine the involvement of interleukin-1beta (IL-1beta) and microglia activation in nociceptive processing in rat models of spinal cord inflammation. Following application of lipopolysaccharide (LPS) to an ex vivo dorsal horn slice preparation, we observed rapid secretion of IL-1beta which was prevented by inhibition of glial cell metabolism and by inhibitors of either p38 mitogen-activated protein kinase (MAPK) or caspase 1. LPS superfusion also induced rapid secretion of active caspase 1 and apoptosis-associated speck-like protein containing a caspase recruitment domain from the isolated dorsal horn. Extensive microglial cell activation in the dorsal horn, as determined by immunoreactivity for phosphorylated p38 MAPK, was found to correlate with the occurrence of IL-1beta secretion. In behavioural studies, intrathecal injection of LPS in the lumbar spinal cord produced mechanical hyperalgesia in the rat hind-paws which was attenuated by concomitant injections of a p38 MAPK inhibitor, a caspase 1 inhibitor or the rat recombinant interleukin 1 receptor antagonist. These data suggest a critical role for the cytokine IL-1beta and caspase 1 rapidly released by activated microglia in enhancing nociceptive transmission in spinal cord inflammation.  相似文献   

18.
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.  相似文献   

19.
The putative new interleukin (IL)-1 family member IL-1F8 (IL-1eta, IL-1H2) has been shown recently to activate mitogen activated protein kinases (MAPKs), extracellular signal-regulated protein kinase (ERK1/2) and c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NFkappa B) via a mechanism that requires IL-1Rrp2 expression in cell lines. The aim of this study was to test the hypothesis that IL-1F8 contributes to brain inflammation and injury, by studying its expression and actions in the different cell types of the mouse brain in culture. Messenger RNA for IL-1F8 was detected in neurons and glia (microglial cells, oligodendrocytes progenitor cells and to a lesser extent astrocytes) by RT-PCR. Bacterial lipopolysaccharide (LPS) had no effect on IL-1F8 mRNA levels in mixed glial cultures. Recombinant mouse IL-1beta induced strong activation of ERK1/2, p38, JNK and NFkappa B, and significant release of IL-6 and PGE2, which was blocked by IL-1ra. In contrast, recombinant mouse IL-1F8 did not influence any of these parameters. These results demonstrate that CNS cells may be a source of IL-1F8, but the failure of LPS to modulate IL-1F8 mRNA expression, and of recombinant IL-1F8 to induce any of the classical IL-1 responses, suggest that this cytokine has restricted activities in the brain, or that it may act via alternative pathway(s).  相似文献   

20.
During early pregnancy, an environment of relative low oxygen tension is essential for normal embryonic and placental vasculature. In low-oxygen conditions, the hypoxic-inducible factor-1 (HIF-1), composed of alpha and beta subunits, controls the expression of a number of genes such as vascular endothelial growth factor (VEGF), a key angiogenic factor. The recent studies in some tumor cells have found that the labile component, HIF-1 alpha, is not only activated by hypoxia but also by peptides such as interleukin-1 (IL-1) in normoxia. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to IL-1 beta stimulated the expression of HIF-1 alpha protein. Meanwhile, IL-1 beta also induced the secretion of VEGF in normal human cytotrophoblast cells. Our data indicated that IL-1 beta induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Moreover, treatment of cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited the stimulation of HIF-1 alpha protein expression and VEGF secretion by IL-1 beta. These data indicate that, in normal human cytotrophoblast cells, IL-1 beta induces HIF- 1 alpha-mediated VEGF secretion and that IL-1 beta-stimulated ERK1/2 activation may be involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号