首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics including fiber diameter, alignment and porosity. By developing scaffolds with similar dimensions and topographies to organ- or tissue-specific extracellular matrices (ECM), micro-environments representative to those that cells are exposed to in situ can be created. The airway bronchiole wall, comprised of three main micro-environments, was selected as a model tissue. Using decellularized airway ECM as a guide, we electrospun the non-degradable polymer, polyethylene terephthalate (PET), by three different protocols to produce three individual electrospun scaffolds optimized for epithelial, fibroblast or smooth muscle cell-culture. Using a commercially available bioreactor system, we stably co-cultured the three cell-types to provide an in vitro model of the airway wall over an extended time period.This model highlights the potential for such methods being employed in in vitro diagnostic studies investigating important inter-cellular cross-talk mechanisms or assessing novel pharmaceutical targets, by providing a relevant platform to allow the culture of fully differentiated adult cells within 3D, tissue-specific environments.  相似文献   

2.
Cardiovascular disease remains the leading cause of death worldwide1. Cardiac tissue engineering holds much promise to deliver groundbreaking medical discoveries with the aims of developing functional tissues for cardiac regeneration as well as in vitro screening assays. However, the ability to create high-fidelity models of heart tissue has proven difficult. The heart’s extracellular matrix (ECM) is a complex structure consisting of both biochemical and biomechanical signals ranging from the micro- to the nanometer scale2. Local mechanical loading conditions and cell-ECM interactions have recently been recognized as vital components in cardiac tissue engineering3-5.A large portion of the cardiac ECM is composed of aligned collagen fibers with nano-scale diameters that significantly influences tissue architecture and electromechanical coupling2. Unfortunately, few methods have been able to mimic the organization of ECM fibers down to the nanometer scale. Recent advancements in nanofabrication techniques, however, have enabled the design and fabrication of scalable scaffolds that mimic the in vivo structural and substrate stiffness cues of the ECM in the heart6-9.Here we present the development of two reproducible, cost-effective, and scalable nanopatterning processes for the functional alignment of cardiac cells using the biocompatible polymer poly(lactide-co-glycolide) (PLGA)8 and a polyurethane (PU) based polymer. These anisotropically nanofabricated substrata (ANFS) mimic the underlying ECM of well-organized, aligned tissues and can be used to investigate the role of nanotopography on cell morphology and function10-14.Using a nanopatterned (NP) silicon master as a template, a polyurethane acrylate (PUA) mold is fabricated. This PUA mold is then used to pattern the PU or PLGA hydrogel via UV-assisted or solvent-mediated capillary force lithography (CFL), respectively15,16. Briefly, PU or PLGA pre-polymer is drop dispensed onto a glass coverslip and the PUA mold is placed on top. For UV-assisted CFL, the PU is then exposed to UV radiation (λ = 250-400 nm) for curing. For solvent-mediated CFL, the PLGA is embossed using heat (120 °C) and pressure (100 kPa). After curing, the PUA mold is peeled off, leaving behind an ANFS for cell culture. Primary cells, such as neonatal rat ventricular myocytes, as well as human pluripotent stem cell-derived cardiomyocytes, can be maintained on the ANFS2.  相似文献   

3.
Cancer is one of the leading causes of death worldwide. Current therapeutic strategies are predominantly developed in 2D culture systems, which inadequately reflect physiological conditions in vivo. Biological 3D matrices provide cells an environment in which cells can self-organize, allowing the study of tissue organization and cell differentiation. Such scaffolds can be seeded with a mixture of different cell types to study direct 3D cell-cell-interactions. To mimic the 3D complexity of cancer tumors, our group has developed a 3D in vitro tumor test system.Our 3D tissue test system models the in vivo situation of malignant peripheral nerve sheath tumors (MPNSTs), which we established with our decellularized porcine jejunal segment derived biological vascularized scaffold (BioVaSc). In our model, we reseeded a modified BioVaSc matrix with primary fibroblasts, microvascular endothelial cells (mvECs) and the S462 tumor cell line. For static culture, the vascular structure of the BioVaSc is removed and the remaining scaffold is cut open on one side (Small Intestinal Submucosa SIS-Muc). The resulting matrix is then fixed between two metal rings (cell crowns).Another option is to culture the cell-seeded SIS-Muc in a flow bioreactor system that exposes the cells to shear stress. Here, the bioreactor is connected to a peristaltic pump in a self-constructed incubator. A computer regulates the arterial oxygen and nutrient supply via parameters such as blood pressure, temperature, and flow rate. This setup allows for a dynamic culture with either pressure-regulated pulsatile or constant flow.In this study, we could successfully establish both a static and dynamic 3D culture system for MPNSTs. The ability to model cancer tumors in a more natural 3D environment will enable the discovery, testing, and validation of future pharmaceuticals in a human-like model.  相似文献   

4.
Zhu GL  Steudle E 《Plant physiology》1991,95(1):305-315
A double pressure probe technique was used to measure simultaneously water flows and hydraulic parameters of individual cells and of excised roots of young seedlings of maize (Zea mays L.) in osmotic experiments. By following initial flows of water at the cell and root level and by estimating the profiles of driving forces (water potentials) across the root, the hydraulic conductivity of individual cell layers was evaluated. Since the hydraulic conductivity of the cell-to-cell path was determined separately, the hydraulic conductivity of the cell wall material could be evaluated as well (Lpcw = 0.3 to 6.10−9 per meter per second per megapascal). Although, for radial water flow across the cortex and rhizodermis, the apoplasmic path was predominant, the contribution of the hydraulic conductance of the cell-to-cell path to the overall conductance increased significantly from the first layer of the cortex toward the inner layers from 2% to 23%. This change was mainly due to an increase of the hydraulic conductivity of the cell membranes which was Lp = 1.9.10−7 per meter per second per megapascal in the first layer and Lp = 14 to 9.10−7 per meter per second per megapascal in the inner layers of the cortex. The hydraulic conductivity of entire roots depended on whether hydrostatic or osmotic forces were used to induce water flows. Hydrostatic Lpr was 1.2 to 2.3.10−7 per meter per second per megapascal and osmotic Lpr = 1.6 to 2.8.10−8 per meter per second per megapascal. The apparent reflection coefficients of root cells (σs) of nonpermeating solutes (KCI, PEG 6000) decreased from values close to unity in the rhizodermis to about 0.7 to 0.8 in the cortex. In all cases, however, σs was significantly larger than the reflection coefficient of entire roots (σsr). For KCI and PEG 6000, σsr was 0.53 and 0.64, respectively. The results are discussed in terms of a composite membrane model of the root.  相似文献   

5.
Western Hubei is the most concentrated area of forest resources in Hubei Province, and the knowledge of the distribution characteristics of ecosystem carbon density is important to understand the regional characteristics of carbon density and its mechanism of formation. Carbon density and factors influencing different layers in the ecosystem were studied by using field data. The average carbon density of ecosystems in western Hubei was 159.05 t/hm2; the carbon density of different forest types in descending order was Abies fargesii forests (362.25 t/hm2), mixed broadleaf-conifer forests (154.13 t/hm2), broad-leaved forests (146.09 t/hm2), and coniferous forests (135.76 t/hm2), and ecosystem carbon density increased with increasing age. The carbon density of the arborous layer, shrub layer, and soil layer of A. fargesii forests was significant higher than that of the other forests (P < 0.05), indicating the carbon storage per unit area of A. fargesii forests, which grow at higher elevations, was the greatest. The carbon density in arborous layers of broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests was 39.29 t/hm2, 48.99 t/hm2, and 48.39 t/hm2, respectively. Those of the soil layer were 102.96 t/hm2, 100.97 t/hm2, and 82.37 t/hm2, respectively, and there were no significant differences among them. Among the three forest types, carbon density in the litter layer was greater than that of the shrub layer, which indicated the litter layer plays an important role in carbon storage. The carbon density of mixed broadleaf-conifer forests was greatest, excluding A. fargesii forests, in medium (58.71 t/hm2) and mature forests (79.66 t/hm2). Thus, the carbon sink of mixed broadleaf-conifer forests had more potential than the others at the medium and mature forest stage. The soil layer carbon density in different forests constituted 60.67—70.48% of the entire ecosystem, and was 1.70—2.62 times greater than that of the arborous layer. There are many factors influencing ecosystem carbon density, which result from the interaction of environmental and topographical factors. The main explanatory variables of carbon density of the region were altitude, precipitation, and canopy density. The vegetation and soil layer carbon density increased as altitude increased, and the rate of change for every vertical 100 m was 1.3 t/hm2 and 1.9 t/hm2, respectively (P < 0.05). Although the annual average precipitation only affected the carbon density of the vegetation, it increased to 4 t/hm2 (P < 0.01) when average precipitation was >100 mm.  相似文献   

6.

Introduction

Polymer-based delivery systems offer innovative intra-cavity administration of drugs, with the potential to better target micro-deposits of cancer cells in brain parenchyma beyond the resected cavity. Here we evaluate clinical utility, toxicity and sustained drug release capability of a novel formulation of poly(lactic-co-glycolic acid) (PLGA)/poly(ethylene glycol) (PEG) microparticles.

Methods

PLGA/PEG microparticle-based matrices were molded around an ex vivo brain pseudo-resection cavity and analyzed using magnetic resonance imaging and computerized tomography. In vitro toxicity of the polymer was assessed using tumor and endothelial cells and drug release from trichostatin A-, etoposide- and methotrexate-loaded matrices was determined. To verify activity of released agents, tumor cells were seeded onto drug-loaded matrices and viability assessed.

Results

PLGA/PEG matrices can be molded around a pseudo-resection cavity wall with no polymer-related artifact on clinical scans. The polymer withstands fractionated radiotherapy, with no disruption of microparticle structure. No toxicity was evident when tumor or endothelial cells were grown on control matrices in vitro. Trichostatin A, etoposide and methotrexate were released from the matrices over a 3-4 week period in vitro and etoposide released over 3 days in vivo, with released agents retaining cytotoxic capabilities. PLGA/PEG microparticle-based matrices molded around a resection cavity wall are distinguishable in clinical scanning modalities. Matrices are non-toxic in vitro suggesting good biocompatibility in vivo. Active trichostatin A, etoposide and methotrexate can be incorporated and released gradually from matrices, with radiotherapy unlikely to interfere with release.

Conclusion

The PLGA/PEG delivery system offers an innovative intra-cavity approach to administer chemotherapeutics for improved local control of malignant brain tumors.  相似文献   

7.
The sintering processing of hydroxyapatite (HAP) powder was studied using selective laser sintering for bone tissue engineering. The effect of laser energy density on the microstructure, phase composition and mechanical properties of the sintered samples was investigated. The results indicate that the average grain size increases from 0.211 ± 0.039 to 0.979 ± 0.133 μm with increasing the laser energy density from 2.0 to 5.0 J/mm2. The maximum value of Vickers hardness and fracture toughness were 4.0 ± 0.13 Gpa and 1.28 ± 0.033 MPam1/2, respectively, when the laser energy density was 4.0 J/mm2. The XRD results indicated that the nano-HAP was decomposed into TCP with the laser energy density of above 4.0 J/mm2. In vitro bioactivity after soaking in simulated body fluid (SBF) for 3 ~ 12 days showed that a bone-like apatite layer on the surface of the sintered samples. It indicated that the HAP scaffold possesses favorable mechanical properties and bioactivity, and may be used for bone tissue engineering.  相似文献   

8.
The adult mouse retinal stem cell (RSC) is a rare quiescent cell found within the ciliary epithelium (CE) of the mammalian eye1,2,3. The CE is made up of non-pigmented inner and pigmented outer cell layers, and the clonal RSC colonies that arise from a single pigmented cell from the CE are made up of both pigmented and non-pigmented cells which can be differentiated to form all the cell types of the neural retina and the RPE. There is some controversy about whether all the cells within the spheres all contain at least some pigment4; however the cells are still capable of forming the different cell types found within the neural retina1-3. In some species, such as amphibians and fish, their eyes are capable of regeneration after injury5, however; the mammalian eye shows no such regenerative properties. We seek to identify the stem cell in vivo and to understand the mechanisms that keep the mammalian retinal stem cells quiescent6-8, even after injury as well as using them as a potential source of cells to help repair physical or genetic models of eye injury through transplantation9-12. Here we describe how to isolate the ciliary epithelial cells from the mouse eye and grow them in culture in order to form the clonal retinal stem cell spheres. Since there are no known markers of the stem cell in vivo, these spheres are the only known way to prospectively identify the stem cell population within the ciliary epithelium of the eye.  相似文献   

9.
Renal function and continence of urine are critically dependent on the proper function of the urinary bladder, which stores urine at low pressure and expels it with a precisely orchestrated contraction. A number of congenital and acquired urological anomalies including posterior urethral valves, benign prostatic hyperplasia, and neurogenic bladder secondary to spina bifida/spinal cord injury can result in pathologic tissue remodeling leading to impaired compliance and reduced capacity1. Functional or anatomical obstruction of the urinary tract is frequently associated with these conditions, and can lead to urinary incontinence and kidney damage from increased storage and voiding pressures2. Surgical implantation of gastrointestinal segments to expand organ capacity and reduce intravesical pressures represents the primary surgical treatment option for these disorders when medical management fails3. However, this approach is hampered by the limitation of available donor tissue, and is associated with significant complications including chronic urinary tract infection, metabolic perturbation, urinary stone formation, and secondary malignancy4,5.Current research in bladder tissue engineering is heavily focused on identifying biomaterial configurations which can support regeneration of tissues at defect sites. Conventional 3-D scaffolds derived from natural and synthetic polymers such as small intestinal submucosa and poly-glycolic acid have shown some short-term success in supporting urothelial and smooth muscle regeneration as well as facilitating increased organ storage capacity in both animal models and in the clinic6,7. However, deficiencies in scaffold mechanical integrity and biocompatibility often result in deleterious fibrosis8, graft contracture9, and calcification10, thus increasing the risk of implant failure and need for secondary surgical procedures. In addition, restoration of normal voiding characteristics utilizing standard biomaterial constructs for augmentation cystoplasty has yet to be achieved, and therefore research and development of novel matrices which can fulfill this role is needed.In order to successfully develop and evaluate optimal biomaterials for clinical bladder augmentation, efficacy research must first be performed in standardized animal models using detailed surgical methods and functional outcome assessments. We have previously reported the use of a bladder augmentation model in mice to determine the potential of silk fibroin-based scaffolds to mediate tissue regeneration and functional voiding characteristics.11,12 Cystometric analyses of this model have shown that variations in structural and mechanical implant properties can influence the resulting urodynamic features of the tissue engineered bladders11,12. Positive correlations between the degree of matrix-mediated tissue regeneration determined histologically and functional compliance and capacity evaluated by cystometry were demonstrated in this model11,12. These results therefore suggest that functional evaluations of biomaterial configurations in rodent bladder augmentation systems may be a useful format for assessing scaffold properties and establishing in vivo feasibility prior to large animal studies and clinical deployment. In the current study, we will present various surgical stages of bladder augmentation in both mice and rats using silk scaffolds and demonstrate techniques for awake and anesthetized cystometry.  相似文献   

10.
The use of nanomaterials has the potential to revolutionize materials science and medicine. Currently, a number of different nanoparticles are being investigated for applications in imaging and therapy. Viral nanoparticles (VNPs) derived from plants can be regarded as self-assembled bionanomaterials with defined sizes and shapes. Plant viruses under investigation in the Steinmetz lab include icosahedral particles formed by Cowpea mosaic virus (CPMV) and Brome mosaic virus (BMV), both of which are 30 nm in diameter. We are also developing rod-shaped and filamentous structures derived from the following plant viruses: Tobacco mosaic virus (TMV), which forms rigid rods with dimensions of 300 nm by 18 nm, and Potato virus X (PVX), which form filamentous particles 515 nm in length and 13 nm in width (the reader is referred to refs. 1 and 2 for further information on VNPs).From a materials scientist''s point of view, VNPs are attractive building blocks for several reasons: the particles are monodisperse, can be produced with ease on large scale in planta, are exceptionally stable, and biocompatible. Also, VNPs are "programmable" units, which can be specifically engineered using genetic modification or chemical bioconjugation methods 3. The structure of VNPs is known to atomic resolution, and modifications can be carried out with spatial precision at the atomic level4, a level of control that cannot be achieved using synthetic nanomaterials with current state-of-the-art technologies.In this paper, we describe the propagation of CPMV, PVX, TMV, and BMV in Vigna ungiuculata and Nicotiana benthamiana plants. Extraction and purification protocols for each VNP are given. Methods for characterization of purified and chemically-labeled VNPs are described. In this study, we focus on chemical labeling of VNPs with fluorophores (e.g. Alexa Fluor 647) and polyethylene glycol (PEG). The dyes facilitate tracking and detection of the VNPs 5-10, and PEG reduces immunogenicity of the proteinaceous nanoparticles while enhancing their pharmacokinetics 8,11. We demonstrate tumor homing of PEGylated VNPs using a mouse xenograft tumor model. A combination of fluorescence imaging of tissues ex vivo using Maestro Imaging System, fluorescence quantification in homogenized tissues, and confocal microscopy is used to study biodistribution. VNPs are cleared via the reticuloendothelial system (RES); tumor homing is achieved passively via the enhanced permeability and retention (EPR) effect12. The VNP nanotechnology is a powerful plug-and-play technology to image and treat sites of disease in vivo. We are further developing VNPs to carry drug cargos and clinically-relevant imaging moieties, as well as tissue-specific ligands to target molecular receptors overexpressed in cancer and cardiovascular disease.  相似文献   

11.
We used a murine model to assess the evolving biomechanical properties of tissue engineered vascular grafts (TEVGs) implanted in the arterial circulation. The initial polymeric tubular scaffold was fabricated from poly(lactic acid)(PLA) and coated with a 50:50 copolymer of poly(caprolactone) and poly(lactic acid)(P[PC/LA]). Following seeding with syngeneic bone marrow derived mononuclear cells, TEVGs (n=50) were implanted as aortic interposition grafts in wild-type mice and monitored serially using ultrasound. A custom biaxial mechanical testing device was used to quantify the in vitro circumferential and axial mechanical properties of grafts explanted at 3 or 7 months. At both times, TEVGs were much stiffer than native tissue in both directions. Repeated mechanical testing of some TEVGs treated with elastase or collagenase suggested that elastin did not contribute significantly to the overall stiffness whereas collagen did contribute. Traditional histology and immunostaining revealed smooth muscle cell layers, significant collagen deposition, and increasing elastin production in addition to considerable scaffold at both 3 and 7 months, which likely dominated the high stiffness seen in mechanical testing. These results suggest that PLA has inadequate in vivo degradation, which impairs cell-mediated development of vascular neotissue having properties closer to native arteries. Assessing contributions of individual components, such as elastin and collagen, to the developing neovessel is needed to guide computational modeling that may help to optimize the design of the TEVG.  相似文献   

12.
Abscisic Acid localization and metabolism in barley aleurone layers   总被引:7,自引:6,他引:1       下载免费PDF全文
Aleurone layers of Hordeum vulgare, cv. `Himalaya' took up [14C]-abscisic acid (ABA) when incubated for various times. Radioactivity accumulated with time in a low speed, DNA-containing pellet accounting for 1.6 to 2.3% of the radioactivity recovered in subcellular fractions at 18 hours. Thin layer chromatography of ethanolic or methanolic extracts of the cytosol, which contained greater than 95% of the radioactivity taken up by layers, revealed that labeled ABA was metabolized to phaseic acid (PA) and 4′-dihydrophaseic acid (DPA) and three polar metabolites Mx1, Mx2, and Mx3. ABA was not metabolized by endosperm, incubated under conditions used for layers, indicating that metabolism was tissue-specific. Layers metabolized [3H]DPA to Mx1 and Mx2. ABA, PA, and DPA-methyl ester and epi-DPA-methyl ester inhibited synthesis of α-amylase by layers incubated for either 37 or 48 hours. These layers converted the methyl DPA and epi-methyl-DPA esters to their respective acids. DPA did not inhibit Lactuca sativa germination or root and coleoptile elongation of germinating Hordeum vulgare seeds, or coleoptile elongation of germinating Zea mays seeds.  相似文献   

13.
刘春利  胡伟  贾宏福  邵明安 《生态学报》2012,32(4):1211-1219
在黄土高原水蚀风蚀交错区坡面(40 m×350 m)尺度上进行网格(10 m×10 m)取样,用经典统计学和地统计学相结合研究了180个土壤剖面(0-200 cm)各土层扰动土饱和导水率(Ks) 的空间异质性及分布格局。结果表明: 0-20 cm土层的Ks值(5.36×10-3 cm/s)最大,>20-200 cm各土层的Ks值均小于表层,其值介于4.32×10-3-4.76×10-3 cm/s之间。各土层Ks的变异程度相近,均属于中等变异。>20-200 cm各土层Ks 的Kriging 插值图分布格局也表现出一致性,因此可用>20-40 cm土层的Ks值来代表深层Ks值对土壤水分运动进行模拟。除了0-20 cm 的Ks的基台值(C +C0)为0.154,其它各土层基台值介于0.202-0.276之间,说明0-20 cm的Ks空间异质性小于>20-200 cm各土层。从比值C/(C+C0)来看, 0-20 cm属于中等自相关,>20-200 cm土层属于强的空间自相关性,同样也验证了黄土高原水蚀风蚀交错区土壤剖面饱和导水率具有空间变异特征。  相似文献   

14.
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 104 cells/cm2 to 5.3 x 104 cells/cm2 followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.  相似文献   

15.
黄土丘陵区油松人工林生态系统碳密度及其分配   总被引:2,自引:0,他引:2  
杨玉姣  陈云明  曹扬 《生态学报》2014,34(8):2128-2136
以子午岭林区油松(Pinus tabulaeformis)人工林为研究对象,通过野外调查与室内分析,探讨了幼龄9a、中龄23a、近熟33a和成熟47a等不同林龄林分的生物量、含碳率、碳密度及其时空分布特征。结果表明:(1)油松林各群落平均生物量大小排序为:乔木层(76.12 t/hm2)枯落物层(14.56 t/hm2)林下植被层(3.66 t/hm2)。乔木层生物量随林龄增大而持续增加,各器官中树干所占比例最大(38%—46%),其次为叶和根,枝和皮所占比例最小;林下植被层生物量随林龄增大呈先降低后增加趋势;枯落物层生物量随林龄增大则明显增加。(2)油松乔木、林下灌木、草本、枯落物平均含碳率依次为50.2%、44.5%、43.8%和40.6%。林龄对乔木各器官含碳率无显著影响,不同器官之间含碳率存在显著性差异,具体表现为叶(53.3%)枝(51.4%)皮(50.6%)干(49.8%)根(47.3%);灌木各器官含碳率表现为枝(46.0%)叶(44.8%)根(42.5%),草本则是地上(45.2%)地下(40.2%)。土壤(0—100 cm)含碳率在0.3%—2.7%之间,且具有明显的垂直分布特征:表层含碳率高,并随土壤深度的增加逐渐降低。(3)9、23、33和47年生油松林生态系统碳密度分别为70.49、100.48、167.71和144.26 t/hm2,其空间分布序列表现为土壤层植被层枯落物层,且植被层和土壤层是油松人工林的主要碳库。林龄是影响油松林木及群落碳密度积累的主导因子之一。随林龄增加,土壤碳密度所占生态系统碳密度份额逐渐降低,乔木层和枯落物层则逐渐增加。  相似文献   

16.
The 3D encapsulation of cells within hydrogels represents an increasingly important and popular technique for culturing cells and towards the development of constructs for tissue engineering. This environment better mimics what cells observe in vivo, compared to standard tissue culture, due to the tissue-like properties and 3D environment. Synthetic polymeric hydrogels are water-swollen networks that can be designed to be stable or to degrade through hydrolysis or proteolysis as new tissue is deposited by encapsulated cells. A wide variety of polymers have been explored for these applications, such as poly(ethylene glycol) and hyaluronic acid. Most commonly, the polymer is functionalized with reactive groups such as methacrylates or acrylates capable of undergoing crosslinking through various mechanisms. In the past decade, much progress has been made in engineering these microenvironments - e.g., via the physical or pendant covalent incorporation of biochemical cues - to improve viability and direct cellular phenotype, including the differentiation of encapsulated stem cells (Burdick et al.).The following methods for the 3D encapsulation of cells have been optimized in our and other laboratories to maximize cytocompatibility and minimize the number of hydrogel processing steps. In the following protocols (see Figure 1 for an illustration of the procedure), it is assumed that functionalized polymers capable of undergoing crosslinking are already in hand; excellent reviews of polymer chemistry as applied to the field of tissue engineering may be found elsewhere (Burdick et al.) and these methods are compatible with a range of polymer types. Further, the Michael-type addition (see Lutolf et al.) and light-initiated free radical (see Elisseeff et al.) mechanisms focused on here constitute only a small portion of the reported crosslinking techniques. Mixed mode crosslinking, in which a portion of reactive groups is first consumed by addition crosslinking and followed by a radical mechanism, is another commonly used and powerful paradigm for directing the phenotype of encapsulated cells (Khetan et al., Salinas et al.).  相似文献   

17.
Mucins are complex and heavily glycosylated O-linked glycoproteins, which contain more than 70% carbohydrate by weight1-3. Secreted mucins, produced by goblet cells and the gastric mucosa, provide the scaffold for a micrometers-thick mucus layer that lines the epithelia of the gut and respiratory tract3,4. In addition to mucins, mucus layers also contain antimicrobial peptides, cytokines, and immunoglobulins5-9. The mucus layer is an important part of host innate immunity, and forms the first line of defense against invading microorganisms8,10-12. As such, the mucus is subject to numerous interactions with microbes, both pathogens and symbionts, and secreted mucins form an important interface for these interactions. The study of such biological interactions usually involves histological methods for tissue collection and staining. The two most commonly used histological methods for tissue collection and preservation in the clinic and in research laboratories are: formalin fixation followed by paraffin embedding, and tissue freezing, followed by embedding in cryo-protectant media.Paraffin-embedded tissue samples produce sections with optimal qualities for histological visualization including clarity and well-defined morphology. However, during the paraffin embedding process a number of epitopes become altered and in order to study these epitopes, tissue sections have to be further processed with one of many epitope retrieval methods13. Secreted mucins and lipids are extracted from the tissue during the paraffin-embedding clearing step, which requires prolong incubation with organic solvents (xylene or Citrisolv). Therefore this approach is sub-optimal for studies focusing on the nature and distribution of mucins and mucus in vivo.In contrast, freezing tissues in Optimal Cutting Temperature (OCT) embedding medium avoids dehydration and clearing of the sample, and maintains the sample hydration. This allows for better preservation of the hydrated mucus layer, and thus permits the study of the numerous roles of mucins in epithelial biology. As this method requires minimal processing of the tissue, the tissue is preserved in a more natural state. Therefore frozen tissues sections do not require any additional processing prior to staining and can be readily analyzed using immunohistochemistry methods.We demonstrate the preservation of micrometers-thick secreted mucus layer in frozen colon samples. This layer is drastically reduced when the same tissues are embedded in paraffin. We also demonstrate immunofluorescence staining of glycan epitopes presented on mucins using plant lectins. The advantage of this approach is that it does not require the use of special fixatives and allows utilizing frozen tissues that may already be preserved in the laboratory.  相似文献   

18.
Three-dimensional in vitro extracellular matrix models provide a physiological alternative to regular two-dimensional cell culture, though they lack the full diversity of molecular composition and physical properties of whole-animal systems. Cell-derived matrices are extracellular matrices that are the product of matrix secretion and assembly by cells cultured at high density in vitro. After the removal of the cells that produced the matrix, an assembled matrix scaffold is left that closely mimics native stromal fiber organization and molecular content. Cell-derived matrices have been shown to impart in vivo-like responses to cells cultured in these matrices. In this review, we focus on mechanisms through which the distinct molecular and topographical composition of cell-derived matrices directs cellular behavior, specifically through regulation of cell-matrix adhesions and subsequent contributions to the process of cell migration.  相似文献   

19.
Manabe  T.  Nishimura  N.  Miura  M.  Yamamoto  S. 《Plant Ecology》2000,151(2):181-197
The population structure and spatial pattern of major tree species in a warm-temperate old-growth evergreen broad-leaved forest in the Tatera Forest Reserve of Japan were investigated. All stems 5 cm in diameter at breast height (DBH) were mapped on a 4 ha plot and analyses were made of population structure and the spatial distribution and spatial association of stems in different vertical layers for nine species. This was done in the context of scale dependency. The plot was located on a very gentle slope and 17.1% of its canopy layer was in gaps. It contained 45 woody plant species and 4570 living stems with a basal area of 63.9 m2 ha–1. Castanopsis cuspidata var. sieboldii, the most dominant species for the basal area, had the maximum DBH among the species present, fewer smaller stems and a lower coefficient of statistical skewness of the DBH distribution. The second most dominant species, Dystilium racemosum, had the highest stem density (410 ha–1), more abundant smaller stems and a relatively higher coefficient of skewness. Most stems in different vertical layers showed a weakly aggregated distribution with loose colonies as basic units. Gap dependency for the occurrence of stems under the canopy layer was weak. Maximum slope degree of the plot also weakly affected the occurrence of stems. Spatial associations varied among intra- and interspecific cohorts in the different layers and spatial scales examined, and positive associations among cohorts were found more frequently as the scales examined became larger. This tendency suggests that key factors forming observed spatial associations might vary with the spatial scales.  相似文献   

20.
Conducting polymers have attracted great attention since the discovery of high conductivity in doped polyacetylene in 19771. They offer the advantages of low weight, easy tailoring of properties and a wide spectrum of applications2,3. Due to sensitivity of conducting polymers to environmental conditions (e.g., air, oxygen, moisture, high temperature and chemical solutions), lithographic techniques present significant technical challenges when working with these materials4. For example, current photolithographic methods, such as ultra-violet (UV), are unsuitable for patterning the conducting polymers due to the involvement of wet and/or dry etching processes in these methods. In addition, current micro/nanosystems mainly have a planar form5,6. One layer of structures is built on the top surfaces of another layer of fabricated features. Multiple layers of these structures are stacked together to form numerous devices on a common substrate. The sidewall surfaces of the microstructures have not been used in constructing devices. On the other hand, sidewall patterns could be used, for example, to build 3-D circuits, modify fluidic channels and direct horizontal growth of nanowires and nanotubes.A macropunching method has been applied in the manufacturing industry to create macropatterns in a sheet metal for over a hundred years. Motivated by this approach, we have developed a micropunching lithography method (MPL) to overcome the obstacles of patterning conducting polymers and generating sidewall patterns. Like the macropunching method, the MPL also includes two operations (Fig. 1): (i) cutting; and (ii) drawing. The "cutting" operation was applied to pattern three conducting polymers4, polypyrrole (PPy), Poly(3,4-ethylenedioxythiophen)-poly(4-styrenesulphonate) (PEDOT) and polyaniline (PANI). It was also employed to create Al microstructures7. The fabricated microstructures of conducting polymers have been used as humidity8, chemical8, and glucose sensors9. Combined microstructures of Al and conducting polymers have been employed to fabricate capacitors and various heterojunctions9,10,11. The "cutting" operation was also applied to generate submicron-patterns, such as 100- and 500-nm-wide PPy lines as well as 100-nm-wide Au wires. The "drawing" operation was employed for two applications: (i) produce Au sidewall patterns on high density polyethylene (HDPE) channels which could be used for building 3D microsystems12,13,14, and (ii) fabricate polydimethylsiloxane (PDMS) micropillars on HDPE substrates to increase the contact angle of the channel15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号