首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple‐habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigated the effects of landscape‐scale amount of and patch isolation from both nesting habitat (woody plants) and foraging habitat (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap‐nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to main pollen sources. Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensating scarcity of its main larval food by exploiting alternative food sources.  相似文献   

2.
Abstract.  1. This paper explores the potential effects of host-plant fragmentation on cork oak gall wasp populations (Cynipidae, Hymenoptera) and on their predators, lethal inquilines, and parasitoids. To address this objective, galls were collected across a gradient of cork oak ( Quercus suber ) forest fragmentation in the East Pyrenees (Albera, Spain), and they were incubated to obtain the parasitism rates.
2. Two hypotheses were tested: (1) Host-plant fragmentation may induce a decline in gall wasp populations because of area and isolation effects on local extinction and dispersal; as a consequence of that, parasitoids may decline even more strongly in fragmented habitats than their prey. (2) Host-plant fragmentation may cause a decline in gall wasp parasitoid populations that, in turn, can lead to an ecological release in their prey populations.
3. Among the eight cork oak gall wasps sampled in the study area of Albera, the gall abundances of three species ( Callirhytis glandium , Callirhytis rufescens , and Andricus hispanicus ) were significantly related to forest fragmentation. The overall abundance of gall wasps was affected by a radius of ≈ 890 m surrounding landscape, presenting constant abundances with forest loss until forest cover is reduced at ≈ 40%; below that value the abundance increased rapidly. Three inquilines and 23 parasitoids species were recorded after gall incubation. In 25 cases, species of inquilines and parasitoids were newly recorded for the corresponding host in the Iberian peninsula.
4. Although the overall parasitism rate was high (1.1), it was uncorrelated with fragmentation and with overall cynipid abundance. These results indicate that host-plant fragmentation was correlated with higher abundance of gall wasps, whereas the parasitism rate could not explain this hyper-abundance in small forest fragments.  相似文献   

3.
1. Habitat fragmentation is a major threat to biodiversity because it disrupts movement between habitat patches. In addition, arthropod fitness may be reduced in fragmented habitats, e.g. due to reduced prey availability. 2. We studied the relationship of spider body condition with habitat fragmentation, population density, and prey availability. We expected that prey availability and population density of spiders would be affected by landscape composition and patch isolation. Body condition should be enhanced by high prey availability, but negatively affected by population density due to competition. 3. We sampled spiders on 30 groups of cherry trees that varied independently in the level of isolation from other woody habitats and in the percentage of woody habitat within 500 m radius. As a measure of body condition, we used residuals of the relationship between individual body mass/opisthosoma width and prosoma width of the two most common orb‐weaving spider species, Nuctenea umbratica Clerck and Araniella opisthographa Kulczynski. 4. Body condition of A. opisthographa was positively correlated with the abundance of flies, which increased with the percentage of forest in the landscape. In contrast, body condition of N. umbratica was reduced at high population densities, presumably due to intraspecific competition. In addition, body condition and population density of A. opisthographa was lower at isolated sites. 5. Our study suggests that effects of landscape fragmentation on body condition vary strongly between spider species, depending on the relative role of food limitation and intraspecific competition.  相似文献   

4.

Background

The metacommunity framework is crucial to the study of functional relations along environmental gradients. Changes in resource grain associated with increasing habitat fragmentation should generate uncoupled responses of interacting species with contrasted dispersal abilities.

Methodology/Principal Findings

Here we tested whether the intensity of parasitism was modified by increasing habitat fragmentation in the well know predator-prey system linking the parasitoid Cotesia glomerata (Hymenoptera: Braconidae) to its main host Pieris brassicae (Lepidoptera: Pieridae). We collected information on herbivorous abundance and parasitism rate along an urbanization gradient from the periphery to the centre of Paris. We showed that butterfly densities were not influenced by habitat fragmentation, whereas parasitism rate sharply decreased along this gradient.

Conclusions/Significance

Our results provide novel insights into the mechanisms underlying the persistence of species in highly fragmented areas. They suggest that differential dispersal abilities could alter functional relationships between prey and predator, notably by a lack of natural predators.  相似文献   

5.
Question: Continua landscape approaches conceptualize the effects of habitat fragmentation on the biota by considering fragmented landscapes as continuous gradients, departing from the view of habitat as either suitable (fragment) or unsuitable (matrix). They also consider the ecological gradients or the ‘Umwelt’ (species‐specific perception of the landscape) to represent the processes that ultimately limit organisms' ability to colonize and persist within habitat remnants. Are these approaches suitable for evaluating the response of plant species to fragmentation? Location: Fragmented mid‐elevation temperate forests, Cantabrian range, Spain. Methods: The presence, abundance and demographic structure of populations of the perennial herb Primula vulgaris were sampled across a continuous extent of 100 ha, subdivided into 400 50 m × 50 m sampling units. These variables were related to forest availability, forest subdivision and edge density, topography and the spatial clumpiness of populations (a measure of plant dispersal constraints and, hence, a major surrogate of plant Umwelt). Results: Fragmentation processes, especially habitat loss, negatively affect P. vulgaris, with a stronger effect on presence than on abundance and demography. Despite the importance of habitat availability, P. vulgaris does not occupy all potentially suitable forest habitat, mostly owing to dispersal constraints. A positive effect of slope on plant presence also suggests some effect of habitat quality in determining establishment and occupancy of forest landscape. Conclusions: Within‐habitat dispersal constraints are as important as forest fragmentation in determining the landscape‐scale distribution of P. vulgaris. By assessing the relative role of the diverse fragmentation processes, and of the species' landscape perception, a continua landscape approach proves to be a valuable tool for predicting plant response to landscape change.  相似文献   

6.
Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.  相似文献   

7.
ABSTRACT.   Forest fragmentation can create negative edge effects that reduce the reproductive success of birds nesting near the forest/nonforest interface, and threaten bird populations deeper in remnant forest habitats. Negative edge effects may be more pronounced in landscapes that are moderately fragmented, particularly where agriculture is the primary land-use fragmenting forests. Information about the extent and strength of edge effects at a site can help guide conservation actions, and determine their effectiveness. We examined edge effects for birds breeding in a nearly contiguous forest fragmented by relatively narrow agricultural corridors in Illinois (USA). We measured rates of nest predation and brood parasitism for Acadian Flycatchers ( Empidonax virescens ) over a continuum of distances from the edge of an agricultural inholding. Nest predation and brood parasitism were highest near the edge and decreased with increasing distance from the edge. Given the cumulative effects of nest predation and brood parasitism on reproductive success, we determined that forest within 600 m of the inholding was sink habitat. We found, however, that deeper forest interior areas currently serve as source habitat, and that conversion of the entire 205 ha agricultural corridor to forest would add 1350 ha of source habitat for Acadian Flycatchers. Such results provide support for a local conservation strategy of forest consolidation and establish baseline measures necessary to determine the relative effectiveness of any subsequent reforestation efforts.  相似文献   

8.
Management of post-harvest woody debris structures (e.g., piles and windrows) may help conserve mammal diversity in commercial forest landscapes. A windrow (continuous woody debris) provides a linear habitat to connect patches and reserves of uncut forest and riparian areas to maintain forest-floor small mammals and allow some of their avian and mammalian predators to access and traverse clearcut openings. However, most post-harvest residues are arranged in independent piles of woody debris (separated by 20–30 m, on average) and we asked if a linear configuration of piles would provide similar habitat conditions for small mammals as that achieved by a windrow of continuous woody debris. We tested two hypotheses (H) that piles of woody debris arranged in a linear configuration, on newly clearcut sites, would (H1) enhance (a) abundance of the major small mammal species (Myodes gapperi and Microtus spp.), and (b) total abundance, species richness, and species diversity of the forest-floor small mammal community; compared with dispersed (conventional) treatment of woody debris. H2 predicted that, because of the continuity of habitat, responses of small mammals in windrows would be greater than those in piles of woody debris. Three study areas were monitored in southern British Columbia, Canada, and each had three treatments of woody debris: dispersed, in a linear set of piles, and as a windrow. Forest-floor small mammals were sampled by live-trapping in spring and fall periods from 2010 to 2012. Woody debris in a linear configuration of piles and in windrows enhanced mean abundance of the southern red-backed vole (M. gapperi), total voles, and total abundance of small mammals compared with the dispersed treatment. Small mammal responses were variable between spring and fall periods, but overall mean values ± 95% CIs indicated that abundance of M. gapperi, total voles, and total small mammals were reasonably similar in piles and windrows.  相似文献   

9.
Increased temperatures and more extreme weather patterns associated with global climate change can interact with other factors that regulate animal populations, but many climate change studies do not incorporate other threats to wildlife in their analyses. We used 20 years of nest‐monitoring data from study sites across a gradient of habitat fragmentation in Missouri, USA, to investigate the relative influence of weather variables (temperature and precipitation) and landscape factors (forest cover and edge density) on the number of young produced per nest attempt (i.e., productivity) for three species of songbirds. We detected a strong forest cover × temperature interaction for the Acadian Flycatcher (Empidonax virescens) on productivity. Greater forest cover resulted in greater productivity because of reduced brood parasitism and increased nest survival, whereas greater temperatures reduced productivity in highly forested landscapes because of increased nest predation but had no effect in less forested landscapes. The Indigo Bunting (Passerina cyanea) exhibited a similar pattern, albeit with a marginal forest cover × temperature interaction. By contrast, productivity of the Northern Cardinal (Cardinalis cardinalis) was not influenced by landscape effects or temperature. Our results highlight a potential difficulty of managing wildlife in response to global change such as habitat fragmentation and climate warming, as the habitat associated with the greatest productivity for flycatchers was also that most negatively influenced by high temperatures. The influence of high temperatures on nest predation (and therefore, nest predators) underscores the need to acknowledge the potential complexity of species' responses to climate change by incorporating a more thorough consideration of community ecology in the development of models of climate impacts on wildlife.  相似文献   

10.
1. Introduced common wasps ( Vespula vulgaris ) reach high densities in the beech forests ( Nothofagus spp.) of the northern South Island, New Zealand, and may be having a severe impact on populations of native invertebrates. An experimental approach was used to test whether reducing the abundance of common wasps increases the probability of native invertebrates surviving. Garden orb-web spiders ( Eriophora pustulosa ) were used because they were easy to collect and could be trained to build webs on a standard frame. Thirty orb-web spiders were placed out on web-frames in each of four study sites in beech forest during periods of low, medium and high wasp abundance, and their rate of removal was measured over a 4-h period. Wasp numbers were reduced by poisoning in two study sites. Using wasp-abundance data from weekly Malaise trap samples in the poisoned and non-poisoned sites, the probability of spider survival over the entire wasp season was modelled and the level of wasp control necessary to protect natural populations of orb-web spiders was estimated.
2. Wasp abundance and the probability of spider survival were negatively correlated, and smaller spiders were likely to survive longer than larger spiders. At the peak of the wasp season, significantly more spiders survived in the poisoned areas than in the non-poisoned areas.
3. The probability of a spider surviving to the end of the wasp season was virtually nil in the non-poisoned sites (5.08 × 10–18), but was also very unlikely in the poisoned areas (3.47 × 10–5).
4. The survival model predicts that wasp abundance would need to be reduced by 80–89.5% over the entire wasp season to protect populations of orb-web spiders.
5. Extrapolation from the model predicts that the invertebrate taxa most vulnerable to wasp predation may have already been removed from the beech forest ecosystem during the 40 years of wasp occupation.  相似文献   

11.
Movements of organisms between habitat remnants can affect metapopulation structure, community assembly dynamics, gene flow and conservation strategy. In the tropical landscapes that support the majority of global biodiversity and where forest fragmentation is accelerating, there is particular urgency to understand how dispersal across habitats mediates the demography, distribution and differentiation of organisms. By employing unique dispersal challenge experiments coupled with exhaustive inventories of birds in a Panamanian lacustrine archipelago, we show that the ability to fly even short distances (< 100 m) between habitat fragments varies dramatically and consistently among species of forest birds, and that this variation correlates strongly with species' extinction histories and current distributions across the archipelago. This extreme variation in flight capability indicates that species' persistence in isolated forest remnants will be differentially mediated by their respective dispersal abilities, and that corridors connecting such fragments will be essential for the maintenance of avian diversity in fragmented tropical landscapes.  相似文献   

12.
Habitat loss and resultant fragmentation are major threats to biodiversity, particularly in tropical and subtropical ecosystems. It is increasingly urgent to understand fragmentation effects, which are often complex and vary across taxa, time and space. We determined whether recent fragmentation of Atlantic forest is causing population subdivision in a widespread and important Neotropical seed disperser: Artibeus lituratus (Chiroptera: Phyllostomidae). Genetic structure within highly fragmented forest in Paraguay was compared to that in mostly contiguous forest in neighbouring Misiones, Argentina. Further, observed genetic structure across the fragmented landscape was compared with expected levels of structure for similar time spans in realistic simulated landscapes under different degrees of reduction in gene flow. If fragmentation significantly reduced successful dispersal, greater population differentiation and stronger isolation by distance would be expected in the fragmented than in the continuous landscape, and genetic structure in the fragmented landscape should be similar to structure for simulated landscapes where dispersal had been substantially reduced. Instead, little genetic differentiation was observed, and no significant correlation was found between genetic and geographic distance in fragmented or continuous landscapes. Furthermore, comparison of empirical and simulated landscapes indicated empirical results were consistent with regular long‐distance dispersal and high migration rates. Our results suggest maintenance of high gene flow for this relatively mobile and generalist species, which could be preventing or significantly delaying reduction in population connectivity in fragmented habitat. Our conclusions apply to A. lituratus in Interior Atlantic Forest, and do not contradict broad evidence that habitat fragmentation is contributing to extinction of populations and species, and poses a threat to biodiversity worldwide.  相似文献   

13.
Agricultural intensification in terms of decreasing landscape complexity and connectivity has negatively affected biodiversity. Linear landscape elements composed of woody vegetation like hedges may counteract this negative trend by providing habitats and enhancing habitat connectivity for different organisms. Here, we tested the impacts of habitat type (forest edges vs. hedges) and hedges’ isolation (connected vs. isolated hedges) from forests as well as microhabitat conditions (percentage of bare ground and width) on trait-specific occurrence of ground-dwelling arthropods, namely spiders and carabids. Arthropods were grouped by habitat specialisation (forest vs. open-habitat species vs. generalists), hunting strategy (web-building or hunting spiders) and dispersal ability (wing morphology of carabids). Spider and carabid assemblage composition was strongly influenced by habitat type and isolation, but not by microhabitat conditions. Activity density of forest species and brachypterous carabids was higher in forest edges compared to hedges, whereas open-habitat species and macropterous carabids showed reverse patterns, with no effects of isolation. Occurrence of generalist carabids, but not spiders, was higher in hedges compared to forest edges. Habitat type and isolation did not affect spiders with different hunting strategy. Microhabitat conditions were less important for spider and carabid occurrence. Our study concludes that on a landscape scale, type of linear woody habitat is more important for arthropod occurrence than isolation effects and microhabitat conditions, depending on traits. Hedges provide refuges for species specialised to open habitats and species with high dispersal ability, such as macropterous carabids. Forest edges enhance persistence of species specialised to forests and species with low dispersal ability, such as brachypterous carabids.  相似文献   

14.
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.  相似文献   

15.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

16.
The mechanisms affecting forest regeneration in human-modified landscapes are attracting increasing attention as tropical forests have been recognized as key habitats for biodiversity conservation, provision of ecosystem services, and human well-being. Here we investigate the effect of the leaf-cutting ants (LCA) Atta opaciceps on regenerating plant assemblages in Caatinga dry forest. Our study encompassed 15 Atta opaciceps colonies located in landscape patches with a gradient of forest cover from 8.7% to 87.8%, where we monitored regenerating individuals (seedlings and saplings of woody and herbaceous plants) in different habitats (nests, foraging areas, and control areas) over one year. We recorded 2,977 regenerating plant individuals, distributed among 55 species from 23 families. Herbaceous plants represented 82.1% and 58.2% of the total number of individuals and species, respectively. Species richness of both the whole and herbaceous plant assemblages increased along the forest cover gradient, but without difference between the habitats. Total plant abundance was highest in control areas followed by foraging areas and nests and this pattern held for both woody and herbaceous plants. Although forest cover did not influence the abundance of herbaceous plants and the whole plant assemblage, it positively affects woody plant abundance across control areas. Forest cover and habitat changed species composition of both the entire regenerating and the herbaceous assemblages. These results together indicate that LCA negatively impact regenerating plant assemblages, particularly in those sites with increased forest cover. As LCA proliferate in human-modified landscapes, they may prevent plant regeneration of disturbed areas.  相似文献   

17.
1. We investigated the effects of forest fragmentation on American martens ( Martes americana Rhoads) by evaluating differences in marten capture rates (excluding recaptures) in 18 study sites with different levels of fragmentation resulting from timber harvest clearcuts and natural openings. We focused on low levels of fragmentation, where forest connectivity was maintained and non-forest cover ranged from 2% to 42%.
2. Martens appeared to respond negatively to low levels of habitat fragmentation, based on the significant decrease in capture rates within the series of increasingly fragmented landscapes. Martens were nearly absent from landscapes having > 25% non-forest cover, even though forest connectivity was still present.
3. Marten capture rates were negatively correlated with increasing proximity of open areas and increasing extent of high-contrast edges. Forested landscapes appeared unsuitable for martens when the average nearest-neighbour distance between open (non-forested) patches was <100 m. In these landscapes, the proximity of open areas created strips of forest edge and eliminated nearly all forest interior.
4. Small mammal densities were significantly higher in clearcuts than in forests, but marten captures were not correlated with prey abundance or biomass associated with clearcuts.
5. Conservation efforts for the marten must consider not only the structural aspects of mature forests, but the landscape pattern in which the forest occurs. We recommend that the combination of timber harvests and natural openings comprise <25% of landscapes ≥9 km2 in size.
6. The spatial pattern of open areas is important as well, because small, dispersed openings result in less forest interior habitat than one large opening at the same percentage of fragmentation. Progressive cutting from a single patch would retain the largest amount of interior forest habitat.  相似文献   

18.
The impact of forest management on diurnal bird assemblages and abundance was investigated in contiguous tracts of eucalypt forest in the Brigalow Belt Bioregion, south central Queensland. Sites were located across three levels of livestock grazing intensity and three levels of selective logging intensity within the most extensive habitat type, Corymbia citriodora‐dominant forest. We recorded a high rate of incidence and large numbers of the hyper‐aggressive noisy miner Manorina melanocephala (Passeriformes: Meliphagidae) at the majority of our survey sites, a phenomenon rarely reported in non‐cleared landscapes. As shown by numerous studies in fragmented landscapes, the distribution of this species in our study had a substantial negative effect upon the distribution of small passerine species. Noisy miners exerted the strongest influence upon small passerine abundance, and masked any forest management effects. However, key habitat features important for small passerines were identified, including a relatively high density of large trees and stems in the midstorey. Selective logging appeared to exert a minimal effect upon noisy miner abundance, whereas grazing intensity had a profound, positive influence. Noisy miners were most abundant in intensively grazed forest with minimal midstorey and a low volume of coarse woody debris. Higher road density in the forest landscape also corresponded with increased numbers of noisy miners. Reduction in grazing pressure in Brigalow Belt forests has the potential to benefit small passerine assemblages across large areas through moderating noisy miner abundance. The strong relationship between noisy miners and small passerines suggests that noisy miner abundance could act as an easily measured indicator of forest condition, potentially contributing to monitoring of forest management outcomes.  相似文献   

19.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

20.
Forest fragmentation is pervasive in tropical landscapes, and one pathway by which fragmentation may negatively impact populations is via edge effects. Early life‐stages are particularly important for species regeneration as they act as bottlenecks, but how edge effects may act differentially on different life‐stages is unknown. This study evaluated edge effects on multiple early life‐stages of a currently common animal‐dispersed, shade‐tolerant tree Tapirira mexicana (Anacardiaceae). The study was conducted in tropical premontane wet forest fragments in a highly deforested region of Costa Rica. The stages assessed were pre‐dispersal predation, primary dispersal, post‐dispersal predation, secondary dispersal, ex situ germination, in situ seed longevity, first and second year seedling abundance, second year seedling survivorship, and basal diameter growth. Results showed that impacts of edge effects were not equal across stages, but were limited to specific stages and times. One stage which may act as a bottleneck for species regeneration was pre‐dispersal predation. Over 60 percent of the seeds were predated by larvae, and predation was higher near the edge than interior habitat. Seeds lost viability within 10 d in the forest. Germination to first year seedling stage was also lower near edges, but such effect was eliminated within a year after that. Primary dispersal, seedling survivorship, and growth were not affected by proximity to edges, and both secondary dispersal and post‐dispersal predation were rare. This study demonstrates that current population abundance may not guarantee future species persistence and the importance of considering multiple life‐stages for a comprehensive assessment of forest fragmentation effects on species regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号