首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field studies were conducted to clarify whether variation in food availability among habitats influences population density, and whether population density has a negative effect on foraging success in the orb-web spider, Nephila clavata. Lifetime food consumption per individual (i.e., foraging success) strongly correlated with mean body size of adult females and mean fecundity in populations. Also, there was a positive correlation between foraging success and population density. Since foraging success reflected potential prey availability in the habitat, food resource appeared to be a limiting factor for populations in this spider. Mean fecundity per individual correlated with population density of the following year, suggesting that decreased reproduction is a major component of food limitation on population density. Consistent defferences in mean body size between particular sites were observed over years, while such difference was less obvious in density. Thus, ranking of food abundance among habitats seems to be predictable between years. A field experiment revealed that an artificial increase in population density had no negative effect on the feeding rate of individuals, suggesting that intraspecific competition for food is not important in this species.  相似文献   

2.
Most kleptoparasitic Argyrodes spiders rely exclusively on host spider webs for obtaining their food. Because their densities occasionally reach high levels within a restricted area, competitive interactions may be important for determining the density of these unique spiders. Here I used two Argyrodes species commonly found on webs of the large orb-web spider Nephila clavata to clarify whether inter- and intraspecific competition influences abundance and within-web distribution by using observational data and field experiment. Removing Argyrodes flavescens from the host webs induced a remarkably high immigration of that species while density on control webs remained almost at the same level, which is evidence for strong intraspecific competition. Larger individuals of A. flavescens were located more frequently at the capture area of the host webs where it is easy to access prey ignored by the host spider, and spiders immigrating into webs from which that species had been removed were smaller in body size, suggesting interference competition for space among conspecific kleptoparasites. Argyrodes bonadea increased in number on webs from which A. flavescens had been removed, and the increase was correlated with the number of A. flavescens removed. This finding is evidence for interspecific competition that is rarely reported in spiders. A multiple regression model including numbers of a conspecific parasite as well as web and body sizes of the host spider could not detect competitive interactions between species, suggesting the importance of experimental approaches. Received: May 22, 2000 / Accepted: December 1, 2000  相似文献   

3.
David H. Wise 《Oecologia》1981,48(2):252-256
Summary A field experiment was conducted to establish whether or not inter-and intraspecific competition occurs between two syntopic species of orb-weaving spiders. Replicated single-species and mixed-species adult populations of the basilica spider, Mecynogea lemniscata, and the labyrinth spider, Metepeira labyrinthea, were established at a range of densities on open experimental units in the species' natural habitat. Each experimental unit was a 4mx1.6mx1m wood frame supporting branches upon which introduced spiders built webs. Survival and reproduction on the units were monitored from 1 August through 1 November 1978,There were no significant negative interspecific effects of density upon either survival or reproduction, which indicates that interspecific competition was not occurring during the experiment. There was statistically significant evidence of intraspecific competition between females for both species, but the negative density effects were small. They explained 5% of the variance in Mecynogea web height, 2% of the variance in Metepeira survival, and 1% of the variation in number of eggs per sac for Mecynogea.Hence inter-and intraspecific competition was either absent or weak in 1978, despite the fact that a field experiment conducted the previous year (Wise 1979) demonstrated that prey abundance was limiting the egg production of both species. Evidence of food limitation in 1977 followed by only weak competitive interactions the following year suggests that the significance of resource limitation and competition may vary temporally for the basilica and labyrinth spiders.  相似文献   

4.
Summary Prey capture rate, food consumption, and diet composition of all developmental stages of the funnelweb spider Agelena limbata were estimated in woody and open habitats by a sight-count method. Prey availability was evaluated on the basis of two indices, i.e. the ratios of daily food consumption to dry weight of predator and to daily standard metabolic rate. These indices varied seasonally and between instars in this spider. Comparison of these indices between arthropod predators suggests that A. limbata live under conditions of relatively limited food supply. In the open habitat, the spiders reduced foraging activities to avoid heat stress at midday in summer because the sheet web was exposed to the direct rays of the sun and its temperature exceeded 40°C. The daily food consumption of adult spiders in the open habitat was about half of that in the woody habitat. The lower rate of energy intake of spiders in the open habitat may cause the observed smaller size of adults and lower fecundity. A. limbata captured a great range of prey comprising ten orders of arthropods and ate chemically defended insects, e.g. stink bugs, lady beetles, and ants which were rejected by many spiders. This generalistic foraging may be associated with limited and heterogeneous food supply in this spider.  相似文献   

5.
Summary Previous research by many investigators has demonstrated food limitation in both web-building and wandering spiders. Field experiments have tested for exploitative competition for prey in web-building, but not wandering species. As a first step to examining the question of whether spiders without webs exhibit exploitative competition, we manipulated densities of young stages of a common wolf spider, Schizocos ocreata, and measured (1) spider growth rate and (2) numbers of Collembola, a potential prey organism. Replicate populations of recently hatched S. ocreata were established in 1-m2 fenced plots at four levels: 0×, 0.25×, 1× and 4× natural density. Increasing spider density had a negative effect on spider growth rate, defined as increase in weight or cephalothorax width. Early in the experiment spider density had a weak negative effect on Collembola numbers [p(F)=0.08]. Taken together, this probable response by Collembola and the clear effect of spider density on growth rate constitute the first experimental evidence of intraspecific exploitative competition for prey in a species of wandering spider. We discuss (1) the strength of this evidence given the constraints of the experiment's design, and (2) the implications of the strong convergence in spider densities that had occurred after 2.5 months.  相似文献   

6.
Spider diversity in a tropical habitat gradient in Chiapas, Mexico   总被引:3,自引:0,他引:3  
This paper presents an assessment of spider diversity in a complex landscape of southern Mexico. Eighteen different habitats were identified, measured and mapped across this fragmented landscape. Habitat types were characterized by measuring various features, including number of plant forms, tree cover and litter depth. Each month from February to April (dry season) and from June to August 2002 (wet season), spiders were sampled on each habitat by using pitfall traps and direct collection. Correlations between spider diversity and habitat characteristics were carried out to explore the relative contribution of each habitat variable as related to changes in spider composition and richness. In total, 115 spider species were recorded in 18 habitat types, and the mean number and density of species per habitat were 21 (± 3, standard error of mean) and 57 (± 9), respectively. The species recorded represent 41% of the fauna recorded in the Mexican state of Chiapas and 4% of the fauna recorded in Mexico. Relatively pristine habitats (e.g. deciduous forest) contained an important proportion of spider diversity in this fragmented landscape. Epigean spider diversity was significantly correlated with tree cover and with the diversity of plant forms during the rainy season. No correlation was detected between soil spider diversity and the habitat variables measured for any season. The results of this work suggest that in highly fragmented tropical landscapes, some habitat types (e.g. coffee plantations, hedgerows) might play an important role for the persistence of spider populations. The prevalence of relatively stable conditions in some of these habitats can allow spiders species (e.g. Nephila clavipes ) to overcome adverse conditions such as a decrease in humidity and dramatic changes in temperature and wind exposure, allowing them to recolonize when favourable conditions return.  相似文献   

7.
1. The distribution of the large orb‐weaving spider Argiope trifasciata in old field habitats of North America and the habitat selection process this species used was studied for 2 years. 2. Because web spiders have limited dispersal abilities and an energetically costly prey capture device, they do not have the ability to sample potential foraging sites. Structural complexity of the vegetation to which the web must be attached is relatively easy to assess. The hypothesis that the structural complexity is a primary factor in determining initial web site selection was tested both by relating the natural distribution of the spiders across habitats to vegetational complexity and by manipulating the complexity of the habitats in a series of experiments. 3. Argiope trifasciata was not distributed evenly among three old field vegetation types. Habitat complexity was related to spider density in both years although no measure of insect activity, prey capture, or prey consumption was correlated with spider distribution. 4. Three experimental manipulations were conducted to test the impact of habitat structure on spider establishment: (1) the amount of natural vegetation was reduced, (2) structures were added to a simple habitat, and (3) the complexity of the structures added was varied. In each case, spiders were introduced and establishment of webs was monitored. In all manipulations, spider establishment was related to the complexity of the substrate available. 5. These results are important for understanding the cues that influence foraging site selection and therefore provide insight into the distribution of species with limited dispersal abilities and high site investment requirements.  相似文献   

8.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

9.
C. Heidger  W. Nentwig 《BioControl》1989,34(4):511-522
During a 3-year-experiment on strip-management a population of the spiderDictyna arundinacea (L.) was released in a winter wheat field.D. arundinacea built its webs with high preference at the ears of the wheat and 26–28% of the released spiders were rediscovered at the marked first web-sites some weeks later. Enclosure studies and prey samples from several sub-populations showed thatD. arundinacea caught almost exclusively wheat pest insects, withOscinella frit (L.), cereal aphids [Sitobion avenae (F.) andRhopalosiphum padi (L.); mainly winged specimens] and thysanopterans as main prey groups.D. arundinacea moved from the release site into adjacent successional strips, where it survived the harvest and successfully overwintered. From here, a repopulation of the wheat-strips in the next year occurred but the total abundance was so low that after this two-fold habitat change no high population density was reached. The ability of spiders, as unspecialized predators, to prey on wheat pest insects and the suitability of successional strips to preserve high spider densities by habitat change during harvest or other critical events are discussed.   相似文献   

10.
We examined 15 populations of Neriene brongersmai, a common sheet-web spider inhabiting cedar forest floor, to find out how density at a small spatial scale (patch level) is determined by processes operating at this scale as well as those from a larger spatial scale (population level). Here we focus on two types of large-scale effects that may influence small-scale density: an additive effect that changes the density at patch level; and a non-additive effect that changes the relationship between the density and its limiting factor at the patch level. ANCOVA showed that patch-level density of this spider was positively correlated with web-site availability at this level, but the density with a given amount of web-site differed among populations (cedar forests), indicating the existence of an additive large-scale effect. Multiple regression analysis showed that web-site availability at a population level explained the additive large-scale effect well, but prey availability and forest size did not. It seemed likely that increased web-site availability may have reduced the mortality of spiders while moving to a new web-site, and hence increased population density. A non-additive large-scale effect was also revealed: i.e. the relationship between density and web-site availability at the patch level tended to be stronger in populations with a greater additive large-scale effect. Higher intraspecific competition for web-sites in these populations appeared to have strengthened this relationship.  相似文献   

11.
Structurally complex landscapes and organic management have been shown to augment natural pest enemy populations on arable land. Here, body condition and reproductive capacity of wolf spiders were studied to see if these traits can explain the larger populations in these environments. Females of Pardosa spiders (Araneae: Lycosidae) were collected at 7 organically and 7 conventionally managed fields situated in landscapes with different proportions of perennial crops, annual crops, forest, and different numbers and sizes of fields. Body condition (relative female weight) and fecundity (number of offspring and relative egg sac weight) were measured for each captured spider. In contrast to the hypothesis, Pardosa females caught in fields situated in landscapes dominated by large fields of annual crops had superior body condition. Farming practice had no effect on either body condition or fecundity measures. It is suggested that increased spider body condition in homogeneous landscapes may be due to less competition for available resources, although temporal variation should be included before drawing final conclusions on spiders’ body condition in the agricultural landscape.  相似文献   

12.
Studies based on presence/absence of a species may provide insight into habitat associations, allowing the distribution of species to be predicted across the landscape. Our objective was to characterise the epigeal spider fauna in three mature boreal forest types (conifer, mixedwood and deciduous) and a disturbed habitat (clearcut) to provide baseline data on the spider species inhabiting major forest types of boreal northwestern Ontario, Canada. Only spring-active epigeal spiders were considered for logistical reasons. We further identified the coarse woody debris structure and microhabitat characteristics within these stand types to try to refine our ability to predict the within-stand occurrence of spiders. We found the clearcut habitat strongly dominated by the Lycosidae with 55% of spiders represented by a single species, Pardosa moesta Banks. The forested habitats were more diverse, with web-building families forming a large component of the fauna and many species represented by only a few individuals. The spider composition of the deciduous stands (aspen and mixedwood) was very similar, and distinct from that of spruce stands. Species such as Agroeca ornata (Emerton) (Liocranidae) and Pirata montanus Emerton (Lycosidae) were strongly associated with deciduous leaf litter. Within the spruce stands, Agyneta olivacea (Emerton) (Linyphiidae) and Pardosa uintana Gertsch (Lycosidae) were associated with feathermoss rather than Sphagnum microhabitats. Many of the habitat associations observed at Rinker Lake do not conform well to those described in the taxonomic literature as typical for the species. Few associations with coarse woody debris or microhabitat attributes (other than ground cover type) were found.  相似文献   

13.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

14.
Abstract The influence of the architecture of vegetative branches on the distribution of plant‐dwelling spiders has been intensively studied, and the effects on the aggregation of individuals in several spider species on plants include variation in prey abundance, availability of predator‐free refuges and smoother microclimate conditions. The emergence of inflorescences at the reproductive time of the plants changes branch architecture, and could provide higher prey abundance for the spiders. The distribution of spiders between inflorescences and vegetative branches was compared on four widespread plant species in a Brazilian savannah‐like system. Inflorescences attracted more spiders than vegetative branches for all plant species sampled. The influence of branch type (inflorescence and vegetative) on spider distribution was also evaluated by monitoring branches of Baccharis dracunculifolia DC. in vegetative and flowering periods for 1 year, and through a field experiment carried out during the same period where artificial inflorescences were available for spider colonization. Artificial inflorescences attached to B. dracunculifolia branches attracted more spiders than non‐manipulated vegetative branches for most of the year. However, this pattern differed among spider guilds. Foliage‐runners and stalkers occurred preferentially on artificial inflorescences relative to control branches. The frequencies of ambushers and web‐builders were not significantly different between treatment and control branches. However, most ambush spiders (65%) occurred only during the flowering period of Bdracunculifolia, suggesting that this guild was influenced only by natural inflorescences. The experimental treatment also influenced the size distribution of spiders: larger spiders were more abundant on artificial inflorescences than on vegetative branches. The hypothesis that habitat architecture can influence the spider assemblage was supported. In addition, our observational and experimental data strongly suggest that inflorescences can be a higher quality microhabitat than non‐reproductive branches for most plant‐dwelling spiders.  相似文献   

15.
Overwintering in temperate regions is a prominent mortality risk for invertebrates and may affect their behaviour and body condition. Pardosa alacris is a common ground dwelling spider in central European native and plantation forests, and habitat type and prey availability may play important roles in their overwintering. The effect of overwintering on body condition and behaviour of spiders in semi natural and exotic habitats is relatively unknown. Here we assess the effects of winter on spiders from native poplar and exotic pine plantations. The locomotory behaviour of P. alacris (distance covered and speed) was assessed by tracking their movement in a white circular plastic arena. We assessed body condition, body size, and total fat content. Forest type and sex had significant effects on body length. Fat content was significantly higher in the spring than in autumn, and spiders covered larger distances and were faster in autumn than in spring. Fat content had a significant negative effect on average speed. Spiders in native forests were smaller but grew more during the winter than in exotic plantations, possibly due to higher prey availability in native forests. Visually-hunting predators may significantly affect spiders. Fat spiders with better body condition moved less, and were thus less detectable by predators. However the low movement rate may result in a low rate of encountering prey items, thus lowering feeding efficiency.  相似文献   

16.
1 Spiders (Araneae) were collected on and near downed woody material (DWM) in a Populus‐dominated forest to determine if spiders utilize wood surfaces, and to ascertain the importance of DWM habitat and wood elevation for spider assemblages. 2 Over 10 000 spiders representing 100 species were collected. Although more spiders were collected on the forest floor, spider diversity was higher in traps located on wood surfaces than on the forest floor, and 11 species were collected more frequently on wood surfaces. 3 Spiders utilized DWM at different stages in their development. Female Pardosa mackenziana (Keyserling) (Lycosidae) carrying egg sacs were caught most often on the surface of DWM, possibly to sun their egg sacs. Additionally, the proportion of immature spiders was higher on the wood surface than on the forest floor. 4 Spiders collected on logs with and without bark were compared to assemblages collected on telephone poles to assess what features of DWM habitat may be important. Web‐building species were seldom collected on telephone poles, suggesting that they depend on the greater habitat complexity provided by DWM. In contrast, hunting spiders did not distinguish between telephone poles and logs. 5 Fewer spiders and a less diverse fauna utilized elevated compared to ground‐level wood. Additionally, Detrended Correspondence Analysis revealed that the spider community from elevated wood was distinguishable from the spider community from ground‐level wood, and from the forest floor spider community.  相似文献   

17.
Animal body coloration serves several functions such as thermoregulation, camouflage, aposematism, and intraspecific communication. In some orb‐web spiders, bright and conspicuous body colours are used to attract prey. On the other hand, there are other species whose body colour does not attract prey. Using a spider species showing individual body‐colour variation, the present study aimed to determine whether or not the variation in body colour shows a correlation with predation rates. We studied the orb‐web spider (Cyclosa argenteoalba) using both field observations and T‐maze experiments, in which the prey were exposed to differently coloured spiders. Cyclosa argenteoalba has silver‐ and black‐coloured areas on its dorsal abdomen, with the ratio of these two colours varying continuously among individuals. The bright and conspicuous silver area reflects ultraviolet light. Results of both field observations and colour choice experiments using Drosophila flies as prey showed that darker spiders have a greater chance of capturing prey than silver spiders. This indicates that body‐colour variation affects predation success among individuals and that the bright silver colour does not function to attract prey in C. argenteoalba.  相似文献   

18.
Arndt Brüning 《Oecologia》1991,86(4):478-483
Summary The predation on spiders in a forest ecosystem by a colony of red wood ants, Formica polyctena, was estimated using a barrier to isolate the colony. Of the ants' total prey, 4.6% were spiders. In order to estimate the effect of F. polyctena within their hunting area on the spider population, the spiders' population density was studied inside and outside the hunting area. Samples of the forest floor were taken, spider webs were counted and pitfall traps were used. No significant difference was found in density or composition of the spider fauna inside and outside the hunting area.  相似文献   

19.
Expansion of oil palm agriculture is currently one of the main drivers of habitat modification in Southeast Asia. Habitat modification can have significant effects on biodiversity, ecosystem function, and interactions between species by altering species abundances or the available resources in an ecosystem. Increasing complexity within modified habitats has the potential to maintain biodiversity and preserve species interactions. We investigated trophic interactions between Argyrodes miniaceus, a cleptoparasitic spider, and its Nephila spp. spider hosts in mature oil palm plantations in Sumatra, Indonesia. A. miniaceus co‐occupy the webs of Nephila spp. females and survive by stealing prey items caught in the web. We examined the effects of experimentally manipulated understory vegetation complexity on the density and abundance of A. miniaceus in Nephila spp. webs. Experimental understory treatments included enhanced complexity, standard complexity, and reduced complexity understory vegetation, which had been established as part of the ongoing Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Project. A. miniaceus density ranged from 14.4 to 31.4 spiders per square meter of web, with significantly lower densities found in reduced vegetation complexity treatments compared with both enhanced and standard treatment plots. A. miniaceus abundance per plot was also significantly lower in reduced complexity than in standard and enhanced complexity plots. Synthesis and applications: Maintenance of understory vegetation complexity contributes to the preservation of spider host–cleptoparasite relationships in oil palm plantations. Understory structural complexity in these simplified agroecosystems therefore helps to support abundant spider populations, a functionally important taxon in agricultural landscapes. In addition, management for more structurally complex agricultural habitats can support more complex trophic interactions in tropical agroecosystems.  相似文献   

20.
Spiders contribute considerably to diversity in agroecosystems and are important components of natural pest control. Farming system and adjacent habitats may influence spider diversity. In this study, diversity of the spider families Lycosidae and Linyphiidae was studied after spring sowing until the time when a common pest (Rhopalosiphum padi) colonizes cereal fields. The spiders were collected with pitfall traps at eight organically or conventionally managed farms around Uppsala, Sweden, in three different habitats at each site: field margin, crop field and the edge between the two. The effects of farming system and habitat type on diversity of lycosids and linyphiids were considered using three different measures (activity density, species richness and composition). The most dominant species of each spider family, Pardosa agrestis (Lycosidae) and Oedothorax apicatus (Linyphiidae), had higher activity density at organic sites, and farming systems also contained different species compositions of both lycosid and linyphiid spiders. Also, linyphiid species richness was higher on conventional sites and linyphiid species composition was influenced by habitat type, in contrast with lycosids. Activity density and species richness of lycosid spiders were, on the other hand, more associated with field margins than linyphiid spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号