首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The transport of salicylic acid (SA) in heat-stressed Vitis vinifera plants was studied with 14C-salicylic acid. All leaves of young plants were cut off except the 4th, 5th, 6th, 7th, and 8th leaves. After the 6th leaves were fed with 14C-SA, the following treatments were conducted: (1) 4th, 6th, or 8th leaves were exposed to a high temperature of 38°C for 2, 6, and 12 h, respectively, while other parts of plants were kept at 27°C; (2) plants were kept at 27°C for 2, 6, and 12 h. The results showed that 14C-SA accumulated in the leaves stressed by heat. When the 6th leaves were at 38°C, less 14C-SA was exported from these leaves than from control leaves, but when the 4th or 8th leaves were kept at 38°C, more 14C-SA was exported. 14C-SA accumulation in the 4th or 8th leaves resulted from the 6th leaves directly and from the other parts of plants indirectly. These data suggested that SA was transported to a long distance and might be involved in the induction of heat tolerance.  相似文献   

2.
Botrytis fabae spore suspensions containing c. 1, 10, 102, 103, 104, 105, or 106 spores/ml were used to inoculate 5, 17 or 30-day-old field bean leaves. The percentages of the leaf areas covered by, chocolate spot lesions and the percentages of the leaf areas bearing conidiophores were assessed 1, 6, 12, 14, and 19 days after inoculation. The percentage of the area covered by lesions and the percentage of the area bearing conidiophores (logit-transformed) increased linearly with increasing spore concentration (log10-transformed). The proportions of leaf areas covered by lesions and bearing conidiophores were both greater on 17 and 30-day-old leaves than on 5-day-old leaves. The rate of lesion growth increased with both increasing inoculum dose and increasing leaf age. Generally there was no interaction between the effects of leaf age and the effects of inoculum dose on either lesion growth or sporulation. Two days after inoculation with suspensions of either 104 or 106 spores/ml, 7-day-old leaves grown at 15°C were transferred to –16°C or 2.5°C or kept at 15°C for 4 days. Two days later more spores had been produced on leaves which had been frozen (–16°C) than on, leaves kept at 2.5°C.  相似文献   

3.
以2年生葡萄(Vitis vinifera L.)酿酒品种赤霞珠扦插苗为材料,在水培条件下,分别用0、0.05、0.10和0.20mg/L 24-表油菜素内酯(EBR)预处理幼苗,然后进行50mmol/L NaCl胁迫,分别在胁迫6d和12d测定幼苗叶片中超氧阴离子(O_2~)、丙二醛(MDA)、抗氧化物质含量以及相关酶活性,探讨EBR预处理对葡萄幼苗耐盐性的影响。结果表明:与单独盐胁迫处理相比,不同浓度的EBR预处理使盐胁迫葡萄幼苗叶片O_2~和MDA含量显著降低,同时使其抗氧化物质抗坏血酸(AsA)、脱氢抗坏血酸(DHA)、还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)含量以及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)活性显著升高;其中,0.10mg/L EBR预处理的表现最佳,在盐胁迫12d时,其葡萄叶O_2~和MDA含量比单独盐胁迫处理分别显著降低30.5%和22.0%,其叶片相应AsA和GSH的含量较单独盐胁迫处理分别显著提高82.8%和27.9%,且GR、APX和SOD活性分别显著提高7.2%、8.5%和24.0%。研究发现,在盐胁迫条件下,适宜浓度的外源BRs预处理能够显著降低葡萄叶片中活性氧含量,提高抗氧化物质含量和抗氧化酶活性,以促进AsA-GSH循环的快速有效运转,有效减轻植株的过氧化伤害,缓解盐胁迫对葡萄幼苗的伤害,提高葡萄的耐盐性。  相似文献   

4.
Poul  Hansen 《Physiologia plantarum》1967,20(2):382-391
The presence of fruits affects the translocation and distribution of photosynthates from apple leaves to other organs of the tree. An attempt has been made to study the relationship in greater detail by following the distribution of 14C introduced in the form of 14CO2 on shoots with and without fruits, respectively. Determinations of the 14C-content were made on different parts of the shoot sampled at varying intervals after the introduction of the tracer. The l4C-labelling and the content of sorbitol and sugar in the leaves were determined by means of paper chromatography. A total of nearly 90 per cent of the 14C taken up by the leaves can be transferred to a fruit close by, the majority during the first 4 to 5 days following the addition of the 14C. The content of 14C in the leaves is reduced more rapidly in shoots with fruits than in those without. Young leaves retain more of the added 14C than do fully developed ones. The greatest changes with time are found in the methanol-soluble 14C-compounds. Immediately following application, the leaves contain 58 to 80 per cent of the 14C added in sorbitol, 7 to 9 per cent in sucrose, and 1 to 4 per cent in the form of glucose. Within 5 days after the introduction of 14C the amount of 14C-sorbitol is reduced very considerably, while in certain cases the amount of 14C-glucose increases. The 14C-sorbitol content was higher in leaves from shoots without fruits than in those from fruit-bearing shoots, and this applied also to the total contents of sorbitol and of glucose.  相似文献   

5.
Grape anthracnose, which is caused by Elsinoë ampelina, is a disease that negatively affects grape production. This study aimed to investigate the effects of aeration, temperature, light, and preculture period on the formation of E. ampelina conidia and conidial germination and virulence. The colony morphology on potato dextrose agar (PDA) plates was more diverse than that in PDA bottles. The assessment of different culture methods, temperatures, light conditions, and preculture periods revealed that optimal conidial production occurred on 25‐day‐old colonies grown in PDA bottles at 21°C for 24 hr in the dark. The cultures in PDA bottles consistently produced approximately 5.0 × 106 conidia under these conditions. No conidial formation occurred when the cultures were kept at 25°C in the dark. The highest germination rate of E. ampelina was 80% at 25°C after 24 hr, whereas no germination was observed at 17°C after 12 hr. Pathogenicity tests revealed that symptoms of the disease were observed 4 days postinoculation (dpi) on leaves of Vitis vinifera cv. Red Globe. New conidia were observed on the lesions at 8 dpi. This study provides an effective method for the conidial production of E. ampelina that may also be applicable for other Elsinoë fungal species.  相似文献   

6.
Long-distance transport in plants requires precise knowledge of vascular pathways, and these pathways differ among species. This study examines the 14C translocation pathways in honeylocust (Gleditsia triacanthos L.) and green ash (Fraxinus pennsylvanica Marsh.), species with compound leaves, and compares them with those of cottonwood (Populus deltoides Bartr. ex Marsh.), a species with simple leaves. The stem vasculature of honeylocust conforms to a 2/5 helical phyllotaxy and that of green ash to a decussate phyllotaxy. The plastochron is relatively long in both species – 2.5+ days in honeylocust and 4.5+ days in green ash. Consequently, the transition from upward to downward translocation from mature source leaves is abrupt and occurs close to the apex. Export of 14C from localized treatment positions within a leaf was found to vary both quantitatively and spatially. To determine export patterns, 14CO2 was administered to either individual leaflets of once-pinnate or pinnae of bipinnate leaves of honeylocust, and to either individual veins of simple or leaflets of compound leaves of green ash. Transections of either the petiole or rachis base were then examined for 14C by micro-autoradiography. In all cases, as treatment positions advanced acropetally in the leaves, the bundles translocating 14C were situated more dorsally in the basal petiole and rachis vasculatures. 14C was confined to the right side of the vasculature when structures on the right side of a leaf were treated. Compound leaves of both species mature acropetally. Thus, mature basal pinnae of honeylocust and basal leaflets of green ash translocate acropetally to younger leaf parts that are still rapidly expanding. All translocation pathways, both in the stem and leaf, conformed with vascular organization previously determined by anatomical analyses.  相似文献   

7.
One-year-old apple cuttings (Malus pumila var.domestica cv. M26) were grown for 6 months in pot culture with and without inoculum of the VA-mycorrhizal fungus (VAMF)Glomus macrocarpum in soil from a long-term fertilizer field experiment with different P availability (20, 210, and 280 mg CAL-extractable P kg−1). The indigenous VAMF propagule density was reduced by 0.5 Mrad X-irradiation. At harvest, non-inoculated and inoculated plants had similar proportions of root length bearing vesicles. Net dry weight of tree cuttings was significantly increased by inoculation only at 20 mg P kg−1 (+62%). Increasing P availability from 210 to 280 mg P kg−1 led to a 4-week depression of shoot elongation rate only in the inoculated plants. Uptake of P was significantly enhanced by inoculation at 20 and 210 mg P kg−1 (+64 and +12%, respectively). On average, inoculated plants had significantly higher concentrations of Zn in leaves and in roots (+16 and +14%, respectively) and of copper in stems and in roots (+13 and +126%, respectively). Proportion of vesicle bearing root length was significantly correlated with root caloric content. A lipid content of 0.9–4.5% in the root dry matter was attributed to the presence of vesicles corresponding to 1.6–8.2% of total root caloric content. As the control plants were also infected, the beneficial effect of VA-mycorrhiza on nutrient uptake and growth of apple cuttings was underestimated at all P levels. Furthermore, VAM-potential at the lowest P level was not fully exploited as onset of infection was most certainly delayed because of a decreased photosynthetic rate due to P deficiency. Energy drain by VAMF-infection was most probably underestimated considerably, due to, among others, loss of infected root cortex during root growth, sampling and staining. It is concluded that apple cuttings rely on VA-mycorrhizal P-uptake at least in low P soils. In high P soils, apple cuttings may profit predominantly from the uptake of Zn and Cu by the fungal symbionts.  相似文献   

8.
为探究葡萄CBF4基因的结构和表达特征,该研究以葡萄为材料,对葡萄 CBF4基因进行生物信息学及低温和硅酸钾响应分析。结果表明:(1)CBF4蛋白定位在细胞核,有5个磷酸化位点和14个糖基化位点,无信号肽,是一个亲水的、脂溶性较差的膜外蛋白。二级结构以无规则卷曲为主,比例为56.88%。该蛋白包含一个AP2/EREBP结构域。(2)CBF4蛋白的多序列和系统进化分析表明酿酒葡萄与美洲葡萄的同源性最高、亲缘关系最近。(3)荧光定量 PCR 分析显示,低温胁迫后CBF4基因在葡萄叶片中表达水平上调,说明CBF4基因可能参与了葡萄叶片低温胁迫的响应。低温条件下,施加硅酸钾CBF4基因表达具有差异性,说明该基因在不同的葡萄组织中对硅酸钾的响应机制可能不同。以上结果为进一步研究葡萄CBF4基因的功能和机理奠定了基础。  相似文献   

9.
Host specificity tests of the moth,Microthrix inconspicuella Ragonot in Australia, indicated that larvae could feed and develop on young apple leaves. Additional tests in South Africa on leaves and fruit of the 4 apple varieties, Jonathan, Starking (Red Delicious), Granny Smith and Golden Delicious, showed that apples were not a preferred food. Little feeding occurred and pupation happened infrequently. No 2nd generation resulted whenM. inconspicuella colonies were confined on apple fruit or leaves.   相似文献   

10.
为了解啶虫脒在葡萄上使用的安全性,采用高效液相色谱的方法,研究了啶虫脒于葡萄不同物候期防治斑叶蝉时,在果实与叶片上的残留动态。结果表明:3%啶虫脒微乳剂在葡萄开花期至硬核期叶片上的半衰期为3.55~3.93d,在葡萄着色期至成熟期果实上的半衰期为4.14~5.60d,虽然在果实中降解稍慢,但最终残留量相差较小。按推荐剂量22.5g·hm-2(a.i.)和加倍剂量45g·hm-2(a.i.)各施3%啶虫脒微乳剂3次,间隔期7d,末次施药后7d葡萄果实中的残留量均小于0.2mg·kg-1,14d残留量均小于0.1mg·kg-1,本方法的最低检出量为0.5ng,最低检出浓度为0.01mg·kg-1。参照美国、韩国与日本的最大残留限量(MRL),药后7d葡萄果实是安全的。建议用3%啶虫脒微乳剂在葡萄开花期防治斑叶蝉的第1代若虫、成虫,硬核期至着色期防治第2代若虫、成虫,最多使用3次,用量为22.5g·hm-2(a.i.),安全间隔期为7d。  相似文献   

11.
Conidia of the aphid pathogen Erynia neoaphidis on detached bean leaves and glass coverslips maintained at 20°C and at humidities from 40 to 100% r.h. lost their infectivity for pea aphids at a rate dependent on the humidity. Infectivity declined most rapidly in inocula kept on leaves at 70% r.h. and persisted longest in those at 40 and 50% r. h. That of inocula on coverslips declined most rapidly at 77% r.h. and persisted longest in those kept at 40% r.h. Even after 21 days a little infectivity was retained by conidia stored at 50% r.h. on leaves and 40% r.h. on coverslips.  相似文献   

12.
Anthocoris nemorum L. and Anthocoris nemoralis Fabricius (Heteroptera: Anthocoridae) are important predators of insect pests in pome fruit. Females insert their eggs in leaf tissue. The females’ choice of oviposition site is important for the subsequent distribution of nymphs on host plants. Oviposition preference for apple and pear leaves was tested in the laboratory in four experiments (experiments 1–4). In three experiments it was tested whether simulated insect damage to leaves (experiments 5 and 6) or the presence of prey (experiment 7) influenced oviposition preference. The effect of the presence of prey was only tested for A. nemorum on apple leaves. There was a highly significant anthocorid species × plant interaction for the number of eggs laid on apple and pear leaves. Anthocoris nemorum laid more eggs on apple than on pear leaves, while A. nemoralis preferred pear. Anthocoris nemorum's preference for apple increased over the 6‐week period in which experiments 1–4 were performed, from 66% to 91% eggs laid on apple leaves. No change over time in preference was found for A. nemoralis. Across experiments 1–4, the majority of A. nemorum eggs were laid near leaf margins, whereas eggs of A. nemoralis were more commonly found in the leaf centre, 5 mm or more from the margin, with a highly significant leaf region × species interaction. There was no significant difference in preference for leaf side between A. nemorum and A. nemoralis, but there was a highly significant plant × leaf side × experiment interaction. Thus, more eggs were laid on the ventral than on the dorsal side of pear leaves in experiment 4, while significantly more eggs were laid on the dorsal side of apple leaves in experiments 3 and 4. Choice tests between damaged and healthy leaves showed that A. nemorum laid significantly more eggs on the damaged leaves, while A. nemoralis preferred healthy leaves. Anthocoris nemorum showed a near‐significant preference for ovipositing on leaves with eggs of Operophtera brumata (Lepidoptera: Geometridae). The oviposition preferences found correspond to the natural distribution of these predators in apple and pear orchards. The preference of A. nemorum for leaf margins, and of A. nemoralis for the leaf centre as an oviposition site, supports earlier observations. A preference for leaf side for oviposition site has not been reported earlier. Preference for damaged leaves could help A. nemorum to locate prey in a field situation.  相似文献   

13.
Net rates of carbon assimilation per unit leaf area by fully expanded, vegetative leaves of diploid (2x) and autotetraploid (4x) barley (Hordeum vulgare L. cultivars OAC-21 and Brant) were not significantly different (90% level) when measured under controlled environment conditions with air levels of CO2 and either 2 or 20% O2. Leaf thickness increased with ploidy so that net photosynthetic rates measured on single leaves were lower for 4x than 2x barley varieties when compared on a dry or fresh weight basis. Rates of 14CO2 fixation by isolated mesophyll protoplasts prepared from seedlings were also lower for 4x than 2x varieties [about 108 and 125 μmol (mg ChI)?1 h?1, respectively]. Carbohydrate accumulation in leaves of 5-weekold plants averaged 28% (2x) and 47% (4x) of the total photosynthetic weight gain during the first 9 h of the light period. Estimated photoassimilate export from leaves was 15% (OAC-21) and 38% (Brant) lower for 4x compared to 2x isolines. The sucrose and oligofructan content of 4x compared to 2x leaves increased as a result of decreased photosynthate transport. Total tiller dry weight of plants raised in a glasshouse was greater for 4x than 2x barley varieties at ear emergence, but tiller height decreased with increasing ploidy. The nonstructural carbohydrate content of the inflorescence, leaves and lower stem organs was significantly (P≤ 0.01) higher in 4x than in 2x lines at this sampling. During the first 15 days of grain development total tiller dry weight increased by 46% (2x) compared to 8% (4x) when the results of both varieties were averaged together. The dry weight gain of the ear during this period was about 60 to 80% lower for 4x compared to 2x isolines. The nonstructural carbohydrate content of the inflorescence was also about 24% (Brant) and 51% (OAC-21) lower for 4x as compared to 2x plants 15 days post ear emergence. The above results suggested that photosynthate partitioning in autotetraploid barley was sink-limited.  相似文献   

14.
Kagawa T  Wong JH 《Plant physiology》1985,77(2):266-274
The allocation and turnover of photosynthetically assimilated 14CO2 in lipid and protein fractions of soybean (Glycine max L. Clark) leaves and stem materials was measured. In whole plant labeling experiments, allocation of photosynthate from a pulse of 14CO2 into polymeric compounds was: 25% to proteins in 4 days, 20% to metabolically inert cell wall products in 1 to 2 days, 10% to lipids in 4 days, and 4% to starch in 1 day. The amount of 14C labeled photosynthate that an actively growing leaf (leaf 4) used for its own lipid synthesis immediately following pulse labeling was about 25%. The 14C of labeled proteins turned over with half-lives of 3.8, 3.3, and 4.1 days in leaves 1, 2, and 3, respectively; and turnover of 14C in total shoot protein proceeded with a half-life of 5.2 days. Three kinetic 14C turnover patterns were observed in lipids: a rapid turnover fraction (within a day), an intermediate fraction (half-life about 5 days), and a slow turnover fraction. These results are discussed in terms of previously published accounts of translocation, carbon budgets, carbon use, and turnover in starch, lipid, protein, and cell wall materials of various plants including soybeans.  相似文献   

15.
The homogenate and chloroplast fractions isolated from the leaves of 10–14-day-old kidney-bean (Phaseolus vulgaris L.) seedlings were incubated with 14C-L-phenylalanine for 30 min in the light, and the incorporation of radioactivity into phenolic compounds was determined. Label incorporation into phenolic compounds of the homogenate and chloroplast fractions amounted to 15–17 and 4–5% of the introduced radioactivity, respectively. The chloroplasts were about an order of magnitude higher than the homogenate in the specific radioactivity of phenolic compounds. Chloroplasts contained four flavonol glycosides (kaempferol and quercetin aglycones), which were the major components of soluble phenolic compounds of leaves. It was concluded that kidney-bean leaf chloroplasts were capable of performing phenolic compound biosynthesis.  相似文献   

16.
A new method involving 14C-labelled cell walls of apple leaves was developed in order to study the process of cell wall degradation in vitro and its role in pathogenesis and host-resistance. 14C-labelled cell walls were efficiently digested by commercial enzyme preparations and less efficiently by the polygalacturonase of Venturia inaequalis, the causal agent of apple scab. Further, degradability of cell walls from a susceptible and a resistant variety were compared, but there was no evidence for a correlation of reduced degradability with resistance. The method presented here can be regarded as a useful tool for investigations where enzymatic processes of polymerization or depolymerization of plant material is involved.  相似文献   

17.
Studies on Protein Synthesis by Senescing and Kinetin-treated Barley Leaves   总被引:1,自引:0,他引:1  
Using sterile conditions, changes in total protein synthesis were followed. over an 8 day incubation period, in detached first seedling leaves of barley from 8 day old plants during senescence and after kinetin treatment. In senescing leaves, total 14C-alanine incorporation was enhanced by nearly 20% within 6 h of leaf detachment and by about 30 % after 24 h. Kinetin treatment stimulated protein synthesis even more, for total incorporation was promoted ca. 50 % after 6 h and by ca. 60 % after 24 h incubation. The leaf supernatant (30,000 ×g for 30 min) proteins were separated on DEAE-Sephadex (A-50) columns into approximately 14 fractions and changes in 14C labelling of these fractions were studied following leaf detachment and on incubation on water or kinetin for 6 days. In senescing leaves, 14C-incorporation into supernatant proteins was sustained, even as protein levels declined rapidly The varied stabilities of the different leaf proteins was suggested by the characteristically changing specific activities of the different protein fractions. Although kinetin greatly promoted incorporation into all protein fractions, no evidence was surmised of specific effects on individual leaf proteins. Studies of changes in total protein synthesis in attached senescing first seedling leaves taken from plants aged 7 to 27 days revealed a relatively small increase in 14C-incorporation. However, incorporation could be greatly increased in leaves up to 15 days old by detaching and preincubating such leaves for up to 2 days on water, prior to measurement. The promotion of 14C-incorporation into protcins follwing leaf excision could result from early changes in permeability and precursor pool size.  相似文献   

18.
Insecticidal proteins are a potential resource to enhance resistance to insect pests in transgenic plants. Here, we describe the generation and analysis of the apple cultivar ‘Royal Gala’ transgenic for Nicotiana alata (N. alata) proteinase inhibitor (PI) and the impact of this PI on the growth and development of the Epiphyas postvittiana (light-brown apple moth). A cDNA clone encoding a proteinase inhibitor precursor from N. alata (Na-PI) under the control of either a double 35S promoter or a promoter from a ribulose-1,5-bisphosphate carboxylase small sub-unit gene (rbcS-E9 promoter) was stably incorporated into ‘Royal Gala’ apple using Agrobacterium-mediated transformation. A 40.3 kDa Na-PI precursor protein was expressed and correctly processed into 6-kDa proteinase inhibitors in the leaves of transgenic apple lines. The 6-kDa polypeptides accumulated to levels of 0.05 and 0.1% of the total soluble protein under the control of the rbc-E9 promoter and the double 35S promoter, respectively. Light-brown apple moth larvae fed with apple leaves expressing Na-PI had significantly reduced body weight after 7 days of feeding and female pupae were 19–28% smaller than controls. In addition, morphological changes such as pupal cases attached to the wing, deformed wings, deformed body shape, and pupal cases and curled wings attached to a deformed body were observed in adults that developed from larvae fed with apple leaves expressing Na-PI, when compared to larvae fed with the non-transformed apple leaves.  相似文献   

19.
Teramoto M  Wu B  Hogetsu T 《Mycorrhiza》2012,22(3):219-225
Sporocarps of ectomycorrhizal fungi are strong carbon sinks for the source in host trees, but the details of carbon transfer from the host to the sporocarp are unknown. In this study, single seedlings of Japanese red pine (Pinus densiflora) colonised by Laccaria amethystina were grown on floral foam plates fitted in rhizoboxes, resulting in fruiting on the substrate. The seedlings were photosynthetically labelled with 14CO2; 14C-labelled photosynthate transfer from leaves to sporocarps was then chased using a time-course autoradiography technique. 14C was transferred to healthy, fresh sporocarps in a purple colour ranging from primordial to elongate sporocarps, but hardly to senesced ones that had faded to white or grey, or browned. This suggested that C is transferred only to physiologically active sporocarps. Two seedlings associated with a growing sporocarp were labelled again 7 and 16 days after the first labelling, respectively. 14C accumulation in the sporocarps rose in a stepwise manner after the second labelling, indicating that sporocarps mainly used recently rather than previously photosynthesised C.  相似文献   

20.
The sizes and compositions of bacterial populations found on leaves of greenhouse and field grown tomato plants were studied by dilution plating, fatty acid methyl ester analysis (FAME), and BIOLOG plates of isolates in pure cultures. In the greenhouse, overhead-irrigated plants sustained higher microbial populations (up to 105 cfu g−1) than soil-irrigated plants (103 cfu g−1). Strains isolated from overhead-irrigated plants grown in a vegetable garden (n=216) and from greenhouse-grown plants (n=114) were subjected to FAME analysis. Similarly, strains from soil-irrigated field-grown plants (n=83) were identified using BIOLOG plates. In each case, populations were dominated by a few genera. When concentrated phyllosphere washes (CPW) were sprayed on greenhouse-grown, soil-irrigated plants, leaf bacterial populations of more than 105 CFU g−1 were sustained for 4 days; sterile buffer-sprayed leaves sustained less than 104 CFU g−1. No significant enrichment of any strain isolated from the sprayed leaves could be detected by FAME identification of randomly selected colonies. However, when recurring leaf saprophytic species (both Gram-positive and Gram-negative) isolated from these experiments and from plants grown outdoors were tested for epiphytic colonization under stressful conditions, all could still be detected at various levels up to 4 days after inoculation, indicating differential epiphytic fitness. The non-epiphytic bacteriaEscherichia coli andAzospirillum brasilense disappeared from the leaf surface within the same experimental period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号