首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper demonstrates the direct immobilization of peroxidase from ammonium sulfate fractionated white radish proteins on an inorganic support, Celite 545. The adsorbed peroxidase was crosslinked by using glutaraldehyde. The activity yield for white radish peroxidase was adsorbed on Celite 545 was 70% and this activity was decreased and remained 60% of the initial activity after crosslinking by glutaraldehyde. The pH and temperature-optima for both soluble and immobilized peroxidase was at pH 5.5 and 40°C. Immobilized peroxidase retained higher stability against heat and water-miscible organic solvents. In the presence of 5.0 mM mercuric chloride, immobilized white radish peroxidase retained 41% of its initial activity while the free enzyme lost 93% activity. Soluble enzyme lost 61% of its initial activity while immobilized peroxidase retained 86% of the original activity when exposed to 0.02 mM sodium azide for 1 h. The Km values were 0.056 and 0.07 mM for free and immobilized enzyme, respectively. Immobilized white radish peroxidase exhibited lower Vmax as compared to the soluble enzyme. Immobilized peroxidase preparation showed better storage stability as compared to its soluble counterpart.  相似文献   

2.
Chlorogenic acid oxidase was extensively purified to homogeneity from apple flesh (Malus pumila cv. Fuji). The enzyme was purified 470-fold, with a total yield close to 70% from the plastid fraction by ammonium sulfate precipitation, gel filtration and ion-exchange chromatography. The molecular weight was determined to be 65,000 by both SDS-PAGE and gel filtration chromatography. The optimum pH for the enzyme activity was around 4.0, and the enzyme was stable in the range of pH 6–8. The pI obtained by isoelectrofocusing was 5.4, and the N-terminal amino acid sequence was N-Asp-Pro-Leu-Ala-Pro-Pro-. The reaction rate of the purified enzyme was much larger for chlorogenic acid than for other o-diphenols such as (+)-catechin, (?)-epicatechin and 4-methylcatechol, and the enzyme lacked both cresolase activity and p-diphenol oxidase activity. The Km value for the enzyme was found to be 122μM toward chlorogenic acid. The purified enzyme had far less thermal stability than the enzyme of the plastid fraction. Diethyl-dithiocarbamate, sodium azide, o-phenanthroline and sodium fluoride markedly inhibited the enzyme activity.  相似文献   

3.
The adenylate cyclase of rat adipocyte plasma membrane is stimulated by sodium azide with a half maximal activation of 100–150% occuring at 50 mM NaN3. Studies of the effects of azide and fluoride indicate different mechanisms of stimulation of the enzyme by these ions. Comparable stimulation of the activity is obtained by 100 mM NaN3 or 10 mM NaF but unlike azide, higher concentrations of fluoride cause inhibition of the enzyme. Fluoride activated adenylate cyclase is further stimulated by azide. Epinephrine stimulation of the enzyme is absent in the presence of fluoride but the hormone enhances the activity in the presence of azide. Reversal of the inhibitory action of GTP on adenylate cyclase by epinephrine is demonstrated even in the presence of azide but not in the presence of fluoride.  相似文献   

4.
-Ketothiolase from Zoogloea ramigera I-16-M was purified 140-fold to electrophoretic homogeneity. The bacterium appeared to contain a single isoenzyme of -ketothiolase with a molecular weight of 190000, as determined by Sephadex G-200 gel filtration. The monomer molecular weight was 44000, as estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The native enzyme thus appeared to be a tetramer with identical subunits.The enzyme showed a pH optimum of 7.5 in the condensation reaction, and 8.5 in the thiolysis reaction. The enzyme employed a Bi Bi ping pong mechanism for the forward thiolysis reaction. The apparent K m value for acetoacetyl coenzyme A in the thiolysis reaction was 10 M, and that for coenzyme A was 8.5 M. The apparent K m value for acetyl coenzyme A in the condensation reaction was 0.33 mM. The condensation reaction was inhibited by coenzyme A concentrations lower than 0.1 mM.The enzyme was stable in the presence of dithiothreitol and other SH-compounds, but was strongly inhibited by 0.4 mM p-chloromercuribenzoate.Non-Standard Abbreviation PHB poly--hydroxybutyrate  相似文献   

5.
A kinetics of azide binding by horseradish peroxidase was studied by temperature-jump method. It was found that the reaction of the enzyme with azide is quite rapid, occuring in microsecond time range. This rate is unusually rapid in contrast to the usual hemoprotein ferric iron-ligand interactions so far reported. The resulting value for the apparent association and dissociation rate constants were k1=6.8×106 M?1 s?1 and k1=3.5×105 s?1 at 23°C and pH 5.0 for the reaction. The pH dependence of the rate constants was also studied to show a strong linkage of the ligand binding with a proton uptake of a dissociable group on the enzyme.  相似文献   

6.
Chastain CJ  Heck JW  Colquhoun TA  Voge DG  Gu XY 《Planta》2006,224(4):924-934
Pyruvate, orthophosphate dikinase (PPDK; E.C.2.7.9.1) is most well known as a photosynthetic enzyme in C4 plants. The enzyme is also ubiquitous in C3 plant tissues, although a precise non-photosynthetic C3 function(s) is yet to be validated, owing largely to its low abundance in most C3 organs. The single C3 organ type where PPDK is in high abundance, and, therefore, where its function is most amenable to elucidation, are the developing seeds of graminaceous cereals. In this report, we suggest a non-photosynthetic function for C3 PPDK by characterizing its abundance and posttranslational regulation in developing Oryza sativa (rice) seeds. Using primarily an immunoblot-based approach, we show that PPDK is a massively expressed protein during the early syncitial-endosperm/-cellularization stage of seed development. As seed development progresses from this early stage, the enzyme undergoes a rapid, posttranslational down-regulation in activity and amount via regulatory threonyl-phosphorylation (PPDK inactivation) and protein degradation. Immunoblot analysis of separated seed tissue fractions (pericarp, embryo + aleurone, seed embryo) revealed that regulatory phosphorylation of PPDK occurs in the non-green seed embryo and green outer pericarp layer, but not in the endosperm + aleurone layer. The modestly abundant pool of inactive PPDK (phosphorylated + dephosphorylated) that was found to persist in mature rice seeds was shown to remain largely unchanged (inactive) upon seed germination, suggesting that PPDK in rice seeds function in developmental rather than in post-developmental processes. These and related observations lead us to postulate a putative function for the enzyme that aligns its PEP to pyruvate-forming reaction with biosynthetic processes that are specific to early cereal seed development.  相似文献   

7.
The anion azide, N3 -, has been previously found to be an inhibitor of oxygen evolution by Photosystem II (PS II) of higher plants. With respect to chloride activation, azide acts primarily as a competitive inhibitor but uncompetitive inhibition also occurs [Haddy A, Hatchell JA, Kimel RA and Thomas R (1999) Biochemistry 38: 6104–6110]. In this study, the effects of azide on PS II-enriched thylakoid membranes were characterized by electron paramagnetic resonance (EPR) spectroscopy. Azide showed two distinguishable effects on the S2 state EPR signals. In the presence of chloride, which prevented competitive binding, azide suppressed the formation of the multiline and g = 4.1 signals concurrently, indicating that the normal S2 state was not reached. Signal suppression showed an azide concentration dependence that correlated with the fraction of PS II centers calculated to bind azide at the uncompetitive site, based on the previously determined inhibition constant. No evidence was found for an effect of azide on the Fe(II)QA - signals at the concentrations used. This result is consistent with placement of the uncompetitive site on the donor side of PS II as suggested in the previous study. In chloride-depleted PS II-enriched membranes azide and fluoride showed similar effects on the S2 state EPR signals, including a notable increase and narrowing of the g = 4.1 signal. Comparable effects of other anions have been described previously and apparently take place through the chloride-competitive site. The two azide binding sites described here correlate with the results of other studies of Lewis base inhibitors.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Partially purified protein extracts of Catharanthus roseus leaves were able to couple catharanthine and vindoline to produce α-3′,4′-anhydrovinblastine (AVLB) in a reaction strictly dependent on H2O2. This result, and the co-purification of peroxidase with AVLB synthetase activity, strongly suggest a peroxidase-like nature for the coupling enzyme. Only one peroxidase isoenzyme was detected in C. roseus leaves, and it was shown that this isoenzyme consists of a molecularly-heterogeneous basic peroxidase (EC 1-11-1-7) mainly located in the vacuole. These results suggest that a basic peroxidase located in the vacuole may be the main enzyme responsible for AVLB synthesis in C. roseus leaves. This isoenzyme was also found in cell walls where a peroxidase inhibitor was detected.  相似文献   

9.
Cytochrome bd from Escherichia coli is able to oxidize such substrates as guaiacol, ferrocene, benzohydroquinone, and potassium ferrocyanide through the peroxidase mechanism, while none of these donors is oxidized in the oxidase reaction (i.e. in the reaction that involves molecular oxygen as the electron acceptor). Peroxidation of guaiacol has been studied in detail. The dependence of the rate of the reaction on the concentration of the enzyme and substrates as well as the effect of various inhibitors of the oxidase reaction on the peroxidase activity have been tested. The dependence of the guaiacol-peroxidase activity on the H2O2 concentration is linear up to the concentration of 8 mM. At higher concentrations of H2O2, inactivation of the enzyme is observed. Guaiacol markedly protects the enzyme from inactivation induced by peroxide. The peroxidase activity of cytochrome bd increases with increasing guaiacol concentration, reaching saturation in the range from 0.5 to 2.5 mM, but then starts falling. Such inhibitors of the ubiquinol-oxidase activity of cytochrome bd as cyanide, pentachlorophenol, and 2-n-heptyl 4-hydroxyquinoline-N-oxide also suppress its guaiacol-peroxidase activity; in contrast, zinc ions have no influence on the enzyme-catalyzed peroxidation of guaiacol. These data suggest that guaiacol interacts with the enzyme in the center of ubiquinol binding and donates electrons into the di-heme center of oxygen reduction via heme b 558, and H2O2 is reduced by heme d. Although the peroxidase activity of cytochrome bd from E. coli is low compared to peroxidases, it might be of physiological significance for the bacterium itself and plays a pathophysiological role for humans and animals.  相似文献   

10.
Human glucose 6-phosphate dehydrogenase (d-glucose 6-phosphate: NADP oxidoreductase, EC 1.1.1.49) (A+), an electrophoretically distinguishable variant found in Negroes, was purified by column chromatographic techniques. The sedimentation patterns of analytical ultracentrifugation and interference patterns of sedimentation equilibrium indicate a homogeneous preparation. The molecular weight (by sedimentation equilibrium method) was estimated as 230,000, which was closely similar to that of the normal wild type enzyme (B+). The sedimentation constant of the variant enzyme (S 20,w=9.0) was smaller than that of the B+ enzyme (S 20,w=10.0). The molecular weight was about 45,000 in 4 mguanidine hydrochloride, indicating that the A+ enzyme, as well as the B+ enzyme, consisted of six subunits of similar size. The optimal pH of the variant enzyme was slightly higher than that of the B+ enzyme. In contrast to the B+ enzyme, magnesium ion increased the A+ enzyme activity with NAD as substrate. The Michaelis constants and the turnover rate were similar to those of the B+ enzyme. The A+ enzyme was serologically indistinguishable from the B+ enzyme when the anti-B+ serum was used as antibody. No significant difference was found in the amino acid composition of acid hydrolysates of the B+ and the A+ enzymes. This does not exclude an amino acid substitution, and, in fact, a single amino acid substitution, i.e., asparagine in B+ and aspartic acid in A+ enzyme, has been found and is being being reported separately.Supported by Research Grant HD-02497-01 and H-3901 from the National Institutes of Health.  相似文献   

11.
A continuous spectrophotometric method suitable for the determination of the activities of several peroxisomal oxidases in rat tissue homogenates is described. The assay involves the continuous spectrophotometric measurement of the reaction product, H2O2, by coupling it to the reduction of a chromogen, o-dianisidine, with horseradish peroxidase. Catalase interference was overcome using azide to inhibit its activity and a H2O2 standard curve used to quantitate oxidase activity in terms of microkatals per milliliter of enzyme.  相似文献   

12.
In potato (Solatium tuberosum L. cv. Bintje and Doré) callus a very active hydrox-amate-stimulated NADH-dependent O2-uptake develops during the growth of the callus, which is caused by a peroxidase. More than 95% of the peroxidase activity is found in the 40000 g supernatant. The total activity may be as high as 1000 times the respiratory acitivity of the callus tissue. At least two fractions, obtained by Sephadex gel filtration, can be distinguished showing this peroxidase activity, one of about 15 kDa and one > 50 kDa. The main properties of both fractions are: a) Hydroxamate at 0.2–0.5 mM gives half-maximal stimulation. Maximal stimulation is observed with 1–3 mM benzhydroxamate (BHAM) and 1–15 mM salicylhydroxamate (SHAM). Higher concentrations, especially of BHAM, give less or no stimulation. b) Hydroxamates are not consumed during the reaction. c) Both NADH and NADPH can serve as the electron donor for the reaction. The affinity for NAD(P)H is very low (Km near 10 mM). In the absence of hydroxamates NAD(P)H is only slowly oxidized, with an even lower affinity. d) The peroxidase can carry out two reactions: an O2-consuming and a H2O2-consuming reaction. In both reactions one NAD(P)H is consumed. In the first reaction H2O2 is formed which can be consumed in the second reaction, resulting in an overall stoichiometry of 2 NADH consumed for each O2 molecule and in the production of H2O. e) The reaction is completely blocked by cyanide, superoxide dismutase (EC 1.15.1.1) and (excess) catalase (EC 1.11.1.6), but not by antimycin A or azide. This peroxidase-mediated O2-uptake might interfere with respiratory measurements. In experiments with isolated mitochondria this interference can be prevented by the addition of catalase to the reaction mixture. The use of high concentrations of hydroxamate is not allowed because of inhibitory effects on the cytochrome pathway. In intact callus tissue hydroxamates only stimulate O2-uptake in the presence of exogenous NADH. In vivo the peroxidase does not appear to function in O2-uptake, probably because of its localization (at least partly in the cell wall) and/or its low affinity for NADH. The use of hydroxamates in the determination of cytochrome and alternative pathway activity is discussed.  相似文献   

13.
Changes of soluble and ionically bound peroxidase and indoleacetic acid (IAA) oxidase activities were followed during peach seed development. Soluble peroxidase activity was located mainly in the embryo plus endosperm tissue, whereas wall ionically bound activities were found predominantly in the integument tissue. The different peroxidase isoenzymes present in the extracts were characterized by polyacrylamide gel electrophoresis and isoelectric focusing; the main soluble isoenzyme of embryo plus endosperm tissue was an anionic isoperoxidase of R F 0.07. Basic ionically bound isoenzymes were located only in the integument tissue, but two soluble anionic isoenzymes of R F 0.23 and 0.51 were also present in this tissue. In parallel, peroxidase protein content was estimated specifically using polyclonal antibodies. The kinetic data and the changes of seed IAA oxidase activity during fruit development suggested that basic peroxidase isoenzymes from ionically bound extracts of integument might be involved in IAA degradation. Received September 11, 1997; accepted October 21, 1997  相似文献   

14.
Sugar, a final product of photosynthesis, is reported to be involved in the defense mechanisms of plants against abiotic stresses such as salinity, water deficiency, extreme temperature and mineral toxicity. Elements involved in photosynthesis, sugar content, water oxidation, net photosynthetic rate, activity of enzyme and gene expression have therefore been studied in Homjan (HJ), salt-tolerant, and Pathumthani 1 (PT1), salt-sensitive, varieties of rice. Fructose-1,6-biphosphatase (FBP) and fructokinase (FK) genes were rapidly expressed in HJ rice when exposed to salt stress for 1–6 h and to a greater degree than in PT1 rice. An increase in FBP enzyme activity was found in both roots and leaves of the salt-tolerant variety after exposure to salt stress. A high level of sugar and a delay in chlorophyll degradation were found in salt-tolerant rice. The total sugar content in leaf and root tissues of salt-tolerant rice was 2.47 and 2.85 times higher, respectively, than in the salt-sensitive variety. Meanwhile, less chlorophyll degradation was detected. Salt stress may promote sugar accumulation, thus preventing the degradation of chlorophyll. Water oxidation by the light reaction of photosynthesis in the salt-tolerant variety was greater than that in the salt-sensitive variety, indicated by a high maximum quantum yield of PSII (F v/F m) and quantum efficiency of PSII (ΦPSII) with low nonphotochemical quenching (NPQ), leading to a high net photosynthetic rate. In addition, the overall growth performances in the salt-tolerant variety were higher than those in the salt-sensitive variety. The FBP gene expression and enzyme activity, sugar accumulation, pigment stabilization, water oxidation and net photosynthetic rate parameters in HJ rice should be further investigated as multivariate salt-tolerant indices for the classification of salt tolerance in rice breeding programs.  相似文献   

15.
Previously, a selenium-containing protein with subunit molecular weight of 15 kDa was found in peripheral human granulocytes. In continuation of this work, the present communication accounts for purification, identification, and characterization of this major selenium-containing protein. The protein was purified on a heparin-Sepharose column followed by Sephacryl S-200 column chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDSPAGE) analysis visualized two bands with subunit molecular weights around 15 kDa.o-Phthaldialdehyde precolumn derivatization and reverse-phase high-performance liquid chromatography showed that the protein contains selenocysteine or selenocystine residues. Highperformance gel filtration and isoelectric focusing revealed that the protein had an apparent molecular weight of 32 kDa and apI value of 7.9. The addition of the protein synthesis inhibitor puromycin to the cell culture medium decreased the 15-kDa protein synthesis. These data suggest that the major selenium-containing protein in peripheral human granulocytes might be a protein with two subunits around 15 kDa. Enzyme studies showed that the protein had peroxidase activity assayed with H2O2 as a substrate and O-dianisidine as a hydrogen donor. This enzymatic activity competed with glutathione peroxidase on the consumption of H2O2, leading to an “inhibiton” of glutathione peroxidase (GSH-Px) activity. Sodium azide could eliminate the inhibition of the protein to GSH-Px. All of the above results implicated that the protein might be a H2O2-dependent seleniumcontaining peroxidase different from GSH-Px. Therefore, the biological function of the protein could be related to eliminating H2O2 generated in the respiratory burst reaction of granulocytes, thus protecting these cells from oxida-tive damage during phagocytosis.  相似文献   

16.
Isoenzyme c of horseradish peroxidase (HRP‐C) is widely used in enzyme immunoassay combined with chemiluminescence (CL) detection. For this application, HRP‐C activity measurement is usually based on luminol oxidation in the presence of hydrogen peroxide (H2O2). However, this catalysis reaction was enhancer dependent. In this study, we demonstrated that Jatropha curcas peroxidase (JcGP1) showed high efficiency in catalyzing luminol oxidation in the presence of H2O2. Compared with HRP‐C, the JcGP1‐induced reaction was enhancer independent, which made the enzyme‐linked immunosorbent assay (ELISA) simpler. In addition, the JcGP1 catalyzed reaction showed a long‐term stable CL signal. We optimized the conditions for JcGP1 catalysis and determined the favorable conditions as follows: 50 mM Tris buffer (pH 8.2) containing 10 mM H2O2, 14 mM luminol and 0.75 M NaCl. The optimum catalysis temperature was 30°C. The detection limit of JcGP1 under optimum condition was 0.2 pM. Long‐term stable CL signal combined with enhancer‐independent property indicated that JcGP1 might be a valuable candidate peroxidase for clinical diagnosis and enzyme immunoassay with CL detection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Changes in the activities of peroxidase, ascorbate peroxidase, catalase and superoxide dismutase in rice in response to infection by Rhizoctonia solani were studied. A significant increase in peroxidase activity was observed in R. solani-inoculated rice leaf sheaths 1 day after inoculation and the maximum enzyme activity was recorded 3 days after inoculation at which period a 3-fold increase in peroxidase activity was observed compared to the untreated control. Three peroxidase isozymes viz., PO-4, PO-5 and PO-6 were induced in rice upon infection by R. solani. Ascorbate peroxidase and catalase activities significantly increased 1–2 days after inoculation and the maximum enzyme activities were recorded 5 days after inoculation. Superoxide dismutase activity increased significantly 2 days after inoculation and increased progressively, reaching four times the control value at 7 days after inoculation.  相似文献   

18.
Lipase extracted from defatted rice bran with calcium chloride solution was purified by ammonium sulfate precipitation, followed by successive column chromatographies on DEAE-cellulose, Sephadex G-75, CM-Sephadex C-50 in the presence of calcium ion. The specific activity of the purified enzyme was 4.7 units/mg protein and 480 times that of starting crude extract. The homogeneity of the enzyme protein was criticized by polyacrylamide gel disc electrophoresis and ultracentrifugation. The enzyme protein also behaved homogeneously in ampholine electrophoresis, indicating the isoelectric point of 8.56. The sedimentation coefficient of the enzyme was determined to be 2.97 S, and the molecular weight to be 40,000 by Archibald’s method. According to the measurement of optical rotatory dispersion of the enzyme, ORD constant, λc, Moffitt-Yang parameters, a0 and b0, were evaluated to be 239 mμ, ?164 and ?123, respectively.  相似文献   

19.
Immunogold labelling was used to probe the responses of mesophyll cells in French bean ( Phaseolus vulgaris L.) to an hrpA mutant of Xanthomonas campestris pv. vesicatoria and a saprophytic strain of X.c. The non-pathogenic strains both caused localized alterations to the plant cell wall and formation of large papillae in adjacent cells. Immunocytochemistry showed the co-localization, in the cell wall and paramural deposits, of an M r 42 000 proline-rich glycoprotein with chitin-binding activity (CBPRP) and the enzyme responsible for its immobilization, an M r 46 000 peroxidase. The CBPRP appeared to lose antigenicity after cross-linking, and, unlike the peroxidase, was not detected consistently in the extracellular matrix that encapsulated bacteria onto the plant cell wall. The peroxidase may have a dual function in both the generation and utilization of H2O2 for cross-linking of proteins and phenolics during the construction of papillae. A burst of H2O2 was detected 1–5 h after inoculation at reaction sites by histochemical staining with cerium chloride. Progressive expansion of papillae and cell-wall alterations was, however, not associated with the maintenance of high levels of H2O2. Co-localization of callose and an M r 65 000 polypeptide component of callose synthase was also demonstrated. Synthesis of callose appeared so rapid that the enzyme became embedded in the polysaccharide so that both were detected as integral to the developing papilla. Localized alterations to the cell wall and deposition of papillae were found to involve co-ordinated synthetic and oxidative activities at microsites within responding cells, without activation of the hypersensitive reaction.  相似文献   

20.
An attempt is made to characterize the functional activity of the protein moleculo possessing both peroxidase and IAA oxidase activity by comparing the kinetic parameters for the two types of enzyme activity with regard to the following substrates: H2O2, benzidine, guaiacol and IAA. The curves expressing the dependence of the enzyme reaction velocity on the concentration of the enzyme or the substrate are different depending on the enzyme extract origin and the type of the substrate. It is established that the Km of peroxidase for IAA decreases while its Km for H2O2 increases during cell development. Both types of enzyme activity show similar pH and temperature dependence. The presented data show that IAA oxidase activity of the peroxidase develops as extension and differentiation of the root cells proceed. This is one of the possible mechanisms through which peroxidase may participate in the regulation of growth and differentiation of the primary root cells of maize (Zea mays L.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号