首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
用根际箱试验研究了红壤植麦和植稻后根际中Pb的形态转化,讨论了与Cd复合处理对Pb形态的影响.结果表明,Pb在红壤根际、非根际的主要形态为酸解态+碳酸盐态、交换态和铁锰氧化物结合态.交换态Pb都是根际>非根际;不同Pb处理浓度和PbCd交互作用都对Pb的形态分布产生影响,小麦根际随加入Cd浓度增大,根际交换态Pb和铁锰氧化物结合态Pb下降;水稻根际交换态Pb与Cd复合处理浓度密切相关,5mgCd·kg-1复合处理,根际交换态Pb的活化较单元素弱,10mgCd·kg-1复合处理,根际交换态Pb的活化较单元素要强.  相似文献   

2.
根际环境中铅的形态转化   总被引:9,自引:1,他引:8  
用根际箱试验研究了红壤植麦和植稻后根际中Pb的形态转化 ,讨论了与Cd复合处理对Pb形态的影响 .结果表明 ,Pb在红壤根际、非根际的主要形态为酸解态 +碳酸盐态、交换态和铁锰氧化物结合态 .交换态Pb都是根际 >非根际 ;不同Pb处理浓度和Pb Cd交互作用都对Pb的形态分布产生影响 ,小麦根际随加入Cd浓度增大 ,根际交换态Pb和铁锰氧化物结合态Pb下降 ;水稻根际交换态Pb与Cd复合处理浓度密切相关 ,5mgCd·kg-1复合处理 ,根际交换态Pb的活化较单元素弱 ,10mgCd·kg-1复合处理 ,根际交换态Pb的活化较单元素要强 .  相似文献   

3.
不同氮效率水稻生育后期根表和根际土壤硝化特征   总被引:1,自引:0,他引:1  
通过田间试验研究了不同氮效率粳稻品种4007(氮高效)和Elio(氮低效)生育后期在N0(0 kgN hm-2)、N180(180 kgN hm-2)和N300(300 kgN hm-2)水平下根表、根际和土体土壤pH值、铵态氮(NH+4-N)和硝态氮(NO-3-N)含量、硝化强度和氨氧化细菌(AOB)数量.结果表明无论是齐穗期、灌浆期还是成熟期,根表土壤pH值均显著低于根际和土体土壤.土壤pH值范围在5.95至6.84之间变化.土壤NH+4-N含量随水稻生长显著下降,且随施氮量增加而显著增加.根表土壤NH+4-N有明显亏缺区,且随距水稻根表距离增加,NH+4-N含量逐渐升高.土壤NO-3-N含量随水稻生长显著增加,施氮处理均显著高于不施氮处理,但N180和N300处理差异不显著.NO-3-N含量表现为根际>土体>根表.水稻根表和根际土壤硝化强度随水稻生长显著下降,而土体土壤硝化强度随时间延长小幅增加.施氮显著提高4007水稻根表土壤在齐穗和收获期硝化强度以及Elio在齐穗期根际硝化强度,但在施氮处理N180和N300中无显著差异.在整个采样期间,土壤硝化强度均表现为根际>根表>土体.水稻根表和根际AOB数量随水稻生长而显著降低,而土体土壤AOB数量无显著变化.例如,根表土壤AOB数量在齐穗期、灌浆期和收获期分别为16.7×105、8.77×105个g-1 dry soil和8.01×105个g-1 dry soil.根表和根际土壤AOB数量无显著差异,但二者显著高于土体土壤AOB数量.就两个氮效率水稻品种而言,土壤pH值基本无差异.4007土壤NH+4-N含量均显著高于Elio.在齐穗期水稻根表、根际和土体土壤NO-3-N含量在N180水平下均表现为Elio显著高于4007.而在灌浆期和收获期,水稻根表、根际和土体土壤则表现为4007显著高于Elio.在所有采样期,两个水稻品种土体土壤硝化强度和AOB数量在3个施氮量下均无显著差异.Elio根表和根际土壤硝化强度和AOB数量在水稻灌浆期之前一直显著高于4007,而在灌浆期之后则显著低于4007,且最终产量和氮素利用率(NUE)显著低于4007,这可能是由于4007灌浆期后硝化作用强,根际产生的NO-3-N含量高,从而4007根吸收NO-3-N的量也高造成的.因此水稻灌浆期和收获期根表和根际硝化作用以及AOB与水稻高产及氮素高效利用密切相关.  相似文献   

4.
镉在土壤-香根草系统中的迁移及转化特征   总被引:1,自引:0,他引:1  
马文超  刘媛  孙晓灿  陈锦平  魏虹 《生态学报》2016,36(11):3411-3418
以无植物组处理为对照,采用盆栽试验方式探讨不同Cd浓度胁迫条件下香根草根际土壤中重金属Cd的积累、迁移及转化特征。土壤Cd处理设4个浓度梯度,分别为0、2、20、80 mg/kg土壤干重。结果表明:(1)香根草可以显著降低土壤中生物有效态Cd和总Cd含量。(2)香根草各部分Cd积累量随处理浓度的增加和处理时间的延长而增加,90 d时80 mg/kg处理组地上部分和根的Cd积累量分别高达180.42 mg/kg和241.54 mg/kg。(3)各浓度Cd处理下,富集系数随着Cd处理浓度的增加而显著降低,随处理时间的延长而升高。(4)香根草地上部分Cd含量小于根部,各处理转移系数均小于1。随着处理时间的延长,中低浓度处理组的转移系数稍有降低,高浓度处理组的转移系数则显著上升。(5)种植香根草使其根际土中残渣态的Cd转化为生物有效态Cd,提高Cd清除效率。研究结果表明,香根草能够有效地吸收土壤中的Cd,降低土壤中总Cd含量,提高土壤安全性,可作为Cd污染地区植物修复的备选物种。  相似文献   

5.
污染稻田水分管理对水稻吸收积累镉的影响及其作用机理   总被引:41,自引:1,他引:41  
Cd污染稻田通过长期淹水灌溉能显著降低稻米中Cd含量。利用Cd污染水稻土的盆栽试验,结合水稻根表氧化铁膜特征的分析,研究了不同水分管理对水稻吸收积累镉的影响及其作用机理。结果表明,随着稻田淹水程度(时间和水量)的提高,水稻根表氧化铁膜所吸附的还原态Fe(Ⅱ)、Mn(Ⅱ)显著增加,潮泥田和黄泥田长期淹水灌溉处理的水稻根膜中的Fe(Ⅱ)分别比湿润灌溉处理增加了12.6倍(p<0.01)和8.5倍(p<0.01);不同水分管理的水稻根膜氧化铁(Fe(Ⅲ))含量的变化与根膜Fe(Ⅱ)表现极显著的相关性,但两者均与水稻根膜Cd呈极显著的负相关,其中,2种土壤长期淹水的水稻根膜Fe(Ⅲ)分别比湿润灌溉增加了1.5倍(p<0.01)和1.0倍(p<0.01),根膜吸附的Cd含量分别较湿润灌溉降低了77.9%(p<0.01)和50.3%(p<0.01);长期淹水处理导致水稻根系、茎叶、糙米中的Cd含量均极显著低于相应的湿润灌溉处理,2种土壤长期淹水的糙米平均Cd含量比间歇灌溉的下降了41.3%,比湿润灌溉的下降了70.7%(p<0.01);不同水分管理的水稻糙米Cd含量与根膜Cd含量呈极显著正相关,与根膜Fe(Ⅱ)和Fe(Ⅲ)呈极显著负相关。综合分析认为,Cd污染酸性稻田在长期淹水的还原条件下Fe2 等金属离子与Cd2 的竞争吸附作用以及S2-和Cd2 的共沉淀作用加强,因而使得土壤中Cd的生物有效性明显降低。  相似文献   

6.
采用盆栽方法研究了酰胺态氮、铵态氮和硝态氮对强筋小麦(Triticum aestivum L.)"豫麦34"、中筋小麦"豫麦49"和弱筋小麦"豫麦50"生育中后期根际微生物和土壤酶活性的影响.结果表明,专用小麦根际真菌、细菌、放线菌数量和土壤脲酶、蛋白酶、硝酸还原酶活性以及根际pH值对氮素形态的反应不同."豫麦34"施用硝态氮,对根际土壤真菌、细菌(除成熟期外)和放线菌数量均具有明显的促进作用;"豫麦49"施用铵态氮,根际土壤细菌和放线菌数量最大,根际真菌数量在孕穗期和开花期以酰胺态氮处理最大,而成熟期以硝态氮处理最大;"豫麦50"施用硝态氮,对根际土壤真菌、细菌和放线菌数量均具有明显的促进作用.不同专用小麦品种均表现为在酰胺态氮处理下,根际土壤脲酶活性最高;在铵态氮处理下,根际土壤蛋白酶活性最高;在硝态氮处理下,根际土壤硝酸还原酶活性和pH值最高.  相似文献   

7.
弋良朋  王祖伟 《生态学报》2017,37(20):6855-6862
根际是控制植物养分动态的重要因素,养分动态也影响着根际土壤环境。当土壤被污水污泥改良后,根际土壤中的养分和重金属性质也会发生变化。目前很少有人研究施用污泥的土壤中植物根系对根际重金属有效性和分布的影响。采用根垫—冰冻薄层切片法对施用污泥后土壤中油菜根际的养分和重金属分布情况进行研究,以期探明污泥改良土壤中根际重金属的活化特征。当土壤施用污泥后,根际土壤中DTPA提取态Zn,Cd,Ni,Mn,有效磷,有效钾和铵态氮被显著消耗,而根际土壤中DTPA提取态Cu没有明显的消耗或积累。当土壤中施用大量污泥时,根际土壤的pH值随着离根表面距离的增加而增加。无论土壤是否用污泥处理,油菜根际土壤中可交换态Cu都显著减少。当土壤被50%污泥改良时,在距离根表面0—2 mm处的油菜根际土壤中碳酸盐结合态,铁锰氧化物结合态,有机物结合态,残渣态的Cu和Zn都被消耗较多。污泥的施用对油菜的生长有促进作用。随着污泥施用量的增加,油菜地上部分Cu和Zn的含量没有显著变化。施用污泥量小于25%的土壤中,污泥没有增加重金属的可利用性和移动性。除了Cu,油菜根际土壤中DTPA提取态Zn,Cd,Ni的减少表明施用污泥的土壤中重金属的活化是非常有限的。  相似文献   

8.
贾夏  董岁明  周春娟 《生态学报》2012,32(13):4052-4061
采用土壤盆栽试验法研究了Cd、低于国家“土壤环境质量标准”规定的Ⅱ类土壤环境基准值300 mg/kg干土时的Pb与Cd复合处理对冬小麦幼苗根系分泌物总酚酸和简单糖类及其与根际土壤微生物活性关系的影响特征.结果表明:1)冬小麦幼苗生长3周时,随Cd浓度的升高,根系简单糖类的分泌量表现为降低-增加-降低现象,而酚酸分泌量主要表现为显著(P<0.05)增加;幼苗生长7周时,简单糖类分泌量极显著(P<0.01)降低,酚酸分泌量表现为降低-增加-降低现象;幼苗生长12周时,简单糖类分泌量在Cd≤50.00 mg/kg干土时降低,Cd浓度为70.00 mg/kg干土时极显著(P<0.01)增加,酚酸分泌量在Cd≤20.00mg/kg干土时降低,Cd>20.00 mg/kg干土时增加.2)低于国家“土壤环境质量标准(GB15618-1995)”规定的Ⅱ类土壤环境基准值(300 mg/kg)时,Pb的存在会对Cd胁迫下冬小麦根系酚酸和简单糖类分泌特征有明显影响,主要表现为可使Cd处理下幼苗根系酚酸分泌量增加,而简单糖类分泌量降低.3)低Pb/Cd处理与Cd处理之间,冬小麦幼苗根系酚酸和简单糖类分泌量与细菌、真菌和放线菌数量、脲酶、转化酶和脱氢酶活性、有机质和全氮含量、微生物量碳等根际土壤微生物生化活性之间的相关性特点明显不同.  相似文献   

9.
菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响   总被引:62,自引:6,他引:56  
采用根垫法和连续形态分析技术,分析了生长在污灌土壤中菌根小麦和无菌根小麦根际Cu、Zn、Pb、Cd的形态分布和变化趋势。结果表明,下对照土壤相比,菌根际土壤中交换态Cu含量显著增加,交换态Cd呈减少的趋势;与非菌根际相比,Cu、Zn、Pb的有机结合态在菌根根际中显著增加,而4种测定金属2的碳酸盐态和铁锰氧化态都没有显著改变,该结果表明,植物根系能影响根际中金属形态的变化,且菌根比无菌根的影响程度大  相似文献   

10.
水稻根表铁膜吸附镉及植株吸收镉的动态   总被引:8,自引:0,他引:8  
采用营养液培养法研究了Cd处理时间对有铁膜和无铁膜水稻根表吸附Cd及植株吸收Cd动态变化的影响.水稻根表铁膜由50 mg·L-1 Fe2+(Fe50)诱导形成.供试植株在含10 μmol·L-1Cd的营养液中生长不同时间后收获.结果表明, 随Cd处理时间的延长,无铁膜和有铁膜处理水稻根表DCB-Cd含量均为先增加后减少,Cd处理2 h达到最高,之后逐渐下降并趋于稳定. 根系和地上部Cd含量均持续上升,Cd处理8 h前增加缓慢,8 h后增加幅度加大.有铁膜水稻根系和地上部Cd含量增加幅度均低于无铁膜水稻.有铁膜处理DCB-Cd含量、根系和地上部Cd含量均低于无铁膜处理.表明铁膜不影响水稻各部分Cd含量随时间的变化趋势;不同Fe处理之间根系和地上部Cd含量的差异可能与根系含Fe量有关.  相似文献   

11.
采用人工控制光温条件的蛭石-营养液相结合的培养方法,对根分泌物活化难溶性硫化镉以及对水稻吸收、运输镉的影响进行了研究。结果表明,缺铁水稻根分泌物和缺铁小麦根分泌匀能活化水稻根际的难溶性镉(CdS),促进了水稻对这部分镉的吸收和运输;但二者的活化强度不同,缺铁小麦根分泌物对镉的活化作用较缺铁水稻根分泌物强。  相似文献   

12.
A hydroponics culture experiment was conducted to investigate the effect of iron plaque on Cd uptake by and translocation within rice seedlings grown under controlled growth chamber conditions. Rice seedlings were pre-cultivated for 43 days and then transferred to nutrient solution containing six levels of Fe (0, 10, 30, 50, 80 and 100 mg L−1) for 6 days to induce different amounts of iron plaque on the root surfaces. Seedlings were then exposed to solution containing three levels of Cd (0, 0.1 and 1.0 mg L−1) for 4 days. In order to differentiate the uptake capability of Cd by roots with or without iron plaque, root tips (white root part without iron plaque) and middle root parts (with iron plaque) of pre-cultivated seedlings treated with 0, 30 and 50 mg L−1 Fe were exposed to 109Cd for 24 h. Reddish iron plaque gradually became visible on the surface of rice roots but the visual symptoms of the iron plaque on the roots differed among treatments. In general, the reddish color of the iron plaque became darker with increasing Fe supply, and the iron plaque was more homogeneously distributed all along the roots. The Fe concentrations increased significantly with increasing Fe supply regardless of Cd additions. The Cd concentrations in dithionite–citrate–bicarbonate (DCB)-extracts and in shoots and roots were significantly affected by Cd and Fe supply in the nutrient solution. The Cd concentrations increased significantly with increasing Cd supply in the solution and were undetectable when no Cd was added. The Cd concentrations in DCB-extracts with Fe supplied tended to be higher than that at Fe0 at Cd0.1, and at Cd1.0, DCB-Cd with Fe supplied was significantly lower. Cd concentrations in roots and shoots decreased with increasing Fe supply at both Cd additions. The proportion of Cd in DCB-extracts was significantly lower than in roots or shoots. Compared to the control seedlings without Fe supply, the radioactivity of 109Cd in shoots of seedlings treated with Fe decreased when root tips were exposed to 109Cd and did not change significantly when middle parts of roots were exposed. Our results suggest that root tissue rather than iron plaque on the root surface is a barrier to Cd uptake and translocation within rice plants, and the uptake and translocation of Cd appear to be related to Fe nutritional levels in the plants.  相似文献   

13.
In this study, the adsorption behavior of Cd ions by rhizosphere soil (RS) and non-rhizosphere soil (NS) originated from mulberry field was investigated. The Langmuir, Freundlich and the Dubinin–Radushkevich (D-R) equations were used to evaluate the type and efficiency of Cd adsorption. The RS was characterized by lower pH but the higher content of soil organic matter and cation exchange capacity (CEC) as compared to NS. Also, the maximum adsorption of Cd2+ for RS (5.87 mg/g) was slightly bigger than that for NS (5.36 mg/g). In Freundlich isotherm, the Kf of the adsorption of Cd2+ to surface of the RS components was higher than that of the NS, indicating stronger attraction between Cd2+ and components of the RS. According to the D-R model, the adsorption of Cd2+ by both soils was dominated by ion exchange phenomena. These results indicated that mulberry roots modified physical and chemical properties of the RS under field conditions, which also affected the Cd sorption efficiency by soil components during laboratory experiments. Current knowledge of the Cd2+ sorption processes in the rhizosphere of mulberry may be important if these trees are planted for use in phytoremediation of Cd contaminated soils.  相似文献   

14.
  • Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study.
  • Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd‐spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored.
  • Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque‐induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd‐induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo‐synthesis among plaque‐induced plants.
  • We conclude that ferrous sulphate‐induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress.
  相似文献   

15.
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake‐induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2O2) production in the epidermis due to the increasing expression of NADPH‐oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake‐induced rhizosphere alkalization led to Fe deficiency in rice, through H2O2‐dependent manners of root oxidation ability and phenylpropanoid metabolism.  相似文献   

16.
The aim of this study was to assess how the solubility and the speciation of Cd in soil solution were affected over time by the soil temperature for three metal-contaminated soils. The changes of solution Cd concentration (either total or free ionic) and other physico-chemical parameters (e.g. pH, ionic strength, the concentrations of ${\text{NO}}_3^ - $ , ${\text{SO}}_4^{2 - } $ , Ca, Mg and dissolved organic carbon) were monitored over a 28-day culture of lettuce (Lactuca sativa L.) in soils incubated at 10°C, 20°C or 30°C. The major result of this study was that Cd2+ concentration greatly varied over time in soil solution. The Cd2+ concentration declined over time in soil solution as did the concentration of cations that may compete for adsorption (Ca2+, Mg2+). The rise in soil temperature primarily impacted on the concentration of Cd2+ via promoting the microbial C-degradation and, thus, the complexation of Cd in soil solution. The integration of the temporal variations in Cd2+ concentration through the calculation of the root exposure to solution Cd (E Cd) provided a fairly close and robust prediction of Cd concentration in lettuce roots. The present work thus provided new insights on the fate of Cd in contaminated soils that may be relevant for predicting the root uptake of Cd.  相似文献   

17.
根表铁锰氧化物胶膜对不同品种水稻吸镉的影响   总被引:30,自引:1,他引:29  
采用土培方法,研究了不同品种水稻吸镉的差异及其与根表铁锰氧化物胶膜的关系,结果表明:不同品种水稻其根膜,根部及地上部含镉量均存在显著性差异,且镉在不同水稻植株体内运输转移能力不同,不同水稻其根表淀积的铁锰氧化物数量也存在显著性差异,根膜及地上部的含镉量与极膜的含铁量均未达到显著性相关,但与根膜的含锰量相关性显著。  相似文献   

18.
To understand the physiological mechanism that confers Cd sensitivity, root morphology and Cd uptake kinetics of the Cd-sensitive mutant and wild type rice were investigated. The root length, root surface area, and root number of mutant rice decreased more significantly with increasing Cd concentration in growth media compared with the wild type rice. The uptake kinetics for 109Cd2+ in roots of both the mutant and wild type rice were characterized by a rapid linear phase during the first 6 h and a slower linear phase during the subsequent period. Concentration-dependent Cd2+ influx in both species could be characterized by the Michaelis-Menten equation, with similar apparent Km values for mutant and wild type rice (2.54 and 2.37 μM, respectively). However, the Vmax for Cd2+ influx in mutant root cells was nearly 2-fold higher than that for wild type rice, indicating that enhanced absorption into the root is one of the mechanisms involved in Cd sensitivity in mutant rice.  相似文献   

19.

Aim

This article was aimed to explore the main rhizospherial properties of the Cd hyperaccumulator R. globosa compared to those of the non hyperaccumulator Rorippa palustris (Leyss.) Bess. representing the same genus (Rorippa) of Cruciferae.

Method

Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and rhizobags were conducted to determine the differences in Cd accumulation vs. pH, dissolved organic carbon (DOC), Cd chemical fractionation, enzyme activities, and microorganism number in the rhizospheres of R. globosa and R. palustris, and in the bulk soils.

Results

Experiments on Cd uptake by R. globosa and R. palustris from soil spiked with different doses of Cd ranging from 0 to 40 mg?kg?1, confirmed Cd-hyperaccumulating properties of R. globosa (Cd accumulation in the above-ground organs >100 mg kg?1, enrichment factor EF> 1, translocation factor TF> 1, no significant biomass reduction at Cd doses >10 mg kg?1) and the lack of such properties in R. palustris, which made these species suitable for comparative studies. The pH value was found to be a constant, specific property of the rhizosphere of R. globosa and R. palustris, and of the bulk soil, independent on the Cd dose, however the differences were rather small: by 0.2 unit lower in the rhizosphere of R. globosa, and only by 0.1 unit lower in the rhizosphere of R.. palustris compared to the bulk soil. Chemical fractionation of Cd, i.e. its affinity to pools of different binding strength, also appeared to be a specific feature of a rhizosphere and soil independent on the Cd dose. It exhibited a unique capability of the rhizosphere of the Cd-hyperaccumulator R. globosa to mobilize Cd, which enriched the most labile exchangeable fraction in 24.4 % and the immobile residual fraction in 42.3 %, compared to 19.3 % and 50.8 % in the bulk soil and in the rhizosphere of the non-hiperaccumulator R.palustris that did not show significant difference (p?<?0.05) from the bulk soil. In turn, DOC concentrations, enzymatic (urease and catalase) activity and microorganism (bacteria, fungi and actinomycetes) growth in rhizosphere soils were largely influenced by different Cd doses, although they were always considerably higher in the rhizosphere soils of R globosa, than in the rhizosphere of R. palustris and in the bulk soil, in particular at Cd doses ≥10 mg kg?1.

Conclusion

pH and DOC changes in the rhizosphere of the Cd-hyperaccumulator R. globosa were found to be of a minor importance. The alteration of Cd chemical fractionation consisting in substantial reduction of the immobile residual pool and Cd enrichment primarily in the most labile exchangeable fraction, along with over 2-fold higher number of microorganisms was considered to be the driving force of Cd hyperaccumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号