首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
Live attenuated vaccines against measles have been developed through adaptation of clinical isolates of measles virus (MV) in various cultured cells. Analyses using recombinant MVs with chimeric genomes between wild-type and Edmonston vaccine strains indicated that viruses possessing the polymerase protein genes of the Edmonston strain exhibited attenuated viral gene expression and growth in cultured cells as well as in mice expressing an MV receptor, signaling lymphocyte activation molecule, regardless of whether the virus genome had the wild-type or vaccine-type promoter sequence. These data demonstrate that the polymerase protein genes of the Edmonston strain contribute to its attenuated phenotype.  相似文献   

3.
Measles is a highly contagious disease currently responsible for over one million childhood deaths, particularly in the developing world. Since alpha/beta interferons (IFNs) are pivotal players both in nonspecific antiviral immunity and in specific cellular responses, their induction or suppression by measles virus (MV) could influence the outcome of a viral infection. In this study we compare the IFN induction and sensitivity of laboratory-passaged attenuated MV strains Edmonston and Moraten with those of recent wild-type viruses isolated and passaged solely on human peripheral blood mononuclear cells (PBMC) or on the B958 marmoset B-cell line. We report that two PBMC-grown wild-type measles isolates and two B958-grown strains of MV induce 10- to 80-fold-lower production of IFN by phytohemagglutinin-stimulated peripheral blood lymphocytes (PBL) compared to Edmonston and Moraten strains of measles. Preinfection of PBL with these non-IFN-inducing MV isolates prevents Edmonston-induced but not double-stranded-RNA-induced IFN production. This suggests that the wild-type viruses can actively inhibit Edmonston-induced IFN synthesis and that this is not occurring by double-stranded RNA. Furthermore, the wild-type MV is more sensitive than Edmonston MV to the effect of IFN. MV is thus able to suppress the synthesis of the earliest mediator of antiviral immunity, IFN-alpha/beta. This could have important implications in the virulence and spread of MV.  相似文献   

4.
Molecular determinants of neuropathogenesis have been shown to be present in the hemagglutinin (H) protein of measles virus (MV). An H gene insertion vector has been generated from the Edmonston B vaccine full-length infectious clone of MV. Using this vector, it is possible to insert complete H open reading frames into the parental (Edtag) background. The H gene from a rodent brain-adapted MV strain (CAM/RB) was inserted into this vector, and a recombinant virus (EdtagCAMH) was rescued by using a modified vaccinia virus which expresses T7 RNA polymerase (MVA-T7). The recombinant virus grew at an equivalent rate and to similar titers as the CAM/RB and Edtag parental viruses. Neurovirulence was assayed in a mouse model for MV encephalitis. Viruses were injected intracerebrally into the right cortex of C57/BL/6 suckling mice. After infection mice inoculated with the CAM/RB strain developed hind limb paralysis and ataxia. Clinical symptoms were never observed with an equivalent dose of Edtag virus or in sham infections. Immunohistochemistry (IHC) was used to detect viral antigen in formalin-fixed brain sections. Measles antigen was observed in neurons and neuronal processes of the hippocampus, frontal, temporal, and olfactory cortices and neostriatum on both sides of symmetrical structures. Viral antigen was not detected in mice infected with Edtag virus. Mice infected with the recombinant virus, EdtagCAMH, became clinically ill, and virus was detected by IHC in regions of the brain similar to those in which it was detected in animals infected with CAM/RB. The EdtagCAMH infection had, however, progressed much less than the CAM/RB virus at 4 days postinfection. It therefore appears that additional determinants are encoded in other regions of the MV genome which are required for full neurovirulence equivalent to CAM/RB. Nevertheless, replacement of the H gene alone is sufficient to cause neuropathology.  相似文献   

5.
Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral particles, elicited humoral responses in MV-susceptible genetically modified mice. However, small differences in HBsAg expression elicited vastly different HBsAg antibody levels. The two vectors inducing the highest HBsAg antibody levels were inoculated into rhesus monkeys (Macaca mulatta). After challenge with a pathogenic MV strain (Davis87), control naive monkeys showed a classic measles rash and high viral loads. In contrast, all monkeys immunized with vaccine or a control nonvectored recombinant vaccine or HBsAg-expressing vectored MV remained healthy, with low or undetectable viral loads. After a single vaccine dose, only the vector expressing HBsAg at the highest levels elicited protective levels of HBsAg antibodies in two of four animals. These observations reveal an expression threshold for efficient induction of HBsAg humoral immune responses. This threshold is lower in mice than in macaques. Implications for the development of divalent vaccines based on live attenuated viruses are discussed.  相似文献   

6.
Recombinant Newcastle Disease Virus as a Vaccine Vector   总被引:25,自引:0,他引:25       下载免费PDF全文
A complete cDNA clone of the Newcastle disease virus (NDV) vaccine strain Hitchner B1 was constructed, and infectious recombinant virus expressing an influenza virus hemagglutinin was generated by reverse genetics. The rescued virus induces a strong humoral antibody response against influenza virus and provides complete protection against a lethal dose of influenza virus challenge in mice, demonstrating the potential of recombinant NDV as a vaccine vector.  相似文献   

7.
8.
9.
To understand the molecular determinants of measles virus (MV) virulence, we have used the SCID-hu thymus/liver xenograft model (SCID-hu thy/liv) in which in vivo MV virulence phenotypes are faithfully duplicated. Stromal epithelial and monocytic cells are infected by MV in thymus implants, and virulent strains induce massive thymocyte apoptosis, although thymocytes are not infected. To determine whether passage of an avirulent vaccine strain in human tissue increases virulence, we studied a virus isolated from thymic tissue 90 days after infection with the vaccine strain Moraten (pMor-1) and a virus isolated from an immunodeficient child with progressive vaccine-induced disease (Hu2). These viruses were compared to a minimally passaged wild-type Edmonston strain (Ed-wt) and the vaccine strain Moraten. pMor-1, Hu2, and Ed-wt displayed virulent phenotypes in thymic implants, with high levels of virus being detected by 3 days after infection (10(5.2), 10(2.8), and 10(3. 4), respectively) and maximal levels being detected between 7 and 14 days after infection. In contrast, Moraten required over 14 days to grow to detectable levels. pMor-1 produced the highest levels of virus throughout infection, suggesting thymic adaptation of this strain. Similar to other virulent strains, Ed-wt, Hu2, and pMor-1 caused a decrease in the number of viable thymocytes as assessed by trypan blue exclusion and fluorescence-activated cell sorter analysis. Thymic architecture was also disrupted by these strains. Sequence analysis of the hemagglutinin (H) and matrix (M) genes showed no common changes in Hu2 and pMor-1. M sequences were identical in pMor-1 and Mor and varied in H at amino acid 469 (threonine to alanine), a position near the base of propeller 4 in the propeller blade/stem model of H structure. Further study will provide insights into the determinants of virulence.  相似文献   

10.
Measles vaccines are highly effective and safe; however, the mechanism(s) underlying their attenuation has not been well understood. In this study, type I IFNs (IFN‐α and IFN‐β) induction in macaques infected with measles virus (MV) strains was examined. Type I IFNs were not induced in macaques infected with wild‐type MV. However, IFN‐α was sharply induced in most macaques infected with recombinant wild‐type MV bearing the hemagglutinin (H) protein of the Edmonston vaccine strain. These results indicate that the H protein of MV vaccine strains may have a role in MV attenuation.  相似文献   

11.
We sought proof of principle that one of the safest human vaccines, measles virus Edmonston B (MV-Edm), can be genetically modified to allow entry via cell surface molecules other than its receptor CD46. Hybrid proteins consisting of the epidermal growth factor (EGF) or the insulin-like growth factor 1 (IGF1) linked to the extracellular (carboxyl) terminus of the MV-Edm attachment protein hemagglutinin (H) were produced. The standard H protein gene was replaced by one coding for H/EGF or H/IGF1 in cDNA copies of the MV genome. Recombinant viruses were rescued and replicated to titers approaching those of the parental strain. MV displaying EGF or IGF1 efficiently entered CD46-negative rodent cells expressing the human EGF or the IGF1 receptor, respectively, and the EGF virus caused extensive syncytium formation and cell death. Taking advantage of a factor Xa protease recognition site engineered in the hybrid H proteins, the displayed domain was cleaved off from virus particles, and specific entry in rodent cells was abrogated. These studies prove that MV can be engineered to selectively eliminate cells expressing a targeted receptor and provide insights into the mechanism of MV entry.  相似文献   

12.
An alternative model to nonhuman primates to study measles virus (MV) pathogenesis, to evaluate potential MV vaccines, or to screen for potential antivirals effective against this virus is highly desirable. The laboratory-adapted Edmonston strain of MV has been reported to replicate in the lungs of hispid cotton rats following intranasal inoculation, immunosuppress infected animals, and disseminate widely from the lungs, making these animals a candidate model. However, clinical MV strains have generally not been found to grow in these animals, limiting the utility and acceptance of this model. In the present studies we demonstrate reproducible replication of several clinical MV strains in hispid cotton rats. As with the Edmonston strain, leukocytes appear to be the primary target cells of these viruses following intranasal inoculation, and extrapulmonary dissemination is common. It is also demonstrated that prior MV infection or immunization of test animals with MV vaccine prevents pulmonary tract infection. These findings should make the MV-cotton rat model more acceptable.  相似文献   

13.
An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.  相似文献   

14.
15.
A Hirano 《Journal of virology》1992,66(4):1891-1898
Interaction between the Edmonston or Nagahata strain of acute measles virus (MV) and the defective Biken strain of MV isolated from a patient with subacute sclerosing panencephalitis (SSPE) was examined by a cell fusion protocol. Biken-CV-1 cells nonproductively infected with Biken strain SSPE virus were fused with neomycin-resistant CV-1 cells. All the fused cells selected with the neomycin analog G418 expressed Biken viral proteins, as determined by an immunofluorescence assay. This procedure enabled the transfer of Biken viral genomes into cells previously infected with MV. In the fused cells coinfected by Biken strain SSPE virus and Edmonston or Nagahata strain MV, early MV gene expression was suppressed, as determined by immunoprecipitation with strain-specific antibodies. Maturation of Edmonston strain MV was also suppressed. When the coinfected fused cells were selected with G418, Biken viral proteins remained at a constant level for up to 7 weeks. Wild-type MV proteins gradually decreased to a barely detectable level after 4 weeks and became undetectable after 7 weeks. Immunofluorescence studies showed a steady decline in cells expressing wild-type MV proteins in the coinfected cultures. These results suggest that Biken strain SSPE virus dominantly interferes with the replication of wild-type MV. The possible mechanisms of dominant interference and the implication for evolution of a persistent MV infection are discussed.  相似文献   

16.
摘要:【目的】构建含有RGD受体结合位点口蹄疫病毒(FMDV)Asia1/JS/China/2005株的全长感染性cDNA克隆。【方法】采用定点突变方法,构建Asia1型FMDV含有预期突变的全长cDNA克隆pFMDV-RGD。pFMDV-RGD重组质粒经NotI线化后,与表达T7 RNA聚合酶的真核质粒pcDNAT7P共转染BHK-21细胞,进行FMDV-RGD病毒拯救。【结果】序列测定结果表明成功构建了FMDV含有RGD受体位点的Asia1/JS/China/2005全长cDNA克隆。共转染实验获得拯救病毒,对拯救的病毒分别进行序列测定、间接免疫荧光、电子显微镜观察和乳鼠致病性分析,表明成功拯救了含有RGD受体结合位点的Asia1/JS/China/2005株FMDV。【结论】该实验为进一步研究含有RGD和RDD受体结合位点2个拯救病毒生物学特性的差异奠定了基础。  相似文献   

17.
18.
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.  相似文献   

19.
20.
Mortality from measles is caused mostly by secondary infections associated with the depression of cellular immunity. The mechanism of immune suppression and the role of virus strain differences on the immune system are incompletely understood. SCID-hu mice were used to determine the effects of virulent, wild-type (Chicago-1) and avirulent, vaccine (Moraten) strains of measles virus (MV) on the human thymus in vivo. Chicago-1 replicated rapidly, with a 100-fold decrease in numbers of thymocytes, whereas Moraten replicated slowly, without significant thymocyte death. Productive MV infection occurred not in thymocytes but in thymic epithelial and myelomonocytic cells. Wild-type MV infection of thymic stromata leads to induction of thymocyte apoptosis and may contribute to a long-term alteration of immune responses. The extent of thymic disruption reflects the virulence of the virus, and therefore the SCID-hu mouse may serve as the first small animal model for the study of MV pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号