首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甲状腺激素对白头鹎基础产热的影响   总被引:2,自引:0,他引:2  
甲状腺激素对动物的基础产热有调节作用,甲状腺活性的增加往往与基础代谢的增加相伴行。通过每日饲喂甲状腺素(T4)研究了甲状腺机能亢进对白头鹎(Pycnonotus sinensis)代谢产热的影响。代谢率的测定采用封闭式流体压力呼吸计测定,细胞色素C氧化酶(COX)采用铂氧电极-溶氧仪测定,反应温度为30℃,肝脏和肌肉的线粒体状态4呼吸采用铂氧电极-溶氧仪测定,反应温度为30℃,线粒体蛋白的测定以牛血清蛋白作为标准,采用Folin-phenol方法,测定肝脏和肌肉组织的蛋白质含量。与对照组相比,甲亢组的基础代谢率(BMR)明显升高;肝脏及肌肉组织状态4呼吸增加;肝脏和肌肉线粒体的COX活力升高。  相似文献   

2.
Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. Changes in photoperiod, ambient temperature and food availability trigger seasonal acclimatization in physiology and behavior of many birds. In the present study, seasonal adjustments in several physiological, hormonal, and biochemical markers were examined in wild-captured Eurasian tree sparrows (Passer montanus) from the Heilongjiang Province in China. In winter sparrows had higher body mass and basal metabolic rate (BMR). Consistently, the dry mass of liver, heart, gizzard, small intestine, large intestine and total digestive tract were higher in winter than in that in summer. The contents of mitochondrial protein in liver, and state-4 respiration and cytochrome c oxidase (COX) activity in liver and muscle increased significantly in winter. Circulating level of serum triiodothyronine (T3) was significantly higher in winter than in summer. Together, these data suggest that tree sparrows mainly coped with cold by enhancing thermogenic capacities through increased organ masses and heightened activity of respiratory enzymes activities. The results support the view that prominent winter increases in BMR are manifestations of winter acclimatization in tree sparrows and that seasonal variation in metabolism in sparrows is similar to that in other small temperate-wintering birds.  相似文献   

3.
Brandt's voles (Lasiopodomys brandti) exposed to cold (5±1 °C) or warm (23±1 °C) showed some physiological and biochemical variations which might be important in adaptation to their environments. Cold acclimation induced increases in resting metabolic rate (RMR) and the serum triiodothyronine (T3) level, the state-4 respiration of liver and muscle mitochondria were activated after 7 days when animals exposed to cold, and the activity of cytochrome c oxidase (COX) of liver and muscle mitochondria tended to rise with cold exposure. RMR and T3 level decreased during warm acclimation. The state-4 respiration of liver mitochondria declined after 3 days and muscle after 7 days when animals exposed to warm, and the activities of COX of liver and muscle mitochondria tended to decrease with warm acclimation. The cold activation of liver and muscle mitochondrial respiration (regulated by T3) was one of the cytological mechanisms of elevating RMR. Both state-4 respiration and COX activity of brown adipose tissue (BAT) mitochondria increased significantly during cold acclimation and decreased markedly after acclimated to warm. The uncoupling protein 1 (UCP1) contents in BAT increased after exposure to cold and decreased after warm acclimation. Nonshivering thermogenesis (NST) plays an important role in the process of thermoregulation under cold acclimation for Brandt's voles. Changes in thermogenesis is a important way to cold adaptation for Brandt's voles in natural environments.  相似文献   

4.
树麻雀肝脏和肌肉产热特征的季节性变化   总被引:6,自引:0,他引:6  
北温带的小型鸟类,通过增加产热来适应低温环境.基础代谢率(BMR)是内温动物能量预算的重要组成部分.本研究中我们分别在冬季和夏季测定了树麻雀(Passer montanus)的BMR、肝脏和肌肉的线粒体蛋白含量、线粒体呼吸及细胞色素C氧化酶(COX)活力及血清中甲状腺激素(T4)及甲状腺原氨酸(T3)含量的变化.结果显示:树麻雀的体重和BMR冬季显著高于夏季;肝脏的线粒体呼吸、肝脏和肌肉的COX活力冬季较高,夏季较低;血清T3浓度冬季明显高于夏季.这些结果表明:在野外条件下,肝脏和肌肉在细胞水平产热能力的提高和血清T3含量的增加,是树麻雀抵御冬季寒冷的重要方式之一.  相似文献   

5.
Acclimatization to different ambient conditions is an essential prerequisite for survival of small passerine birds. Long-distance migration and winter acclimatization induce similar physiological and biochemical adjustments in passerines. To understand metabolic adaptations, the resting metabolic rate (RMR), the thermogenic properties of mitochondria in liver and muscle, and the activity of thyroid hormones were examined in field-captured little buntings (Emberiza pusilla) between Southeastern (Wenzhou) and Northeastern (Qiqihar) China from March to May in 2008 during their migration. Twelve birds were trapped from March to April in Wenzhou region, Zhejiang Province (27°29′N, 120°51′E) and eleven birds originated from April to May in Qiqihar region, Heilongjiang Province (47°29′N, 124°02′E). We found that RMRs of little buntings were significantly higher in Qiqihar than in Wenzhou. Consistently, mitochondrial state-4 respiration capacities and cytochrome c oxidase activities (COX) in liver and muscle, and circulating levels of plasma triiodothyronine (T3) of little buntings were also significantly higher in Qiqihar than in Wenzhou. Variation in metabolic biochemical markers of liver and muscle, such as state-4 respiration and COX, and variation in thyroid hormone levels were correlated with variation in RMR. There was also a positive relationship between T3 and metabolic biochemical markers. Little buntings mainly coped with a cold environment by enhancing thermogenic capacities through enhanced respiratory enzyme activities and plasma T3. These results support the view that the primary means by which small birds meet energetic challenges of cold conditions is through metabolic adjustments.  相似文献   

6.
Thyroid hormones can increase energy expenditure and stimulate basal thermogenesis by lowering metabolic efficiency. In the present study, we examined the effects of thyroid hormones on basal heat production as well as on several physiological and biochemical measures indicative of thermogenic capacity to test our hypothesis that thyroid hormones stimulate increases in thermogenesis in little buntings. Little buntings that fed on thyroxine (T4)–laced poultry food of 3 and 5 ppm concentrations showed increases in basal metabolic rate (BMR) during the 3-week acclimation. At the end, these buntings had lower body weights, higher levels of contents of mitochondrial protein, state 4 respiration and cytochrome c oxidase activity in liver and muscle, and higher concentrations of serum triiodothyronine (T3) and T4 compared to control buntings. These results support the argument that thyroid hormones play an important role in the regulation of thermogenic ability in buntings by stimulating mitochondrial respiration and enzyme activities associated with aerobic metabolism.  相似文献   

7.
The obligatory cost of living for endotherms is measured by basal metabolic rate (BMR), a variable that is known to change after thermal acclimation. However, the relative timing between variation in ambient temperature and BMR is not well understood. In this study, we addressed this problem in the sparrow Zonotrichia capensis, studying whether previous thermal history affects the response of BMR to a new acclimation temperature. We found that after 4 weeks of acclimation either to 30 or 15 °C birds exhibited significant differences in BMR from pre-acclimation levels. Nevertheless, after a re-acclimation to the opposite treatment for six additional weeks, in the group previously acclimated to warm conditions the change in BMR was significantly greater than in the group previously acclimated to cold. We also found differences in the mass of the small intestine between groups but constancy in the mass of liver, kidney and heart masses at the end of the experiments. Our results indicate that the thermal history affects metabolic adjustments and highlights the importance of considering this when evaluating the plasticity of metabolic traits in small birds.  相似文献   

8.
(1)
To investigate the role of photoperiod on the regulation of energy budgets and thermogenesis in Mongolian gerbils, body mass (BM), body fat mass (BFM), basal metabolic rate (BMR), nonshivering thermogenesis (NST), gross energy intake (GEI), mitochondrial cytochrome c oxidase (COX) activity and uncoupling protein1 (UCP1) content of brown adipose tissue (BAT), and serum tri-iodothyronine (T3), thyroxine (T4) and leptin levels were measured.  相似文献   

9.
Eothenomys miletus is an important species inhabiting Hengduan mountains region. In order to study adaptive strategy and the role of serum leptin level in response to a 49 d cold exposure, body mass, energy intake, basal metabolic rate (BMR), nonshivering thermogenesis (NST) in E. miletus were measured. During cold exposure (5±1 oC), body mass decreased; serum leptin levels decreased significantly and were positively correlated with body mass and fat mass; energy intake, BMR and NST were higher at 5 °C than that of controls. These results suggest that E. miletus enhanced thermogenic capacity and increased maintenance cost during cold acclimation, resulting in increased energy intake. Serum leptin participated in the regulation of energy balance and body mass in E. miletus.  相似文献   

10.
树麻雀代谢率和器官重量在季节驯化中表型的可塑性变化   总被引:1,自引:0,他引:1  
柳劲松  李铭 《动物学报》2006,52(3):469-477
动物能量代谢的生理生态特征与物种的分布和丰富度密切相关,基础代谢率(BMR)是内温动物能量预算的重要组成部分。北温带的小型鸟类,通过增加产热来适应低温环境。增加BMR的基础之一是中心器官(代谢机器)发生明显的变化。本研究中我们测定了树麻雀(Passermontanus)的BMR、体重和各器官的重量,分析了麻雀各器官的季节性变化及与BMR的关系。方差分析表明:麻雀的BMR存在明显的季节性变化,在冬季和秋季较高。麻雀内部器官的变化同样有明显的季节性,冬季和秋季麻雀的肝脏、心脏、肌胃、小肠、直肠和整体消化道的重量,都有明显的增加。相关分析表明:麻雀的BMR与肝脏、心脏和消化道等内部器官存在明显的相关性。我们的结果验证了“中心限制假说”,即麻雀体内存在着与BMR相关的“代谢机器”,中心器官是提高麻雀BMR的基础之一。  相似文献   

11.
为探讨高脂食物对小型哺乳动物能量代谢的影响及其与基础代谢率(Basal metabolic rate, BMR)的关系,将成年雌性黑线仓鼠(Cricetulus barabensis)分为高、低BMR组,每组再随机分为低脂、高脂食物组,驯化6周后,测定体重、摄入能和代谢率,以及消化酶活力、褐色脂肪组织(Brown adipose tissue, BAT)和主要内脏器官与肌肉的细胞色素c氧化酶(Cytochrome c oxidase, COX)活性、解偶联蛋白(Uncoupling protein, UCP) mRNA表达等。结果显示,高脂食物对高、低BMR组动物体重均无显著影响。与低脂食物组相比,高脂食物组的摄食量、摄入能和消化能显著下降,小肠脂肪酶活力显著增强,消化率明显增加,但高、低BMR组的组间差异不显著。夜间代谢水平显著高于昼间,高脂食物使高BMR组的夜间代谢率显著升高。BAT、肌肉和内脏器官COX活性不受高脂食物的影响,高、低BMR组的组间差异也不显著。高脂食物组仅肝脏UCP2表达显著上调。结果表明,能量摄入和消化系统形态及功能的可塑性调节是黑线仓鼠应对高脂食物的主要策略;黑线仓鼠的代谢率具有显著的昼夜节律,既受高脂食物的影响,也与动物自身的BMR水平有关,但UCP表达具有组织特异性,这可能不是导致BMR个体差异的因素。  相似文献   

12.
Chinese bulbuls(Pycnonotus sinensis) are small passerine birds that inhabit areas of central, southern and eastern China. Previous observations suggest that free–living individuals of this species may change their food intake in response to seasonal changes in ambient temperature. In the present study, we randomly assigned Chinese bulbuls to either a 30 °C or 10 °C group, and measured their body mass(BM), body temperature, gross energy intake(GEI), digestible energy intake(DEI), and the length and mass of their digestive tracts over 28 days of acclimation at these temperatures. As predicted, birds in the 30 °C group had lower body mass, GEI and DEI relative to those in the 10 °C group. The length and mass of the digestive tract was also lower in the 30 °C group and trends in these parameters were positively correlated with BM, GEI and DEI. These results suggest that Chinese bulbuls reduced their absolute energy demands at relatively high temperatures by decreasing their body mass, GEI and DEI, and digestive tract size.  相似文献   

13.
(1)
To investigate the effect of fasting and refeeding on the body mass, thermogenesis and serum leptin in Brandt's voles, the changes in body and body fat mass, resting metabolic rate (RMR), mitochondrial cytochrome c oxidase (COX) activity in liver and brown adipose tissue (BAT), uncoupling protein 1 (UCP1) content of BAT, serum leptin level and post-fasting food intake were monitored and measured.  相似文献   

14.
I wanted to follow the correlation between level of basal metabolic rate (BMR) and maximum response to injection of noradrenaline (MMRNA) in two lines of laboratory mice subjected to divergent, artificial selection toward high BMR (HBMR) and low BMR (LBMR). HBMR animals had heavier visceral organs (heart, liver, kidney, intestine), but their regulatory NST (MMRNA–BMR) was lower and interscapular brown adipose tissue (IBAT) lighter than in LBMR mice. Obligatory part of nonshivering thermogenesis (NST) (in other words BMR) depended on visceral organ mass, whereas regulatory NST correlates with mass of IBAT. BMR was not correlated with total NST capacity, but phenotypic correlation between obligatory and regulatory NST was negative. This suggests possibility of substitution of obligatory NST to thermoregulation in a place of the regulatory NST. Then total thermoregulatory energy expenditures do not change.  相似文献   

15.
Animal species of similar body mass vary widely in basal metabolic rate (BMR). A central problem of evolutionary physiology concerns the anatomical/physiological origin and functional significance of that variation. It has been hypothesized that such interspecific differences in wild animals evolved adaptively from differences in relative sizes of metabolically active organs. In order to minimize confounding phenotypic effects and maximize relevant genetic variation, we tested for intraspecific correlations between body-mass-corrected BMR and masses of four organs (heart, kidney, liver, and small intestine) among six inbred strains of mice. We found significant differences between strains in BMR and in masses of all four organs. Strains with exceptionally high (or low) BMR tended to have disproportionately large (or small) organs. The mass of each organ was correlated with the masses of each of the other three organs. Variation in organ masses accounted for 52% of the observed variation in BMR, of which 42% represented between-strain variation, and 10% represented within-strain variation. This conclusion is supported by published measurements of metabolic rates of tissue slices from the four organs. The correlation between BMR and intestine or heart mass arose exclusively from differences between strains, while the correlation between BMR and liver or kidney mass also appeared in comparing individual mice within the same strain. Thus, even though the masses of the four examined organs account for no more than 17% of total body mass, their high metabolic activities or correlated factors account for much of the variation in BMR among mice. We suggest that large masses of metabolically active organs are subject to natural selection through evolutionary trade-offs. On the one hand, they make possible high-energy budgets (advantageous under some conditions), but on the other hand they are energetically expensive to maintain.  相似文献   

16.
能量代谢的生理调节是小型哺乳动物应对不同环境温度的重要策略之一,为探讨暖温下代谢产热在体重和体脂适应性调节中的作用和机理,本研究将雌性黑线仓鼠(Cricetulus barabensis)暴露于暖温(30°C)1个月、3个月和4个月,测定体重、摄入能、代谢产热、体脂含量、褐色脂肪组织(BAT)细胞色素c氧化酶(COX)活性和解偶联蛋1 (UCP1) mRNA表达等。结果显示,暖温对黑线仓鼠体重无显著影响,但使脂肪含量显著增加。与室温组相比(21°C),暖温组消化率显著升高,但摄入能和消化能显著降低;暖温下非颤抖性产热(NST)显著降低,脑、肝脏和心脏COX活性、BAT COX活性和UCP1 mRNA的表达显著下调。结果表明,暖温下降低代谢产热补偿了能量摄入的减少,机体处于正能量平衡状态,是脂肪含量显著增加的主要原因之一。脑、肝脏、心脏和BAT代谢活性降低是代谢产热降低的主要机制,与脂肪累积有关。  相似文献   

17.
In the calidrine sandpiper red knot (Calidris canutus), the weeks preceding takeoff for long-distance migration are characterized by a rapid increase in body mass, largely made up of fat but also including a significant proportion of lean tissue. Before takeoff, the pectoral muscles are known to hypertrophy in preparation for endurance flight without any specific training. Because birds facing cold environments counterbalance heat loss through shivering thermogenesis, and since pectoral muscles represent a large proportion of avian body mass, we asked the question whether muscle hypertrophy in preparation for long-distance endurance flight would induce improvements in thermogenic capacity. We acclimated red knots to different controlled thermal environments: 26 degrees C, 5 degrees C, and variable conditions tracking outdoor temperatures. We then studied within-individual variations in body mass, pectoral muscle size (measured by ultrasound), and metabolic parameters [basal metabolic rate (BMR) and summit metabolic rate (M(sum))] throughout a 3-mo period enclosing the migratory gain and loss of mass. The gain in body mass during the fattening period was associated with increases in pectoral muscle thickness and thermogenic capacity independent of thermal acclimation. Regardless of their thermal treatment, birds showing the largest increases in body mass also exhibited the largest increases in M(sum). We conclude that migratory fattening is accompanied by thermoregulatory side effects. The gain of body mass and muscle hypertrophy improve thermogenic capacity independent of thermal acclimation in this species. Whether this represents an ecological advantage depends on the ambient temperature at the time of fattening.  相似文献   

18.
Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated.  相似文献   

19.
Recording weight-specific total body metabolism of the mouse at two ambient temperatures (22.5°, 35° C) and plotting the resulting data on a double logarithmic grid revealed a cyclic allometry with a positive constant between 1.3 and 5 g body weight (cycle I) and a negative constant between 5 (or 7) and 23 g (cycle II). Similar cycles concerning the weight-allometry of the mass of several organs (brain, heart, liver, skin) and the tissue respiration of brain, liver, intestine and kidneys are statistically significant. If the summated tissue respiration is determined over the entire body size range — by summing up tissue respiration for several individual body weights and calculating the regression lines — two cycles are, again, observable; their slopes cannot be distinguished statistically from those of the cycles of total body O2-uptake at 35° C. Its intensity, however, is considerably lower than that of the directly measured total body metabolism. If certain corrections are applied (inclusion of skin respiration and extrapolation of respiration in vitro to t0 the intensity of summated tissue respiration as well as its slope coincide well with the BMR obtained from literature.  相似文献   

20.
Thermogenic characteristics and evaporative water loss were measured at different temperatures in Tupaia belangeri. The thermal neutral zone (TNZ) of T. belangeri was 30–35 °C. Mean body temperature was 39.76±0.27 °C and mean body mass was 100.86±9.09 g. Basal metabolic rate (BMR) was 1.38±0.03 ml O2/g h. Average minimum thermal conductance (Cm) was 0.13±0.01 ml O2/g h °C. Evaporative water loss in T. belangeri increased when the temperature rose; the maximal evaporative water loss was 3.88±0.41 mg H2O/g h at 37.5 °C. The results may reflect features of small mammals in the sub-tropical plateau region: T. belangeri had high basal metabolic rate and high total thermal conductance, compared with the predicted values based on their body mass whilst their body temperatures are relatively high; T. belangeri has high levels of evaporative water loss and poor water-retention capacity. Evaporative water loss plays an important role in temperature regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号