首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pathways of adenine nucleotide catabolism in primary rat muscle cultures   总被引:2,自引:0,他引:2  
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2'-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined in cell extracts. The results demonstrate that under physiological conditions, there is a small but significant flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5'-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

2.
The pathways of AMP degradation and the metabolic fate of adenosine were studied in cultured myotubes under physiological conditions and during artificially induced enhanced degradation of ATP. The metabolic pathways were gauged by tracing the flow of radioactivity from ATP, prelabelled by incubation of the cultures with [14C]adenine, into the various purine derivatives. The fractional flow from AMP to inosine through adenosine was estimated by the use of the adenosine deaminase (EC 3.5.4.4) inhibitors, coformycin and 2′-deoxycoformycin. The activities of the enzymes involved with AMP and adenosine metabolism were determined flow of label from ATP to diffusible bases and nucleosides, most of which are effluxed to the incubation medium. This catabolic flow is mediated almost exclusively by the activity of AMP deaminase (EC 3.5.4.6), rather than by AMP 5′-nucleotidase (EC 3.1.3.5), reflecting the markedly higher Vmax/Km ratio for the deaminase. Enhancement of ATP degradation by inhibition of glycolysis or by combined inhibition of glycolysis and of electron transport resulted in a markedly greater flux of label from adenine nucleotides to nucleosides and bases, but did not alter significantly the ratio between AMP deamination and AMP dephosphorylation, which remained around 19:1. Combined inhibition of glycolysis and of electron transport resulted, in addition, in accumulation of label in IMP, reaching about 20% of total AMP degraded. In the intact myotubes at low adenosine concentration, the anabolic activity of adenosine kinase was at least 4.9-fold the catabolic activity of adenosine deaminase, in accord with the markedly higher Vmax/Km ratio of the kinase for adenosine. The results indicate the operation in the myotube cultures, under various rates of ATP degradation, of the AMP to IMP limb of the purine nucleotide cycle. On the other hand, the formation of purine bases and nucleosides, representing the majority of degraded ATP, indicates inefficient activity of the IMP to AMP limb of the cycle, as well as inefficient salvage of hypoxanthine under these conditions.  相似文献   

3.
The ATPase activity of Catharanthus roseus tonoplasts was examined using HPLC separation and quantification of adenine nucleotides. ATP seemed to be degraded into ADP and AMP by tonoplast vesicles. When ADP was the initial substrate, the appearance of AMP and concomitant ATP synthesis were observed; these reactions were inhibited by Ap5A. The apparent degradation of ATP into AMP was also inhibited by Ap5A. These results indicated that AMP arose from an ATP:AMP phosphotransferase activity and excluded the possibility of the hydrolysis of ADP into AMP by the tonoplast ATPase. AMP was degraded by the microsomal fraction from protoplasts or by the cytosol while the tonoplast vesicles did not hydrolyze it. This observation was used to assess the purity of tonoplasts.  相似文献   

4.
The adenine nucleotides of human red cells were labeled by incubation of the cells with [3H]adenosine. Then, the cells were incubated in Tris-saline with various supplements that cause the loss of cellular ATP, and the degradation products were quantitated as a function of time of incubation at 37 degrees C. Incubation of the cells with 2.5 or 5 mM iodoacetate, iodoacetamide or 1 mM HCHO in combination with 5 mM KF and 50 mM deoxyglucose, 50 mM D-glucose or 10 mM inosine was most efficient in depleting the cells of ATP (100% in 0.5-1 h) without causing cell lysis. In iodoacetate- and iodoacetamide-treated cells practically all catabolism of ATP occurred via ADP----AMP----IMP----inosine----hypoxanthine with hypoxanthine accumulating in the medium. In HCHO-treated cells and in cells incubated in Tris-saline or in Tris-saline with deoxyglucose with and without KF, a substantial proportion of ATP (up to 50%) was catabolized via ADP----AMP----adenosine----inosine----hypoxanthine. Under all conditions, AMP deamination and IMP and AMP hydrolysis were rate-limiting reactions. IMP degradation was more rapid in iodoacetamide- and HCHO-treated than in iodoacetate-treated red cells. It was also more rapid in fresh than in outdated red cells, and it was inhibited by Pi. Treatment with iodoacetamide and HCHO under ATP-depletion conditions resulted in a 60-80% inhibition of uridine transport by the cells. Treatment with iodoacetate or deoxyglucose plus KF had only minor effects on nucleoside transport; thus, cells treated in this manner might be useful for studying the transport of adenosine and deoxyadenosine under conditions were their phosphorylation is prevented.  相似文献   

5.
Activities of adenylate-degrading enzymes in muscles of vertebrates and invertebrates were determined. Mammalian and fish muscles showed a markedly higher activity of AMP deaminase with a lower level of adenosine deaminase and 5'-nucleotidase. Cephalopods showed an active adenosine deaminase and a 5'-nucleotidase which preferred AMP as the substrate. Negligible deamination of AMP and adenosine and little phosphohydrolase activity toward AMP and IMP were observed in the shellfish muscles. Adenine nucleotides can be degraded to form IMP via the AMP deaminase reaction in vertebrate muscles, while dephosphorylation of AMP to adenosine, which is then converted to inosine, appears to proceed in cephalopods. Adenylates can be hardly degraded in shellfish muscles.  相似文献   

6.
The degradation and short-term resynthesis of adenine nucleotides have been examined in a preparation of isolated rat heart myocytes. These myocyte preparations are essentially free of vascular and endothelial cells, contain levels of adenine nucleotides quite comparable to those of intact heart tissue, and retain these components remarkably well for up to 2 h of aerobic incubation in the presence of 1 mM Ca2+. When the cells are rapidly and synchronously de-energized by addition of uncoupler, an inhibitor of respiration and iodoacetate, cellular ATP is degraded almost quantitatively to AMP. The AMP is then converted to either intracellular adenosine, which accumulates to high concentrations before release to the cell exterior, or to IMP. The relative contribution of these two pathways depends on the metabolic state of the cells just prior to de-energization, with IMP production favored when respiring cells are de-energized and adenosine formation predominant when glycolyzing myocytes are subjected to this treatment. Cells de-energized by anaerobiosis in the absence of glucose lose ATP and adenine nucleotides with the production of IMP and adenosine. Upon reoxygenation, these cells restore a high adenylate energy charge and about 60% of control levels of GTP. There is a net resynthesis of 5-7 nmol of adenine nucleotides.mg-1 protein with a corresponding decline in IMP. Added [14C]adenosine labels the adenine nucleotide pool, but little net resynthesis of adenine nucleotides via adenosine kinase can be detected. It therefore appears that a rapid regeneration of adenine nucleotides can occur via the enzymes of the purine nucleotide cycle in heart myocytes and is limited by the size of the IMP pool retained.  相似文献   

7.
Recently, we have shown that erythrocytes obtained from patients with chronic renal failure (CRF) exhibited an increased rate of ATP formation from adenine as a substrate. Thus, we concluded that this process was in part responsible for the increase of adenine nucleotide concentration in uremic erythrocytes. There cannot be excluded however, that a decreased rate of adenylate degradation is an additional mechanism responsible for the elevated ATP concentration. To test this hypothesis, in this paper we compared the rate of adenine nucleotide breakdown in the erythrocytes obtained from patients with CRF and from healthy subjects.Using HPLC technique, we evaluated: (1) hypoxanthine production by uremic RBC incubated in incubation medium: (a) pH 7.4 containing 1.2 mM phosphate (which mimics physiological conditions) and (b) pH 7.1 containing 2.4 mM phosphate (which mimics uremic conditions); (2) adenine nucleotide degradation (IMP, inosine, adenosine, hypoxanthine production) by uremic RBC incubated in the presence of iodoacetate (glycolysis inhibitor) and EHNA (adenosine deaminase inhibitor). The erythrocytes of healthy volunteers served as control.The obtained results indicate that adenine nucleotide catabolism measured as a hypoxanthine formation was much faster in erythrocytes of patients with CRF than in the cells of healthy subjects. This phenomenon was observed both in the erythrocytes incubated at pH 7.4 in the medium containing 1.2 mM inorganic phosphate and in the medium which mimics hyperphosphatemia (2.4 mM) and metabolic acidosis (pH 7.1). The experiments with EHNA indicated that adenine nucleotide degradation proceeded via AMP-IMP-Inosine-Hypoxanthine pathway in erythrocytes of both patients with CRF and healthy subjects. Iodoacetate caused a several fold stimulation of adenylate breakdown. Under these conditions: (a) the rate of AMP catabolites (IMP + inosine + adenosine + hypoxanthine) formation was substantially higher in the erythrocytes from patients with CRF; (b) in erythrocytes of healthy subjects degradation of AMP proceeded via IMP and via adenosine essentially at the same rate; (c) in erythrocytes of patients with CRF the rate of AMP degradation via IMP was about 2 fold greater than via adenosine.The results presented in this paper suggest that adenine nucleotide degradation is markedly accelerated in erythrocytes of patients with CRF.  相似文献   

8.
During terminal erythroid differentiation, degradation of RNA is a potential source for nucleotide triphosphates (NTPs) that act as allosteric effectors of hemoglobin. In this investigation, we assessed the developmental profile of RNA and purine/pyrimidine trinucleotides in circulating embryonic chick red blood cells (RBC). Extensive changes of the NTP pattern are observed which differ significantly from what is observed for adult RBC. The biochemical mechanisms have not been identified yet. Therefore, we studied the role of AMP deaminase and IMP/GMP 5'-nucleotidase, which are key enzymes for the regulation of the purine nucleotide pool. Finally, we tested the effect of major NTPs on the oxygen affinity of embryonic/adult hemoglobin. The results are as follows. 1) Together with ATP, UTP and CTP serve as allosteric effectors of hemoglobin. 2) Degradation of erythroid RNA is apparently a major source for NTPs. 3) Developmental changes of nucleotide content depend on the activities of key enzymes (AMP deaminase, IMP/GMP 5'-nucleotidase, and pyrimidine 5'-nucleotidase). 4) Oxygen-dependent hormonal regulation of AMP deaminase adjusts the red cell ATP concentration and therefore the hemoglobin oxygen affinity.  相似文献   

9.
1. Enzymes interconnecting the adenylate pool were present in high concentration. 2. AMP and adenosine were easily deaminated by the corresponding enzymes whose high levels were detected. 3. Adenylate was hydrolyzed either by deamination to yield IMP which was further dephosphorylated to inosine or by dephosphorylation to adenosine followed by deamination to inosine. 4. Incubation of gill extract with [-14C]-AMP in the presence and absence of ATP but with adenosine deaminase inhibitors allowed demonstration that ATP controlled the balance between these pathways. 5. Some biochemical properties of 5'-nucleotidase. AMP deaminase and adenosine deaminase were defined. 6. Purine salvage enzymes were also estimated.  相似文献   

10.
Cell-free, dialyzed extracts from Azotobacter vinelandii rapidly dephosphorylate [U-14C]ATP to labeled ADP and AMP, which is then degraded to hypoxanthine, the end product of AMP catabolism under the experimental conditions which were used. The intermediates of the pathway from ATP to hypoxanthine have been identified by thin layer chromatography and quantitated by the 14-C content. The concentrations of intermediates present during the production of hypoxanthine are consistent with AMP nucleosidase being responsible for AMP degradation in these extracts. This result was confirmed in experiments which utilized rabbit antibody prepared against purified AMP nucleosidase. The antibody inhibited AMP nucleosidase activity in cell-free extracts but did not inhibit adenine demanase or adenosine deaminase from the same extracts. In the presence of antibody prepared against purified AMP nucleosidase, the dialyzed extracts showed a marked reduction in the production of hypoxanthine from ATP. Other enzymes which could be responsible theoretically for the conversion of AMP to hypoxanthine were not detected by standard assay procedures. These results are consistent with AMP degradation proceeding by way of AMP nucleosidase to yield adenine and ribose 5-phosphate. The adenine is then converted to hypoxanthine by adenine deaminase. Both of these enzymes were present in sufficient quantities to account for the observed rates of hypoxanthine formation. The rate of hypoxanthine formation decreases during the time course of the [U-14-C]ATP degradation experiments, even though the concentration of AMP remains high. This decrease in the rate of hypoxanthine formation as a function of time is attributed to the decreasing ATP and increasing P0-4 concentrations, since ATP is an activator of AMP nucleosidase and P0-4 is an inhibitor. These observations suggest that the in vivo activity of AMP nucleosidase could also be regulated by changes in the relative ratios of ATP:AMP:P0-4.  相似文献   

11.
The enzymes of the purine nucleotide cycle-AMP deaminase, adenylosuccinate synthetase, and adenylosuccinate lyase-were examined as a functional unit in an in vitro system which simulates the purine nucleotide composition of sarcoplasm. Activity of each cycle enzyme in extracts of rat skeletal muscle was observed to increase as ATP/ADP, reflecting the energy state of the system, was lowered from approximately 50 to 1. The increase in AMP deaminase activity could be attributed to effects of energy state and factors such as AMP concentration, which are obligatorily coupled to energy state. The increases in synthetase and lyase activities were accounted for by increases in the concentration of IMP and adenylosuccinate, respectively. The inhibitory influence of IMP concentration on synthetase activity reported in other systems was not observed in this system; synthetase activity progressively increased as IMP concentration was raised to approximately 4 mM, and apparent saturation occurred at concentrations above 4 mM. Also, adenylosuccinate was found to be an activator of AMP deaminase. The results of this study document that the activities of the enzymes of the purine nucleotide cycle increase in parallel at low energy states, and the components of the cycle function as a coordinated unit with individual enzyme activities linked via concentrations of cycle intermediates.  相似文献   

12.
Intravenously administered cyclic [8-3H]AMP to rats was quickly eliminated from the circulation. After 2 min 93% of the administered radioactivity disappeared from the plasues was recovered mainly in the form of nucleotides, ATP, ADP, AMP and IMP. In vitro contact of cyclic AMP with perfused liver, isolated liver cells and adipose tissue resulted in a rapid breakdown of the nucleotide, presumably on the outer surface of the cells. The degradation products have been identified mainly as adenosine and inosine. Incubation of adipose tissue and isolated liver cells with [3H] AMP also resulted in the breakdown of the nucleotide in themedium. The rate of AMP degradation by these tissues was faster than that for cyclic AMP degradation. The data suggest that cyclic AMP is readily metabolized on the outer surface of cells to products which may be converted within the cells to nucleotides. These findings seem of importance for the quantitative assessments of cellular cyclic AMP outflow during hormonal stimulation.  相似文献   

13.
14.
Adenosine(5')tetraphospho(5')adenosine (Ap4A) and adenosine(5')triphospho(5')adenosine (Ap3A) are stored in large amounts in human platelets. After activation of the platelets both dinucleotides are released into the extracellular milieu where they play a role in the modulation of platelet aggregation and also in the regulation of the vasotone. It has recently been shown that the dinucleotides are degraded by enzymes present in the plasma [Lüthje, J. & Ogilvie, A. (1987) Eur. J. Biochem. 169, 385-388]. The further metabolism as well as the role of blood cells has not been established. The dinucleotides were first degraded by plasma phosphodiesterases yielding ATP (ADP) plus AMP as products which were then metabolized to adenosine and inosine. The nucleosides did not accumulate but were very rapidly salvaged by erythrocytes yielding intracellular ATP as the main product. Although lysates of platelets, leucocytes and red blood cells contained large amounts of Ap3A-degrading and Ap4A-degrading activities, these activities were not detectable in suspensions of intact cells suggesting the lack of dinucleotide-hydrolyzing ectoenzymes. Compared to ATP, which is rapidly degraded by ectoenzymes present on blood cells, the half-life of Ap4A was two to three times longer. Since the dinucleotides are secreted together with ADP and ATP from the platelets, we tested the influence of ATP on the rate of degradation of Ap4A. ATP at concentrations present during platelet aggregation strongly inhibited the degradation of Ap4A in whole blood. It is suggested that in vivo the dinucleotides are protected from degradation immediately after their release. They may thus survive for rather long times and may act as signals even at sites far away from the platelet aggregate.  相似文献   

15.
ATP and adenosine are important extracellular regulators of glomerular functions. In this study, ATP release from glomeruli suspension and its extracellular metabolism were investigated. Basal extraglomerular ATP concentration (1nM) increased several fold during inhibition of ecto-ATPase activity, reflecting the basal ATP release rate. Mechanical perturbation increased the amounts of ATP released from glomeruli. ATP added to glomeruli was almost completely degraded within 20 minutes. In that time, AMP was the main product of extracellular ATP metabolism. Significant accumulation of AMP was observed after 5 min (194 +/-16 microM) and 20 min (271 +/-11 microM), whereas at the same time concentration of adenosine was only 10 muM. A competitive inhibitor of ecto-5-nucleotidase alpha-beta-methylene-ADP (AOPCP), decreased extraglomerular ATP and adenosine concentration by 80% and 50%, respectively. Similarly, AMP (100 microM) also markedly reduced extraglomerular ATP accumulation, whereas IMP, its deamination product, was not effective. P1, P5-diadenosine pentaphosphate (Ap5A) - an inhibitor of ecto-adenylate kinase prevented significantly the disappearance of ATP from extraglomerular media caused by AMP. These findings demonstrate that the decrease in extracellular ATP concentration observed after addition of AOPCP or AMP is caused by the presence of ecto-adenylate kinase activity in the glomeruli. The enzyme catalyses reversible reaction 2ADP<->ATP+AMP, and a rise in the AMP concentration can lead to fall in ATP level. The present study provides evidence the extraglomerular accumulation of ATP reflects both release of ATP from glomeruli cells and its metabolism by ecto-enzymes. Our data suggest that AMP, produced from ATP in the Bowman's capsular space, might plays a dual role as a substrate for ecto-adenylate kinase and ecto-nucleotidase reactions being responsible for the regulation of intracapsular ATP and adenosine concentration. We conclude that AMP degrading and converting ecto-enzymes effectively determine the balance between ATP and adenosine concentration and thus the activation of P2 and/or adenosine receptors.  相似文献   

16.
Vitamin C (ascorbic acid, AA) is a cofactor for many important enzymatic reactions and a powerful antioxidant. AA provides protection against oxidative stress by acting as a scavenger of reactive oxygen species, either directly or indirectly by recycling of the lipid-soluble antioxidant, α-tocopherol (vitamin E). Only a few species, including humans, guinea pigs, and zebrafish, cannot synthesize AA. Using an untargeted metabolomics approach, we examined the effects of α-tocopherol and AA deficiency on the metabolic profiles of adult zebrafish. We found that AA deficiency, compared with subsequent AA repletion, led to oxidative stress (using malondialdehyde production as an index) and to major increases in the metabolites of the purine nucleotide cycle (PNC): IMP, adenylosuccinate, and AMP. The PNC acts as a temporary purine nucleotide reservoir to keep AMP levels low during times of high ATP utilization or impaired oxidative phosphorylation. The PNC promotes ATP regeneration by converting excess AMP into IMP, thereby driving forward the myokinase reaction (2ADP → AMP + ATP). On the basis of this finding, we investigated the activity of AMP deaminase, the enzyme that irreversibly deaminates AMP to form IMP. We found a 47% increase in AMP deaminase activity in the AA-deficient zebrafish, complementary to the 44-fold increase in IMP concentration. These results suggest that vitamin C is crucial for the maintenance of cellular energy metabolism.  相似文献   

17.
Small intact frog skeletal muscles were exposed to radioactively labeled adenosine 3′,5′-cyclic monophosphate (cAMP) during incubation in frog Ringer's solution buffered with Tris (RT). The fate of the nucleotide was followed by measuring the products in the incubation media. Paper chromatography was used for the separation and identification of these products; the amounts were measured using liquid scintillation spectrometry. It was found that cAMP was degraded to AMP, which was then converted to IMP and, to some extent, inosine. The degradation of cAMP to AMP was markedly inhibited by theophylline (10 mM) suggesting the presence of cAMP phosphodiesterase activity at the muscle surface. Kinetic studies of enzyme activity in situ revealed two apparent Km values: 0.33 μm and 55 μm. Insulin (0.3 unit/ml) increased the phosphodiesterase activity at concentrations of cAMP ranging from 2 to 17 μm. The possible roles of the surface phosphodiesterase were discussed.  相似文献   

18.
E Zoref-Shani  O Sperling 《Enzyme》1980,25(6):413-418
Cultured fibroblasts with hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency exhibited acceleration of purine synthesis de novo, absence of salvage IMP synthesis from hypoxanthine, but normal total IMP synthesis. Cells with phosphoribosylpyrophosphate synthetase superactivity exhibited acceleration of both de novo and salvage IMP synthesis and increased total IMP synthesis. The study of mutant cells furnished evidence that in normal as well as mutant cells, GMP and AMP are not converted to each other in significant amounts and that these nucleotides are not degraded by nucleotidases. Purine nucleotide degradation in fibroblasts occurs mainly by dephosphorylation of IMP. In HGPRT-containing cells, salvage IMP synthesis from preformed and exogenously supplied hypoxanthine is the main source for IMP production.  相似文献   

19.
A simple and fast ion pair reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of ATP, ADP, AMP, GTP, GDP, IMP, NADP+, NADPH+, NAD+, NADH, ADP-ribose, inosine, adenosine, hypoxanthine, and xanthine. This method allows us to have a complete picture of the most important nucleotides present in fresh human erythrocytes. Furthermore it is particularly useful in the study of the erythrocyte adenine nucleotide catabolism allowing the detection of degradation products such as IMP, inosine, adenosine, hypoxanthine, and xanthine. The separation of the compounds under investigation is achieved in less than 15 min using a reversed-phase 3-micron Supelcosil LC-18 column and adding tetrabutylammonium, as ion-pair agent, to the buffers. The short time of analysis, the high reproducibility of the system, and the accurate evaluation of the compounds of interest make this method particularly suitable for routine analysis. Finally it is possible to use this assay as an alternative method of measuring activities of enzymes which catalyze reactions involving some of these compounds, as in the case of Na+-K+ ATPase, AMP deaminase, and adenosine deaminase.  相似文献   

20.
In vitro enzyme-based ATP regeneration systems are important for improving yields of ATP-dependent enzymatic reactions for preparative organic synthesis and biocatalysis. Several enzymatic ATP regeneration systems have been described but have some disadvantages. We report here on the use of polyphosphate:AMP phosphotransferase (PPT) from Acinetobacter johnsonii strain 210A in an ATP regeneration system based on the use of polyphosphate (polyP) and AMP as substrates. We have examined the substrate specificity of PPT and demonstrated ATP regeneration from AMP and polyP using firefly luciferase and hexokinase as model ATP-requiring enzymes. PPT catalyzes the reaction polyP(n) + AMP --> ADP + polyP(n-1). The ADP can be converted to ATP by adenylate kinase (AdK). Substrate specificity with nucleoside and 2'-deoxynucleoside monophosphates was examined using partially purified PPT by measuring the formation of nucleoside diphosphates with high-pressure liquid chromatography. AMP and 2'-dAMP were efficiently phosphorylated to ADP and 2'-dADP, respectively. GMP, UMP, CMP, and IMP were not converted to the corresponding diphosphates at significant rates. Sufficient AdK and PPT activity in A. johnsonii 210A cell extract allowed demonstration of polyP-dependent ATP regeneration using a firefly luciferase-based ATP assay. Bioluminescence from the luciferase reaction, which normally decays very rapidly, was sustained in the presence of A. johnsonii 210A cell extract, MgCl(2), polyP(n=35), and AMP. Similar reaction mixtures containing strain 210A cell extract or partially purified PPT, polyP, AMP, glucose, and hexokinase formed glucose 6-phosphate. The results indicate that PPT from A. johnsonii is specific for AMP and 2'-dAMP and catalyzes a key reaction in the cell-free regeneration of ATP from AMP and polyP. The PPT/AdK system provides an alternative to existing enzymatic ATP regeneration systems in which phosphoenolpyruvate and acetylphosphate serve as phosphoryl donors and has the advantage that AMP and polyP are stabile, inexpensive substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号