首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Previous studies suggested indirectly that vascular endothelial cells (VECs) might be able to release intracellularly-formed adenosine. We isolated VECs from the rat soleus muscle using collagenase digestion and magnetic-activated cell sorting (MACS). The VEC preparation had >90% purity based on cell morphology, fluorescence immunostaining, and RT-PCR of endothelial markers. The kinetic properties of endothelial cytosolic 5′-nucleotidase suggested it was the AMP-preferring N-I isoform: its catalytic activity was 4 times higher than ecto-5′nucleotidase. Adenosine kinase had 50 times greater catalytic activity than adenosine deaminase, suggesting that adenosine removal in VECs is mainly through incorporation into adenine nucleotides. The maximal activities of cytosolic 5′-nucleotidase and adenosine kinase were similar. Adenosine and ATP accumulated in the medium surrounding VECs in primary culture. Hypoxia doubled the adenosine, but ATP was unchanged; AOPCP did not alter medium adenosine, suggesting that hypoxic VECs had released intracellularly-formed adenosine. Acidosis increased medium ATP, but extracellular conversion of ATP to AMP was inhibited, and adenosine remained unchanged. Acidosis in the buffer-perfused rat gracilis muscle elevated AMP and adenosine in the venous effluent, but AOPCP abolished the increase in adenosine, suggesting that adenosine is formed extracellularly by non-endothelial tissues during acidosis in vivo. Hypoxia plus acidosis increased medium ATP by a similar amount to acidosis alone and adenosine 6-fold; AOPCP returned the medium adenosine to the level seen with hypoxia alone. These data suggest that VECs release intracellularly formed adenosine in hypoxia, ATP during acidosis, and both under simulated ischaemic conditions, with further extracellular conversion of ATP to adenosine.  相似文献   

2.
Mechanically induced ATP release from human airway epithelial cells regulates mucociliary clearance through cell surface nucleotide receptors. Ectoenzymes detected on these cells were recently shown to terminate ATP-mediated responses by sequential dephosphorylation of extracellular ATP into ADP, AMP, and adenosine. We now demonstrate that an ecto-adenylate kinase (ecto-AK) contributes to the metabolism of adenine nucleotides on human airway epithelial surfaces by the reversible reaction: ATP + AMP 2ADP. This phosphotransferase exhibited a bilateral distribution on polarized primary cultures of human bronchial epithelial cells with a 4-fold higher activity on the mucosal surface. Ecto-AK presented an absolute requirement for magnesium and adenine-based nucleotides. UMP, GMP, and CMP could not substitute for AMP as gamma-phosphate acceptor, and UDP could not replace ADP. Apparent K(m) and V(max) values were 23 +/- 5 microM and 1.1 +/- 0.1 nmol x min(-1) x cm(-2) for ATP and 43 +/- 6 microM and 0.5 +/- 0.1 nmol x min(-1) x cm(-2) for ADP. Ecto-AK accounted for 20% of [gamma-(32)P]ATP dephosphorylation, and the impermeant AK inhibitor, diadenosine pentaphosphate, reduced ADPase activity by more than 70% on both epithelial surfaces. Time course experiments on ATP metabolism demonstrated that ecto-AK significantly prolongs effective ATP and ADP concentrations on airway epithelial surfaces for P2 receptor signaling and reduces by 6-fold adenosine production. Our data suggest a role for this nucleotide entrapment cycle in the propagation of purine-mediated mucociliary clearance on human airway epithelial surfaces.  相似文献   

3.
ATP is thought to be released to the extracellular compartment by neurons and astrocytes during neural activation. We examined whether ATP exerts its effect of promoting pial arteriolar dilation (PAD) directly or upon conversion (via ecto-nucleotidase action) to AMP and adenosine. Blockade of extracellular direct ATP to AMP conversion, with ARL-67156, significantly reduced sciatic nerve stimulation-evoked PADs by 68%. We then monitored PADs during suffusions of ATP, ADP, AMP, and adenosine in the presence and absence of the following: 1) the ecto-5'-nucleotidase inhibitor α,β-methylene adenosine 5'-diphosphate (AOPCP), 2) the A(2) receptor blocker ZM 241385, 3) the ADP P2Y(1) receptor antagonist MRS 2179, and 4) ARL-67156. Vasodilations induced by 1 and 10 μM, but not 100 μM, ATP were markedly attenuated by ZM 241385, AOPCP, and ARL-67156. Substantial loss of reactivity to 100 μM ATP required coapplications of ZM 241385 and MRS 2179. Dilations induced by ADP were blocked by MRS 2179 but were not affected by either ZM 241385 or AOPCP. AMP-elicited dilation was partially inhibited by AOPCP and completely abolished by ZM 241385. Collectively, these and previous results indicate that extracellular ATP-derived adenosine and AMP, via A(2) receptors, play key roles in neural activation-evoked PAD. However, at high extracellular ATP levels, some conversion to ADP may occur and contribute to PAD through P2Y(1) activation.  相似文献   

4.
Here, the extracellular interconversion of nucleotides and nucleosides was investigated in rat hippocampal slices and synaptosomes by an HPLC-UV technique. Adenosine 5′-triphosphate (ATP) was converted to adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), adenosine, inosine, and hypoxanthine in the slices, whereas ADP elicited parallel and concentration-dependent formation of ATP and AMP. The specific adenylate kinase inhibitor diadenosine pentaphosphate decreased the rate of decomposition of ADP and inhibited the formation of ATP. No substantial changes in the interconversion of ADP to ATP and AMP were found in the presence of dipyridamole, flufenamic acid, the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid tetrasodium (PPADS), and the alkaline phosphatase substrate para-nitrophenylphosphate. Negligible levels of nucleotides were generated when uridine 5′-diphosphate (UDP), AMP or adenosine were used as substrates. Ecto-adenylate kinase activity was also observed in purified synaptosomes. In summary, we demonstrate the presence of an ecto-adenylate kinase activity in the hippocampus, which is a previously unrecognized pathway that influences the availability of purines in the central nervous system.  相似文献   

5.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We examined whether reserpine-induced norepinephrine (NE) depletion attenuated the products of adenosine in rat heart. A flexibly mounted microdialysis technique was used to measure the concentration of interstitial adenosine and to assess the activity of ecto-5'-nucleotidase in rat hearts in situ. The microdialysis probe was implanted in the left ventricular myocardium of anesthetized rats and perfused with Tyrode solution containing adenosine 5'-monophosphate (AMP) at rate of 1.0 microliter/min. The baseline level of dialysate adenosine was 0.51 +/- 0.09 microM. The introduction of AMP (100 microM) through the probe increased markedly the dialysate adenosine to 8.95 +/- 0.86 microM, and this increase was inhibited by ecto-5'-nucleotidase inhibitor, alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP, 100 microM), to 0.66 +/- 0.38 microM. Thus, the level of dialysate adenosine is a measure of the ecto-5'-nucleotidase activity in the tissue in situ. AMP concentration for the half-maximal effect of adenosine release (EC(50)) was 107.3 microM. The maximum attainable concentration of dialysate adenosine (E(max)) by AMP was 21.1 microM. However, the EC(50) and E(max) values with reserpinized animals were 106.9 and 7.1 microM, respectively. Electrical stimulation of the left stellate ganglion increased significantly dialysate adenosine concentration, from the control level of 8.66 +/- 0.96 microM to 12.38 +/- 1.11 microM. After stimulation, dialysate adenosine returned to near the prestimulation level. When corresponding experiments were performed with reserpinized animals, the effect of electrical stimulation was abolished. Tyramine (endogenous catecholamine trigger) increased the adenosine concentration in a concentration-dependent manner. However, the elevation of adenosine concentration with reserpinized animals was not observed. These results suggest that reserpine attenuates NE-induced adenosine via stimulation of alpha(1)-adrenoceptor and protein kinase C mediated activation of ecto-5'-nucleotidase in rat heart.  相似文献   

7.
Current models of extracellular ATP turnover include transient release of nanomolar ATP concentrations, triggering of signaling events, and subsequent ectoenzymatic inactivation. Given the high substrate specificity for adenylate kinase for reversible reaction (ATP + AMP <--> 2ADP), we exploited lymphoid ecto-adenylate kinase as an intrinsic probe for accurate sensing pericellular ATP. Incubation of leukemic T- and B-lymphocytes with [3H]AMP or [alpha-32P]AMP induces partial nucleotide conversion into high-energy phosphoryls. This "intrinsic" AMP phosphorylation occurs in time- and concentration-dependent fashions via nonlytic supply of endogenous gamma-phosphate-donating ATP, remains relatively resistant to bulk extracellular ATP scavenging by apyrase, and is diminished after lymphocyte pretreatment with membrane-modifying agents. This enzyme-coupled approach, together with confocal imaging of quinacrine-labeled ATP stores, suggests that, along with predominant ATP accumulation within cytoplasmic granules, micromolar ATP concentrations are constitutively retained on lymphoid surface without convection into bulk milieu. High basal levels of inositol phosphates in the cells transfected with ATP-selective human P2Y2-receptor further demonstrate that lymphocyte-surrounding ATP is sufficient for triggering purinergic responses both in autocrine and paracrine fashions. The ability of nonstimulated lymphocytes to maintain micromolar ATP halo might represent a novel route initiating signaling cascades within immunological synapses and facilitating leukocyte trafficking between the blood and tissues.  相似文献   

8.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

9.
ATP and ADP, in concentrations ranging from 1-100 microM, increased the release of [3H]choline and [3H]phosphorylcholine (P-choline) from bovine aortic endothelial cells (BAEC) prelabelled with [3H]choline. This action was detectable within 5 minutes and was maintained for at least 40 minutes. ATP and ADP were equiactive, and their action was mimicked by their phosphorothioate analogs (ATP gamma S and ADP beta S) and adenosine 5'-(beta, gamma imido) triphosphate (APPNP), but not by AMP, adenosine, and adenosine 5'-(alpha, beta methylene)triphosphate (APCPP): these results are consistent with the involvement of P2Y receptors. ATP also induced an intracellular accumulation of [3H]choline: the intracellular level of [3H]choline was increased 30 seconds after ATP addition and remained elevated for a least 20 minutes. The action of ATP on the release of choline metabolites was reproduced by bradykinin (1 microM), the tumor promoter phorbol 12-myristate 13-acetate (PMA, 50 nM), and the calcium ionophore A23187 (0.5 microM). Down-regulation of protein kinase C, following a 24-hour exposure of endothelial cells to PMA, abolished the effects of PMA and ATP on the release of choline and P-choline, whereas the response to A23187 was maintained. These results suggest that in aortic endothelial cells, ATP produces a sustained activation of a phospholipase D hydrolyzing phosphatidylcholine. The resulting accumulation of phosphatidic acid might have an important role in the modulation of endothelial cell function by adenine nucleotides. Stimulation of phospholipase D appears to involve protein kinase C, activated following the release of diacylglycerol from phosphatidylinositol bisphosphate by a phospholipase C coupled to the P2Y receptors (Pirotton et al., 1987a).  相似文献   

10.
Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [3H]adenosine, whereas AOPCP inhibited [3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [3H]adenosine, whereas NBTI produced a 40% inhibition of [3H]adenosine outflow. At both frequencies, the kinetics of evoked [3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation.  相似文献   

11.
Adenosine and arachidonate (AA) fulfil opposite modulatory roles, arachidonate facilitating and adenosine inhibiting cellular responses. To understand if there is an inter-play between these two neuromodulatory systems, we investigated the effect of AA on extracellular adenosine metabolism in hippocampal nerve terminals. AA (30 microm) facilitated by 67% adenosine evoked release and by 45% ATP evoked release. These effects were not significantly modified upon blockade of lipooxygenase or cyclooxygenase and were attenuated (52-61%) by the protein kinase C inhibitor, chelerythrine (6 microm). The ecto-5'-nucleotidase inhibitor, alpha,beta-methylene ADP (100 microm), caused a larger inhibition (54%) of adenosine release in the presence of AA (30 microm) compared with control (37% inhibition) indicating that the AA-induced extracellular adenosine accumulation is mostly originated from an increased release and extracellular catabolism of ATP. This AA-induced extracellular adenosine accumulation is further potentiated by an AA-induced decrease (48%) of adenosine transporters capacity. AA (30 microm) increased by 36-42% the tonic inhibition by endogenous extracellular adenosine of adenosine A(1) receptors in the modulation of acetylcholine release and of CA1 hippocampal synaptic transmission in hippocampal slices. These results indicate that AA increases tonic adenosine modulation as a possible feedback loop to limit AA facilitation of neuronal excitability.  相似文献   

12.
Cell surface ecto-nucleotidases are considered the major effector system for inactivation of extracellular adenine nucleotides, whereas the alternative possibility of ATP synthesis has received little attention. Using a TLC assay, we investigated the main exchange activities of 3H-labeled adenine nucleotides on the cultured human umbilical vein endothelial cells. Stepwise nucleotide degradation to adenosine occurred when a particular nucleotide was present alone, whereas combined cell treatment with ATP and either [3H]AMP or [3H]ADP caused unexpected phosphorylation of 3H-nucleotides via the backward reactions AMP --> ADP --> ATP. The following two groups of nucleotide-converting ecto-enzymes were identified based on inhibition and substrate specificity studies: 1) ecto-nucleotidases, ATP-diphosphohydrolase, and 5'-nucleotidase; 2) ecto-nucleotide kinases, adenylate kinase, and nucleoside diphosphate kinase. Ecto-nucleoside diphosphate kinase possessed the highest activity, as revealed by comparative kinetic analysis, and was capable of using both adenine and nonadenine nucleotides as phosphate donors and acceptors. The transphosphorylation mechanism was confirmed by direct transfer of the gamma-phosphate from [gamma-32P]ATP to AMP or nucleoside diphosphates and by measurement of extracellular ATP synthesis using luciferin-luciferase luminometry. The data demonstrate the coexistence of opposite, ATP-consuming and ATP-generating, pathways on the cell surface and provide a novel mechanism for regulating the duration and magnitude of purinergic signaling in the vasculature.  相似文献   

13.
The controversial subject of mitochondrial 5'-nucleotidase in the liver was studied employing density gradient fractionation combined with a method for analyzing the distribution profiles of marker enzymes based on multiple regression analysis. Triton WR-1339 was used to improve the separation of mitochondria from lysosomes by the gradient centrifugation technique. Adenosine production was examined further using acetate to increase intramitochondrial AMP, and thus adenosine production, in incubations with gradient centrifugation-purified mitochondria. Distribution analysis of the crude homogenate showed that 5'-nucleotidase activity exists in the mitochondrial fraction. To increase the resolution of this approach with respect to mitochondria, a crude mitochondrial fraction was also studied. In this case the relative mitochondrial activity decreased but 5'-nucleotidase activity was still clearly detectable. The mitochondrial 5'-nucleotidase exhibited a Km of 94 microM and a Vmax of 31 nmol/min per mg protein for AMP. The kinetic data for the Mg2+, ATP, ADP and AOPCP sensitivity of the enzyme showed that it differs from the plasma membrane, lysosome and cytosol 5'-nucleotidases. AOPCP was only a moderate inhibitor, and ATP was a more potent inhibitor than ADP at a 1 mM concentration. The enzyme also showed a requirement of Mg2+. Acetate caused the conversion of intramitochondrial adenylates to AMP and the formation of adenosine. Adenosine concentration increased in the extramitochondrial space in a time-dependent manner, but only trace amounts of nucleotides were detected. The data show that 5'-nucleotidase activity producing adenosine exists in rat liver mitochondria and a concentration-dependent adenosine output from mitochondria by diffusion or facilitated diffusion is also suggested.  相似文献   

14.
15.
Interactions between ATP and adenosine on the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and mobilization of intracellular calcium were investigated in the smooth muscle cell line DDT1 MF-2. Activation of adenosine A1 receptors with adenosine or cyclopentyladenosine (CPA) or of nucleotide receptors with ATP increased both Ins(1,4,5)P3 formation and intracellular calcium concentrations. The A1 receptor-induced Ins(1,4,5)P3 formation (EC50 10 nM) was antagonized by the A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and by pretreatment of the cells with pertussis toxin (PTX). ATP-stimulated Ins(1,4,5)P3 formation (EC50 21 microM) was attenuated, but still present, after PTX treatment. ATP and CPA had supraadditive effects on Ins(1,4,5)P3 accumulation and CPA increased ATP-induced Ins(1,4,5)P3 accumulation in a concentration-dependent manner with an EC50 of 3 nM, a concentration which per se had little or no effect on Ins(1,4,5)P3 accumulation. ATP (EC50 4 microM) and CPA (EC50 4 nM) both increased intracellular calcium levels. The effect of ATP was partially sensitive to PTX treatment, whereas the effect of CPA was blocked both by PTX and by DPCPX. Concentrations of ATP and CPA that by themselves were insufficient to raise intracellular calcium were able to do so when combined. The synergy between ATP and CPA on the mobilization of intracellular calcium was abolished after treatment of cells with PTX or when DPCPX was included in the experiment. Since ATP was metabolized by ecto-enzymes to ADP, AMP, and adenosine, we also examined whether adenosine formed from ATP could enhance the ATP effects on Ins(1,4,5)P3 accumulation. Indeed, the addition of the A1 receptor antagonist DPCPX or removal of endogenous adenosine by inclusion of adenosine deaminase in the experimental medium significantly attenuated the ATP response, and the two treatments did not have additive effects. The present study thus demonstrates that in a clonal cell line two types of receptors increase phospholipase C activity, but via different pathways; nucleotide receptors appeared to act via partially PTX-insensitive, and A1 receptors via PTX-sensitive G-proteins. ATP and CPA are not only able per se to induce formation of Ins(1,4,5)P3 and mobilize intracellular calcium, but they also act synergistically. Finally, it is demonstrated that endogenous adenosine, possibly formed from the rapid breakdown of ATP, can significantly enhance some ATP effects.  相似文献   

16.
In the airways, adenine nucleotides support a complex signaling network mediating host defenses. Released by the epithelium into the airway surface liquid (ASL) layer, they regulate mucus clearance through P2 (ATP) receptors, and following surface metabolism through P1 (adenosine; Ado) receptors. The complexity of ASL nucleotide regulation provides an ideal subject for biochemical network modeling. A mathematical model was developed to integrate nucleotide release, the ectoenzymes supporting the dephosphorylation of ATP into Ado, Ado deamination into inosine (Ino), and nucleoside uptake. The model also includes ecto-adenylate kinase activity and feed-forward inhibition of Ado production by ATP and ADP. The parameters were optimized by fitting the model to experimental data for the steady-state and transient concentration profiles generated by adding ATP to polarized primary cultures of human bronchial epithelial (HBE) cells. The model captures major aspects of ATP and Ado regulation, including their >4-fold increase in concentration induced by mechanical stress mimicking normal breathing. The model also confirmed the independence of steady-state nucleotide concentrations on the ASL volume, an important regulator of airway clearance. An interactive approach between simulations and assays revealed that feed-forward inhibition is mediated by selective inhibition of ecto-5'-nucleotidase. Importantly, the model identifies ecto-adenylate kinase as a key regulator of ASL ATP and proposes novel strategies for the treatment of airway diseases characterized by impaired nucleotide-mediated clearance. These new insights into the biochemical processes supporting ASL nucleotide regulation illustrate the potential of this mathematical model for fundamental and clinical research.  相似文献   

17.
Considerable evidence implicates cyclic 3', 5' adenosine monophosphate (AMP) in the maintenance of meiotic arrest of mammalian oocytes. Since this laboratory previously found that adenosine augmented follicle-stimulating hormone (FSH)-stimulated accumulation of cyclic AMP in oocyte-cumulus-complexes (OCC), in the present studies we investigated the possibility that adenosine inhibits maturation of oocytes. In rat OCC cultured in the presence of FSH, adenosine markedly inhibited oocyte maturation in a dose-dependent and biphasic manner. Maximum inhibition of oocyte maturation was seen with 1-30 microM adenosine in the presence of FSH, and half-maximal inhibition occurred with less than 0.3 microM adenosine. High levels of adenosine (100 microM) did not inhibit oocyte maturation in the presence of FSH. In the absence of FSH, adenosine showed little effect on oocyte maturation in the present studies, but increased the maximum inhibition of oocyte maturation produced by FSH approximately twofold. Like adenosine, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine 5'-monophosphate (AMP) also inhibited oocyte maturation; whereas adenine, guanosine, inosine, and hypoxanthine were inactive at equivalent levels. The metabolism-resistant adenosine analog (2-chloroadenosine) was as active an inhibitor as adenosine. Inhibition produced by the adenine nucleotides may have been direct or due to conversion to adenosine by extracellular nucleotidases. The concentration dependence and purine specificity for inhibition of oocyte maturation are characteristic of an adenosine receptor-mediated process, but direct evidence for such a mechanism was not shown. The effective concentration of adenosine for inhibition of oocyte maturation is within the range of reported levels of adenosine in biological tissues and fluids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of ATP on accumulation of inositol phosphates and Ca2+ mobilization were investigated in cultured bovine adrenal chromaffin cells. When the cells were stimulated with 30 microM ATP, a rapid and transient rise in intracellular Ca2+ concentration was observed. At the same time, ATP rapidly increased accumulation of inositol phosphates. The concentration-response curve for the ATP-induced Ca2+ mobilization was similar to that for inositol trisphosphate (IP3) accumulation. ATP exerted its maximal effects at 30 microM for either IP3 accumulation or Ca2+ mobilization. The order of the efficacy of the agonists for IP3 accumulation and Ca2+ mobilization at 100 microM was ATP greater than ADP greater than AMP approximately adenosine, AMP (100 microM) and adenosine (300 microM) failed to induce IP3 accumulation and Ca2+ mobilization. Although 100 microM GTP and 100 microM UTP also induced IP3 accumulation and Ca2+ mobilization, their efficacy was less than that of ATP. CTP (100 microM) induced a slight IP3 accumulation, but it did not induce Ca2+ mobilization. Nifedipine (10 microM), a Ca2+ channel antagonist, and theophylline (100 microM), a P1-purinergic receptor antagonist, failed to inhibit the ATP-induced IP3 accumulation and Ca2+ mobilization. The above two cellular responses induced by ATP were also observed in the Ca2+-depleted medium. ATP induced a rapid and transient accumulation of 1,4,5-IP3 (5s), followed by a slower accumulation of 1,3,4-IP3. These results suggest that ATP induces the formation of 1,4,5-IP3 through the P2-purinergic receptor and consequently promotes Ca2+ mobilization from intracellular storage sites in cultured adrenal chromaffin cells.  相似文献   

19.
The contribution of neuronal ATP to interstitial adenosine levels was investigated in isolated perfused rat hearts. Ventricular surface transudates, representing interstitial fluid, were analyzed for norepinephrine, ATP, and adenosine. Exocytotic release of norepinephrine was induced by electrical stimulation of cardiac efferents emanating from the stellate ganglion. Ganglion stimulation increased contractility, interstitial norepinephrine, ATP, and adenosine. Interstitial adenosine was 11- to 27-fold higher than interstitial ATP, suggesting that the released ATP is unlikely the only source of adenosine. In the presence of AOPCP (alpha,beta-methyleneadenosine 5'-diphosphate), an ecto-5'-nucleotidase inhibitor, the ganglion-stimulated increase in interstitial ATP and adenosine reached levels similar to those in the absence of AOPCP, also suggesting that adenosine does not derive from extracellular ATP. The perfusate Ca2+ was raised from 1 to 4 mM to determine the importance of the enhanced contractile function on the levels of norepinephrine, ATP, and adenosine. The results were increases in contractility and interstitial norepinephrine, ATP, and adenosine, which were not suppressed with atenolol, indicating a norepinephrine-independent release of ATP and adenosine. Reserpine treatment and administration of guanethidine depleted the catecholamine stores and diminished the catecholamine release, respectively. However, neither agent altered Ca2+-induced increases in ATP and adenosine. It is concluded that the amount of neuronal-derived ATP is low and most likely does not contribute significantly to interstitial levels of adenosine. Furthermore, elevations in interstitial norepinephrine, ATP, and adenosine are associated with neuronal-independent increases in contractile function.  相似文献   

20.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号