首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The polar acyl lipid composition was determined for samples of chloroplast thylakoids isolated from Pisum sativum plants grown at light intensities of 50 and 300 E·m-2·s-1 and from Aesculus hippocastanum leaves taken from shade or sun environments. Lighting conditions had no major effect on lipid class composition except for a small increase in the amount of monogalactosyldiacylglycerol relative to other lipids in low compared with high light and shade compared with sun conditions. The thylakoids from low light and shade environments also had, relative to those from high light and sun conditions, a substantial decrease in the level of trans-hexadecenoic acid in phosphatidyglycerol. In parallel with this there were lower lipid to chlorophyll ratios, higher overall fatty acid unsaturation, lower chlorophyll a to b ratios and increased relative levels of light harvesting chlorophyll a/b polypeptides as expected for an increase in the degree of thylakoid appression. With this in mind, our results on lipid class composition and content of trans-hexadecenoic acid are discussed in the context of the lateral distribution of lipids within the plane of membrane.Abbreviations DGDG digalactosyldiacylglycerol - EDTA ethylenediaminetetraacetic acid - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - LHC light harvesting chlorophyll a/b - MGDG monogalactosyldiacylglycerol - MPL minor phospholipids - PS1 photosystem one - PS2 photosystem two - SDS sodium dodecyl sulphate - SL sulphoquinovosyldiacylglycerol  相似文献   

2.
Application of triacontanol (TRIA), a long chain aliphatic alcohol (C-30), to cotton (Gossypium hirsutum L.) leaves resulted in an increase in dry weight and an alteration in lipid composition. A significant increase in monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) was attained 24 h after TRIA treatment. However, no significant change in any of the individual phospholipids was observed. Benzyladenine (BA) treatment increased only phosphatidylcholine (PC) levels without having any effect on either glycolipids or other phospholipids. Indole-3-acetic acid (IAA) initiated no significant change in the lipid composition. Combined treatment with TRIA and BA resulted in an increase of MGDG, DGDG and PC, indicating that the individual effects of these two growth regulators were not altered.The combined treatment of IAA and TRIA did not bring about any change in the levels of MGDG and DGDG indicating that the effect of TRIA was nullified by IAA. MDGD is known to be involved in the packaging of photosystem I proteins. Whether TRIA-induced increase in dry weight which is due to the enhanced photosynthetic rate, is related to increased MGDG levels is not yet discernible.Abbreviations BA benzyladenine - DGDG digalactosyldiacylglycerol - IAA indole-3-acetic acid - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - PI phosphatidylinositol - PS phosphatidylserine - SQDG sulfoquinovosyldiacylglycerol - TRIA triacontanol  相似文献   

3.
The binding characteristics and the inhibitory power of atrazine and DCMU towards uncoupled electron flow activity were studied in acyl lipid-depleted thylakoid membranes from atrazine-susceptible and-resistant biotypes of Solanum nigrum L. For this purpose, phospholipase A2 from Vipera russelli and the lipase from Rhizopus arrhizus were used to obtain a selective lipid class (phospholipids or galactolipids) depletion which was restricted to the outer monolayer. Neither phospholipid nor galactolipid removal affected the dissociation constant and the number of binding sites of atrazine. In contrast, the dissociation constant of DCMU was increased in phospholipid-depleted thylakoid membranes but remained unchanged after galactolipid depletion. The number of DCMU binding sites decreased significantly after both lipase treatments, but only in the resistant biotype. The inhibitory effectiveness of the herbicide was either decreased or increased (to different extents) depending on the lipid class which was removed from the membrane and on the biotype considered. These results are discussed with reference to the possible conformational changes of the 32 kDa herbicide-binding polypeptide occurring after lipase treatments.Abbreviations Atrazine 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine - BSA bovine serum albumin - DCMU diuron, 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DGDG digalactosyldiacylglycerol - LRa lipase from Rhizopus arrhizus - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PG phosphatidylglycerol - PLA2 phospholipase A2 - R atrazine-resistant - S atrazinesusceptible  相似文献   

4.
The transmembrane distribution of monogalactosyldiacylglycerol and digalactosyldiacylglycerol was determined in chloroplast thylakoids from a range of temperate climate plants. These plants included dicotyledons, monocotyledons, C16:3 and C18:3 plants and herbicide-resistant species. In all the thylakoids examined monogalactosyldiacylglycerol was enriched in the outer leaflet (53–65%) while digalactosyldiacylglycerol was highly enriched in the inner leaflet (78–90%). The non-bilayer forming monogalactosyldiacylglycerol represented 55–81% of the total acyl lipids of the outer monolayer. The relative acyl lipid composition of both leaflets of the thylakoid membrane indicates that the lamellar structure is strongly favored in the inner monolayer, whereas the outer one presents a metastable character which allows the probable coexistence of both lamellar and non-lamellar phases. The consequence of this asymmetry for the stability and function of the thylakoid membrane is discussed.  相似文献   

5.
Vascular plants use two pathways to synthesize galactolipids, the predominant lipid species in chloroplasts—a prokaryotic pathway that resides entirely in the chloroplast, and a eukaryotic pathway that involves assembly in the endoplasmic reticulum. Mutants deficient in the endoplasmic reticulum pathway, trigalactosyldiacylglycerol (tgd1-1 and tgd2-1) mutants, had been previously identified with reduced contents of monogalactosyldiacylglycerol and digalactosyldiacylglycerol, and altered lipid molecular species composition. Here, we report that the altered lipid composition affected photosynthesis in lipid trafficking mutants. It was found that proton motive force as measured by electrochromic shift was reduced by ~40 % in both tgd mutants. This effect was accompanied by an increase in thylakoid conductance attributable to ATPase activity and so the rate of ATP synthesis was nearly unchanged. Thylakoid conductance to ions also increased in tgd mutants. However, gross carbon assimilation in tgd mutants as measured by gas exchange was only marginally affected. Rubisco activity, electron transport rate, and photosystem I and II oxidation status were not altered. Despite the large differences in proton motive force, responses to heat and high light stress were similar between tgd mutants and the wild type.  相似文献   

6.
In order to investigate the relationship between the lipid composition in thylakoid membrane and thermostability of pho-tosynthetic apparatus, tobacco transformed with sweet pepper sense glycerol-3-phosphate acyltransferase (GPA T) gene were used to analyze the lipid composition in thylakoid membrane, the net photosynthetic rate and chlorophyll fluorescence parameters under high temperature stress. The results showed that the saturated extent of monogalactosyldiacylglycerol (MGDG), suifoquinovosyldiacylglycerol, digalactosyldiacylglycerol and phosphatidylglycerol in thylakoid membrane of transgenic tobacco T1 lines increased generally. Particularly, the saturated extent in MGDG increased obviously by 16.2% and 12.0% in T1-2 and T1-1, respectively. With stress temperature elevating, the maximum efficiency of photosystem Ⅱ the two lines and wild type tobacco plants decreased gradually, but those parameters decreased much less in transgenic plants. Even though the recovery process appeared differently in the donor and acceptor side of PSII in transgenic tobacco compared with wild-type plants, the entire capability of PSII recovered faster in transgenic tobacco, which was shown in Increase in saturated extent of thylakoid membrane Iipids in transgenic plants enhanced the stability of photosynthetic apparatus under high temperature stress.  相似文献   

7.
Acyl lipids and their constituent fatty acids were studied in leaves, chloroplasts and bundle-sheath strands of the C4 plant Amaranthus paniculatus L. grown under normal and 4%-oxygen-containing atmospheres. In all fractions the major lipids were found to be monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulphoquinovo-syldiacylglycerol and phosphatidylglycerol. Significant quantities of phosphatidylcholine and phosphatidylethanolamine were restricted to leaves and bundle-sheath strands. All lipids, except phosphatidylglycerol where 3-trans-hexadecenoic acid was also present, contained palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. On a chlorophyll basis and compared with whole leaves, the amounts of phosphatidylcholine and phosphatidylethanolamine in bundle-sheath strands were considerably reduced. Three weeks after the change from a normal to a 4% atmospheric O2 level, the galactolipid content, particularly in the bundlesheath strands, was enhanced. There were no significant differences in the degrees of saturationunsaturation of total acyl lipid for the plants grown in the low oxygen and normal atmospheres, although under 4% O2 the phosphatidylglycerol contained an increased proportion of 3-trans-hexadecenoic acid at the expense of palmitic acid.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PE phosphatidylethanolamine - PG phosphatidylglycerol - SQDG sulphquinovosyldiacylglycerol  相似文献   

8.
Certain physicochemical properties of glycoglycerolipids from marine alga Laminaria japonica (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol) and their ability to be incorporated into immunostimulating complexes (ISCOMs) used for delivery of microbial and tumor antigens in vesicular form were comparatively described. These glycolipids proved to considerably differ by fatty acid composition, degree of unsaturation, and phase transition temperatures. Production of modified ISCOMs through incorporation of these glycolipids into the vesicle instead of the glycolipid component was demonstrated. Preliminary data demonstrated no significant increase in immune response to Yersinia pseudotuberculosis porin in the modified (with monogalactosyldiacylglycerol) and classical (with phosphatidylcholine) ISCOMs as compared to pure porin.  相似文献   

9.
The lipid composition and level of unsaturation of fatty acids has been determined for chloroplast thylakoid membranes isolated from Pisum sativum grown under cold (4°/7°C) or warm (14°/17°C) conditions. Both the relative amounts of lipid classes and degree of saturation were not greatly changed for the two growth conditions. In cold-grown plants, there was a slightly higher linolenic and lower linoleic acid content for the glycolipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), and sulfoquinovosyldiacylglycerol. In contrast to thylakoid membranes, a non-thylakoid leaf membrane fraction including the chloroplast envelope, had a higher overall level of fatty acid unsaturation in cold-grown plants due mainly to an increase in the linolenic acid content of MGDG, DGDG, phosphatidylglycerol, and phosphatidylcholine. The most clear cut change in the thylakoid membrane composition was the lipid to protein ratio which was higher in the cold-grown plants.  相似文献   

10.
Changes in lipid composition of Photosystem 1 (PS 1) particles isolated from thylakoids phosphorylated under reductive or anaerobic conditions have been studied. Under reductive conditions, there was an increase in monogalactosyldiacylglycerol containing highly saturated fatty acids and phosphatidylglycerol containing transhexadecenoic fatty acid. Under anaerobic conditions, the amount of all lipid classes was increased. As we have shown earlier (S. V. Manuilskaya, O. I. Volovik, A. I. Mikhno, A. I. Polischuk and S. M. Kochubey (1990) Photosynthetica 24: 419–423) these changes were due to a co-migration of some lipid species and light-harvesting chlorophyll a/b complex LHC II from PS 2 to PS 1. These data allow us to conclude that LHC II consists of the lipoproteins containing specific lipids. Different composition of lipids co-migrating with LHC II under various conditions of phosphorylation might be caused by the variety of LHC II subpopulations transferred under each reductive condition.Abbreviations PS 1 Photosystem 1 - PS 2 Photosystem 2 - LHC II light-harvesting chlorophyll a/b protein complex II - Chl chlorophyll - MGDG monogalactosyldiacylglycerol - DGDG digalactosyldiacylglycerol - PG phosphatidylglycerol - SQDG sulfoquinovosyldiacylglycerol  相似文献   

11.
12.
We characterized certain physiological functions of cyanobacterial monoglucosyldiacylglycerol using a Synechocystis sp. PCC 6803 mutant in which the gene for monoglucosyldiacylglycerol synthase had been disrupted and its function complemented by inclusion of an Arabidopsis monogalactosyldiacylglycerol synthase gene. By using this method, we prepared the first viable monoglucosyldiacylglycerol-deficient mutant of cyanobacterium and found that monoglucosyldiacylglycerol is not essential for its growth and photosynthesis under a set of “normal growth conditions” when monogalactosyldiacylglycerol is adequately supplied by the Arabidopsis monogalactosyldiacylglycerol synthase. The mutant had healthy thylakoid membranes and normal pigment content. The membrane lipid composition of the mutant was similar with that of WT except lack of monoglucosyldiacylglycerol and a slight increase in the level of phosphatidylglycerol at both normal and low temperatures. However, the ratio of unsaturated fatty acids in monogalactosyldiacylglycerol and digalactosyldiacylglycerol was reduced in the mutant compared with WT. Although the growth of the mutant was indistinguishable with that of WT at normal growth temperature, it was markedly retarded at low temperature compared with that of WT. Our data indicated the possibility that cyanobacterial monogalactosyldiacylglycerol-synthesis pathway might be required for the adequate unsaturation level of fatty acids in galactolipids and affect the low-temperature sensitivity.  相似文献   

13.
The herbicidally active aryloxyphenoxypropionates diclofop acid, haloxyfop acid, and fluazifop acid and the cyclohexanedione sethoxydim depolarized membranes in coleoptiles of eight biotypes of herbicide-susceptible and herbicide-resistant annual ryegrass (Lolium rigidum). Membrane polarity was reduced from −100 millivolts to −30 to −50 millivolts. Membranes repolarized after removal of the compounds only in biotypes with resistance to the compound added. Repolarization was not observed in herbicide-susceptible L. rigidum, nor was it observed in biotypes resistant to triazine, triazole, triazinone, phenylurea, or sulfonylurea herbicides but not resistant to aryloxyphenoxypropionates and cyclohexanediones. Chlorsulfuron, a sulfonylurea herbicide, at a saturating concentration of 1 micromolar, reduced membrane polarity in all biotypes studied by only 15 millivolts. The recovery of membrane potential following the removal of chlorsulfuron was restricted to chlorsulfuron-susceptible and -resistant biotypes that did not exhibit diclofop resistance. These differences in membrane responses are correlated with resistance to dicloflop rather than with resistance to chlorsulfuron. It is suggested that the differences may reflect altered membrane properties of diclofop-resistant biotypes. Further circumstantial evidence for dissimilarity of properties of membranes from diclofop-resistant and diclofop-susceptible ryegrass is provided by observations that K+/Na+ ratios were significantly higher in coleoptiles from diclofop-resistant biotypes than in coleoptiles from susceptible plants. Intact and excised roots from susceptible biotypes were capable of acidifying the external medium, whereas roots from resistant biotypes were unable to do so. The ineluctable conclusion is that in L. rigidum the phenomena of membrane repolarization and resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides are correlated.  相似文献   

14.
B. Liedvogel  H. Kleinig 《Planta》1977,133(3):249-253
The non-photosynthetic chromoplast membranes from the corona ofNarcissus pseudonarcissus L. were investigated for their lipid synthetic capabilities. The following activities were detected: galactosylation of diacylglycerol and galactosydiacylglycerols, glycosylation of sterols, acylation of monogalactosyldiacylglycerol and steryl glycosides from an unknown endogenous donor, acylation of phospholipids from acyl-CoA, and acylation of phosphatidyl inositol from phosphatidyl choline. Furthermore, activities of an acyl thioesterase, a sugar epimerase, and a phospholipase A2 were measured.Abbreviations MGDG monogalactosyldiacylglycerol - DGDG digalactosyldiacylglycerol - TGDG tri-and tetragalactosyldiacylglycerol - SG steryl glycoside - SL sulfolipid - ACP acyl carrier protein  相似文献   

15.
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DGD digalactosyldiacylglycerol - LHCP light-harvesting chlorophyll-protein - MGD monogalactosyldiacylglycerol - PCi phosphatidylcholine — Sigma grade NS - PCii -oleoyl, -palmitoyl phosphalidylcholine - PG phosphatidylglycerol - PSI photosystem I - PSII photosystem II  相似文献   

16.
The non-bilayer lipid monogalactosyldiacylglycerol (MGDG) is the most abundant type of lipid in the thylakoid membrane and plays an important role in regulating the structure and function of photosynthetic membrane proteins. In this study, we have reconstituted the isolated major light-harvesting complexes of photosystem II (PSII) (LHCIIb) and a preparation consisting of PSII core complexes and minor LHCII of PSII (PSIICC) into liposomes that consisted of digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG), with or without MGDG. Transmission electron microscopy and freeze-fracture studies showed unilamellar proteoliposomes, and demonstrated that most of the MGDG is incorporated into bilayer structures. The impact of MGDG on the functional interaction between LHCIIb and PSIICC was investigated by low temperature (77 K) fluorescence emission spectra and the photochemical activity of PSII. The additional incorporation of LHCIIb into liposomes containing PSIICC markedly increased oxygen evolution of PSIICC. Excitation at 480 nm of chlorophyll (Chl) b in LHCIIb stimulated a characteristic fluorescence emission of the Chl a in PSII (684.2 nm), rather than that of the Chl a in LHCIIb (680 nm) in the LHCIIb–PSIICC proteoliposomes, which indicated that the energy was transferred from LHCIIb to PSIICC in liposome membranes. Increasing the percentage of MGDG in the PSIICC–LHCIIb proteoliposomes enhanced the photochemical activity of PSII, due to a more efficient energy transfer from LHCIIb to PSIICC and, thus, an enlarged antenna cross section of PSII.  相似文献   

17.
Spin-label ESR studies of lipid-protein interactions in thylakoid membranes   总被引:2,自引:0,他引:2  
G Li  P F Knowles  D J Murphy  I Nishida  D Marsh 《Biochemistry》1989,28(18):7446-7452
Lipid-protein interactions in thylakoid membranes, and in the subthylakoid membrane fractions containing either photosystem 1 or photosystem 2, have been studied by using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyldiacylglycerol, phosphatidylglycerol, and phosphatidylcholine. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted membrane lipids interacting directly with the integral membrane proteins. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with the membrane proteins and to determine the selectivity between the different lipid classes for the lipid-protein interaction. The fractions of motionally restricted lipid in the thylakoid membrane are 0.36, 0.39, and 0.53, for the spin-labeled monogalactosyldiacylglycerol, phosphatidylcholine, the phosphatidylglycerol, respectively. Spin-labeled monogalactosyldiacylglycerol exhibits very little preferential interaction over phosphatidylchline, which suggests that part of the role of monogalactosyldiacylglycerol in thylakoid membranes is structural, as is the case for phosphatidylcholine in mammalian membranes. Spin-labeled phosphatidylglycerol shows a preferential interaction over the corresponding monogalactosyldiacylglycerol and phosphatidylcholine analogues, in contrast to the common behavior of this lipid in mammalian systems. This pattern of lipid selectivity is preserved in both the photosystem 1 and photosystem 2 enriched subthylakoid membrane fractions.  相似文献   

18.
31P-NMR spectra at 162 MHz were used to monitor phase changes of wheat thylakoid membranes as a function of temperature. At room temperature the31P-NMR line was a superposition of anisotropic component characteristic of phospholipid lamellar phase and isotropic line due to inorganic phosphorus or small membrane vesicles arising as an effect of preparation. For temperatures higher than +35 °C an increase of the isotropic component occurs, which is irreversible as the sample is cooled. For the temperatures between +55 °C and +60 °C the presence of the hexagonal phase cylinders is suggested, as monitored by phosphorus lineshape. However, the addition of glycerol stimulates a formation of the isotropic phase. The effect of reconstitution of freeze-dried thylakoid membranes by addition of water or water-glycerol medium to the sample was examined. As lyophilizate was gradually diluted, the increase of isotropic line component was observed. For thylakoid membranes suspended in D2O at the highest dilution examined, the line contribution due to small membrane fragments is not greater than 50%, but in presence of glycerol, this contribution could reach 70%. This suggests that the presence of glycerol increases the formation of the small membrane particles as the thylakoid membrane is reconstituted from lyophilizate. The wheat thylakoid membranes reconstituted from lyophilizate show, in comparison to native membranes, the increased contribution of small membrane vesicles. Moreover, the31P -NMR spectra suggest the appearance of the hexagonal phase cylinders even at +50 °C.Abbreviations DGDG digalactosyldiacylglycerol - DLPC dilinoleoyl phosphatidylcholine - DLPE dilinoleoyl phosphatidylethanolamine - EDTA ethylenediamine-tetraacetic acid - MGDG monogalactosyldiacylglycerol - NMR nuclear magnetic resonance - PC phosphatidylcholine - PG phosphatidylglycerol - PSII photosystem II - TGDG trigalactosyldiacylglycerol - Tris Tris-(hydroxymethyl)-aminomethan - S/N signal to noise ratio  相似文献   

19.
To dissect differences in both lipid accumulation and composition and the role of these modifications during drought stress, four grapevine cultivars exhibiting differential tolerance to drought were subjected to water shortage. Tolerant cultivars, Kahli Kerkennah and Cardinal, exhibited higher leaf water potential (Ψw), and lower lipid peroxidation compared to the sensitive cultivars Guelb Sardouk and Superior Seedless during stress. Total lipid amounts increased during stress only in the leaves of the tolerant cultivars. Drought induced increases in the ratios digalactosyldiacylglycerol/monogalactosyldiacylglycerol and phosphatidylcholine/phoshatidylethanolamine of almost all the drought stressed cultivars. Moreover, the overall analysis of the composition of fatty acids revealed that a linolenic acid was prevalent in grapevine and the unsaturation level of lipids increased under water stress in all the cultivars. Specific adjustments in the lipid composition during stress could compromise stress tolerance.  相似文献   

20.
To study the regulation of lipid transport from the chloroplast envelope to the thylakoid, intact chloroplasts, isolated from fully expanded or still-expanding pea (Pisum sativum) leaves, were incubated with radiolabeled lipid precursors and thylakoid membranes subsequently were isolated. Incubation with UDP[(3)H]Gal labeled monogalactosyldiacylglycerol in both envelope membranes and digalactosyldiacylglycerol in the outer chloroplast envelope. Galactolipid synthesis increased with incubation temperature. Transport to the thylakoid was slow below 12 degrees C, and exhibited a temperature dependency closely resembling that for the previously reported appearance and disappearance of vesicles in the stroma (D.J. Morré, G. Selldén, C. Sundqvist, A.S. Sandelius [1991] Plant Physiol 97: 1558-1564). In mature chloroplasts, monogalactosyldiacylglycerol transport to the thylakoid was up to three times higher than digalactosyldiacylglycerol transport, whereas the difference was markedly lower in developing chloroplasts. Incubation of chloroplasts with [(14)C]acyl-coenzyme A labeled phosphatidylcholine (PC) and free fatty acids in the inner envelope membrane and phosphatidylglycerol at the chloroplast surface. PC and phosphatidylglycerol were preferentially transported to the thylakoid. Analysis of lipid composition revealed that the thylakoid contained approximately 20% of the chloroplast PC. Our results demonstrate that lipids synthesized at the chloroplast surface as well as in the inner envelope membrane are transported to the thylakoid and that lipid sorting is involved in the process. Furthermore, the results also indicate that more than one pathway exists for galactolipid transfer from the chloroplast envelope to the thylakoid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号