首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coral reefs of the Gulf of Aqaba are among the most northern ones of the world. This study, the first concerning the east coast of this topographically and hydrographically peculiar sea, considers relationships of biophysiographical and structural reef zones to fundamental abiotic environmental factors. An introduction to paleogeography, geology, petrography, topography, climate and hydrography is followed by terminological definitions used to describe the different reef areas. The investigations were carried out on two transects crossing fringing reefs of different shape. Each transect was 20 m wide and run from the shore over nearly 200 m to the fore reef in about 30 m depth. One reef, a “coastal-fringing reef”, represents an unaltered straight reef flat from shore to the reef edge 60 m away; two large pinnacles reach the surface some 125 m off the shore. The other reef, a “lagoon-fringing reef”, is divided into a 100 m wide lagoon of 0.5–2.3 m depth and a reef crest separated from the former by a rear reef. The reef platform of the lagoon-fringing reef is cut by a system of channels and tunnels; the reef edge is about 135 m off shore. Such water depth, substrate, temperature, illumination and water movement were recorded, about 200 common or dominant species (plants and animals) were collected, their distribution plotted and, together with other data and structural items, charted. Indicator species characterize the biophysiographical zones. Their variation as well as that of the structural and substrate zones depend on different zones of water movement. This basic factor also controls other ecological parameters such as food and oxygen supply as well as temperature and salinity gradients between fore reef and shore. From this point of view the ecological requirements of some indicator and other species and conversely the ecological settings of different reef areas are discussed. The different shapes of both reefs are explained on the basis of a “reef development cycle” — a hypothesis applicable to fringing reefs at unchanging sea level and based on the fact that only a small surf-influenced area of “living reef” is able to compensate for reef destruction: While a young coastal fringing reef is growing outwards, its back reef is gradually altered to a reef lagoon by erosion. After stillstand of seaward expansion the reef crest, too, is cut by a channel system eroded by rip currents. This stage is represented by the lagoon-fringing reef. Isolated pinnacles remain as remnants of the former reef crest; young coastal-fringing reefs develop from the shore. This stage is examplified by the first reef studied. Extension, growth intensity, dominant frame building corals, and the number of species of the Aqaba reefs are compared with those of Eilat and with reefs of the middle Red Sea, South India, Southwest-Pacific and Jamaica.  相似文献   

2.
The elevation of reefs and coastal deposits during the last Interglaciation (MIS-5e) indicates that sea level reached a highstand of as much as 6 m above the present, but it is uncertain how rapidly this level was attained and how it impacted reef development. To investigate this problem, I made a detailed sedimentological analysis of a well-dated reef from the northeast coast of the stable Yucatan Peninsula. Two linear reef tracts were delineated which are offset and at different elevations. The lower reef tract crops out along northern shore for 575 m and extends from below present mean sea level to +3 m. The reef crest facies consists of large Acropora palmata colonies dispersed within a coral boulder-gravel and is flanked by an A. cervicornis-dominated reef-front and a large area of lagoonal framework formed by coalesced patches of A. cervicornis and Montastraea spp. Constituents in the upper centimetre of the lower tract are heavily encrusted by a cap of crustose corallines and, in places, are levelled by a discontinuous marine-erosion surface. The upper reef tract crops out ~150 m inland up to an elevation of +5.8 m and parallels the southern section of shore for ~400 m. It also consist of an A. palmata-dominated crest facies flanked by reef-front, back-reef and lagoonal frameworks. In this case, however, lagoonal frameworks are dominated by a sediment-tolerant assemblage of branching coralline algae. Also different is the lack of encrustation by corallines, and the infiltration of upper tract facies by beach-derived shell-gravels from regressive shoreface deposits above. These results indicate that the lower reef tract and lagoonal patch-reefs formed at a sea level of +3 m. Final capping by crustose corallines and discontinuous marine erosion indicates that the lower tract was terminated by the complete demise of corals on the crest but only patchy demise in the lagoon. Areas of continuous framework accretion between the lagoonal patch reefs and the upper reef-tract, however, require that the demise of this reef was ecologically synchronous with initiation of the upper reef-tract, which had back-stepped 100 m into the lagoon. In this new position, the upper tract developed a reef crest that corresponded to a final sea-level position of +6 m. Reef flat development at +5 m and large in-place colonies of A. palmata at the base of the crest unit indicate, however, that sea level must have risen rapidly from +3 to more than +5 m to accommodate back-stepping. This sea-level jump created a higher energy wave field that mobilized back-reef and lagoonal sediments, and the resulting high sediment flux eroded lagoonal framework and prevented the recovery of the submerged lower reef crest. So this single jump in sea level was responsible not only for reef demise and back-stepping but also for marine erosion and suppression of subsequent reef development—features that elsewhere have been used to support multiple sea-level excursions during the last interglacial.  相似文献   

3.
The shores of coral reef islands are major sites for biodiversity, but unfortunately they are also subject to strong anthropogenic disturbances. Indeed vast arrays of organisms live exclusively in these very narrow and well structured zones, many others depend on the rich and diverse micro-habitats for essential part of their life cycle (to reproduce, forage, etc.). Sea kraits are sea snakes that depend on the shore of coral islets; they forage at sea but digest, reproduce and rest on land. They have been killed in extremely large numbers in many places, causing local extinctions. In the current study we demonstrate through recapture and translocation studies that these snakes exhibit a strong and fine-scale fidelity for particular segments of the shore. Consequently, these specific areas should be under strong protection, as it the case for the breeding beaches used by marine mammals, birds or turtles.  相似文献   

4.
Field observations over a fringing reef at Ipan, Guam, during trade wind and tropical storm conditions are used to assess the transformation of sea and swell energy from the fore reef to the shoreline. Parameterizations of wave breaking and bottom friction developed for sandy beaches are found to represent the observed decay in wave energy with an increased friction coefficient. These parameterizations are incorporated into the one-dimensional energy flux balance, which is integrated across the reef to assess the effects of varying tidal range, incident wave height and reef bathymetry on the sea and swell band wave height and wave setup near the shoreline. Wave energy on the reef is strongly depth-limited and controlled by the reef submergence level. Shoreline wave energy increases with incident wave height largely due to the increase in water level from breaking wave setup. Increased tidal levels result in increased shoreline energy, since wave setup is only weakly reduced. The wave height at the shore is shown to be inversely proportional to the width of the reef flat due to dissipation.  相似文献   

5.
This study uses information derived from cores to describe the Holocene accretion history of coral reefs in the macrotidal (up to 11 m tidal range) Buccaneer Archipelago of the southern Kimberley coast, Western Australia. The internal architecture of all cored reefs is broadly similar, constituting well-preserved detrital coral fragments, predominantly branching Acropora, in a poorly sorted sandy mud matrix. However, once the reefs reach sea level, they diverge into two types: low intertidal reefs that maintain their detrital character and develop relatively narrow, horizontal or gently sloping reef flats at approximately mean low water spring, and high intertidal reefs that develop broad coralline algal-dominated reef flats at elevations between mean low water neap and mean high water neap. The high intertidal reefs develop where strong, ebb-dominated, tidal asymmetry retains seawater over the low tide and allows continued accretion. Both reef types are ultimately constrained by sea level but differ in elevation by 3–4 m.  相似文献   

6.
Holocene growth of a mid-Pacific atoll: Tarawa,Kiribati   总被引:1,自引:0,他引:1  
Cores from ten holes, drilled to a maximum depth of 30 m, on Tarawa atoll in the central Pacific have been utilised in a study of the Holocene development of the atoll. Four dominant lithologies, in descending order, are cay rock, unconsolidated sediment, corals and leached limestone. Petrographic and radiometric age analyses indicate that the Holocene reef has developed on a previous (last interglacial) reef; the latter shows the effects of both vadose and phreatic freshwater diagenesis. Hydrological investigations beneath the present islands indicate the presence of freshwater lenses up to 29 m thick; the modern lenses are unrelated to freshwater diagenetic imprints preserved within the limestones. Vertical accretion rates of 5–8 m/1000 years for the Holocene reef section on Tarawa are significantly higher than rates measured for other Pacific atolls. The dated coral sequences suggest a more rapid rate of sea level rise during the early Holocene, and a relatively earlier stabilisation of sea level than has been suggested previously.  相似文献   

7.
Identifying fixed bed roughness scales of hydrodynamic relevance to waves and currents is challenging around coral reefs due to their highly inhomogeneous bathymetry. In order to characterize the spatial variability in reef roughness, a quantitative analysis of high-resolution sidescan sonar backscatter is performed for the identification of distinct substrates around a tropical reef and is related to echo sounder-based roughness measurements. Data were collected in the vicinity of the Kilo Nalu Observatory on the south shore of Oahu using sidescan sonar and a narrow beam echo sounder incorporated in a REMUS-100 (Remote Environmental Monitoring UnitS) autonomous underwater vehicle (AUV). With basic statistics and principal component analysis of variables derived from the backscatter data, it is possible to discriminate between areas of rough reef, bare reef, and rippled sand. Echo sounder-derived spectral analysis did not reveal dominant length scales. However, by combining the seabed classification obtained from sidescan measurements with echo sounder data, spectral root mean square (RMS) height values of approximately 3.3 cm and 7.3 cm are assigned to the bare reef and rough reef areas, respectively, for roughness with wavelengths between 0.2 and 6 m.  相似文献   

8.
Summary The coastline of the Salento Peninsula (Apulia region, Southern Italy) is characterized by a rocky shore with spectacular cliffs where the investigated fringing reef complex, the so called Castro Limestone, spectacularly outcrops for at least 40 km. As reconstructed from several measured sections, the Castro Limestone, which is Middle Chattian in age from our own data, disconformably mantles a tectonically deformed falaise of Cretaceous-Eocene rocks and is overlain by a remarkable erosional surface characterized by a very peculiar rhodolite rudstone. The Castro Limestone unit can be considered as a classic unconformity bounded depositional sequence representing, most probably, a shelf margin prograding complex, related to the major Middle Oligocene sea level lowstand. Stratigraphic and sedimentologic features, together with paleontological characters, allow recognition of a virtually complete range of reef environments across the reef profile. Several geomorphic zones and associated facies are described, from the most landward reef area (‘back reef’) across the reef flat and reef from downward to the fore reef slope, contributing to a better knowledge of the evolution of Oligocene reefs and reef communities in Italy and in the Mediterranean area.  相似文献   

9.
Storlazzi  C. D.  Elias  E.  Field  M. E.  Presto  M. K. 《Coral reefs (Online)》2011,30(1):83-96
Most climate projections suggest that sea level may rise on the order of 0.5–1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5–1.0 m on a 1–2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5–1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.  相似文献   

10.
Radiocarbon dating of seven drill cores from both the windward Lizard Island fringing reef and the windward and leeward margins of MacGillivray platform reef, Northern Great Barrier Reef Province, reveal the Holocene evolution of these two mid shelf coral reefs. The windward margin at Lizard Island started growing approximately 6,700 calendar years before present (cal yr BP) directly on an assumed granite basement and approached present day sea level approximately 4,000 cal yr BP. Growth of the windward margin at MacGillivray Reef was initiated by 7,600 cal yr BP and approached present day sea level by approximately 5,600 cal yr BP. The leeward margin at MacGillivray was initiated by 8,200 cal yr BP also directly on an assumed granite basement, but only approached sea level relatively recently, between 260 and 80 cal yr BP. None of the cores penetrated the Holocene-Pleistocene unconformity. The absence of Pleistocene reefal deposits, at 15 m depth in the cores from MacGillivray Reef, raises the possibility that the shelf in this region has subsided relative to modern day sea level by at least 15 m since the last interglacial [125,000 years ago (ka)].  相似文献   

11.
Seven coral reef communities were defined on Shiraho fringing reef, Ishigaki Island, Japan. Net photosynthesis and calcification rates were measured by in situ incubations at 10 sites that included six of the defined communities, and which occupied most of the area on the reef flat and slope. Net photosynthesis on the reef flat was positive overall, but the reef flat acts as a source for atmospheric CO2, because the measured calcification/photosynthesis ratio of 2.5 is greater than the critical ratio of 1.67. Net photosynthesis on the reef slope was negative. Almost all excess organic production from the reef flat is expected to be effused to the outer reef and consumed by the communities there. Therefore, the total net organic production of the whole reef system is probably almost zero and the whole reef system also acts as a source for atmospheric CO2. Net calcification rates of the reef slope corals were much lower than those of the branching corals. The accumulation rate of the former was approximately 0.5 m kyr−1 and of the latter was ~0.7–5 m kyr−1. Consequently, reef slope corals could not grow fast enough to keep up with or catch up to rising sea levels during the Holocene. On the other hand, the branching corals grow fast enough to keep up with this rising sea level. Therefore, a transition between early Holocene and present-day reef communities is expected. Branching coral communities would have dominated while reef growth kept pace with sea level rise, and the reef was constructed with a branching coral framework. Then, the outside of this framework was covered and built up by reef slope corals and present-day reefs were constructed.  相似文献   

12.
Coral reef growth is intimately linked to sea level. It has been postulated that over the next century, sea level will rise at a probable average rate of 15 mm/year, in response to fossil fuel emissions, heating, and melting of the Antarctic ice cap. This predicted rate of sea level rise is five times the present modal rate of vertical accretion on coral reef flats and 50% greater than the maximum vertical accretion rates apparently attained by coral reefs. We use these predictions and observations to offer the following hypothesis for reef growth over the next century. The vertical accretion rates of protected reef flats will accelerate from the present modal rate up to the maximum rate, in response to the more rapidly rising sea level. This more rapid vertical accretion rate will be insufficient to keep up with sea level rise, if present predictions prove to be correct. Less protected reef flats will slow their rate of growth as they become inundated and subjected to erosion by progressively larger waves. This projected sea level rise and postulated reef response will provide an opportunity for long-term studies of the response of coral reef systems to a predictable and measurable forcing function. If the scientific benefits from this uncontrolled global experiment are to be maximized, it will be necessary to establish a permanent international coordinating body to assist with the identification and preservation of long-term study sites and to provide guidelines for baseline data surverys, methods selection and comparison, and other procedures and decisions.  相似文献   

13.
高菲  许强  李秀保  何林文  王爱民 《生态学报》2022,42(11):4301-4312
珊瑚礁生态系统是一个高生产力、高生物多样性的特殊海洋生态系统,具有为生物提供栖息地、参与生物地球化学循环、防浪护岸、指示水体污染程度等生态功能。珊瑚礁生态系统的突出特点是其生境异质性很高,各种各样的生境斑块为种类繁多、习性各异的游泳和底栖生物提供栖息场所,这些礁栖生物通过参与各项生态过程而形成各种特定的功能群,共同完成重要的生态功能。在热带珊瑚礁生态系统中,海参是大型底栖动物区系的重要一员。种类繁多的海参具有各自不同的生境选择特征,通过摄食、运动等行为活动发挥着改良底质、促进有机物矿化和营养盐再生等生态作用。近几年来,全球热带海参受人类过度捕捞和珊瑚礁退化的影响而面临资源衰退、物种多样性丧失等问题,深入认识其生态学功能、加强热带海参资源保护迫在眉睫。综述了国内外热带珊瑚礁海参的基础生态学研究进展:海参对珊瑚礁生境斑块呈现显著的偏好选择特征以及种间差异和季节变动,不同生境斑块的食物质量、底质类型和水动力条件是影响海参生境偏好的重要因素;海参通过生物扰动可以改变珊瑚礁生境沉积物的含水量、渗透性、颗粒组成、再矿化率、无机营养物质释放速率以及孔隙水的化学梯度,并增加沉积物中的溶氧浓度、促进溶解...  相似文献   

14.
Plate tectonic theory accounts for the steady subsidence of mid-plate oceanic islands by cooling of the lithosphere and so provides a sound basis for Darwin's theory of atoll formation. Now it is evident that because the lithosphere behaves elastically in response to loads such as islands, more localized subsidence and uplift patterns can also be explained. Tectonically active areas, where one plate is subducted beneath another, are also likely to contain regions of marked uplift, but are less amenable to modelling. These processes together provide a background motion framework for most reef settings with rates of vertical movement of the order of a few millimetres per year.
Reef forms are greatly influenced by the configuration of their foundations. Holocene reef foundations were essentially moulded by processes of deposition and erosion during the Pleistocene when global sea level changes were often greater than 1 cm year-1.
We are now developing a sufficient understanding of the rates and nature of reef processes of growth and destruction to be able to see the manner in which the structural development of reefs responds to the complex interplay of tectonic uplift and subsidence plus changes of sea level and climate.  相似文献   

15.
 The sedimentological and chronological study of Holocene reef sequences recovered in drill cores through modern reefs of Mauritius, Réunion Island and Mayotte allows the reconstruction of sea level changes and reef growth patterns during the Holocene. The branching-coral facies systematically predominates over coral head facies throughout the Holocene reef sequences, and Acropora is the main frame builder among the branching forms. The reconstructed sea level curves, based both on identification of coral assemblages and on radiometric U/Th ages, are characterized by a rapid rise between 10 and 7.5 ky BP, followed by a clear inflection between 7.5 and 7 ky BP. The stabilization of sea level at its present level occurred between 2000 and 3000 years ago, probably without a higher sea level stand. Rates of vertical reef accretion range between 0.9 and 7 mm. y-1. In Mauritius, and also probably in Réunion Island, the reef first tracked, then caught-up to sea level to reach an equilibrium position (“catch-up” growth), while the barrier reef margin off Mayotte has been able to keep pace with rising sea level (“keep-up” growth). Accepted: 1 March 1997  相似文献   

16.
为更好地保护和管理西沙永兴岛附近海域珊瑚礁鱼类,于2020—2021年对永兴岛上岸渔获物进行了调查研究,分析了鱼类群落结构组成及其变化和演替特征。结果表明:调查共发现永兴岛附近海域珊瑚礁鱼类101种,隶属于5目21科,以鲈形目鱼类最多,占总种类的84.16%,生物量超总渔获物的90%;科级水平鹦嘴鱼科鱼类最多,达21种,生物量超总渔获物的45%。28种珊瑚礁鱼类是永兴岛附近海域主要捕捞对象,占总渔获物的80%以上。永兴岛附近海域珊瑚礁鱼类呈现过度捕捞,一是主要渔获物中的中大型鱼类均重偏小;二是本海域个体体型最大的鱼类出现较多消亡;三是肉食性鱼类大量消亡;四是植食性鱼类生物量占比超过了肉食性鱼类。永兴岛附近海域珊瑚礁鱼类已经演替到以植食性鱼类为主导的生态系统;大量海胆的出现,表明了这一珊瑚礁生态系统在进一步衰退,向以海胆为主导的生态系统演变。保护西沙永兴岛附近海域珊瑚礁鱼类已经刻不容缓,需要严格地控制本海域的捕捞强度。  相似文献   

17.
Botos Lake, located at the Poas Volcano complex (Costa Rica) was sampled eight times from 1994 to 1996 for physicochemical conditions of the water column and phytoplanktonic community composition. Depth was measured at fixed intervals in several transects across the lake to determine its main morphometric characteristics. The lake has an outlet to the north. It is located 2580 m above sea level and is shallow, with a mean depth of 1.8 m and a relative depth of 2.42 (surface area 10.33 ha, estimated volume 47.3 hm3). The lake showed an isothermal water column in all occasions, but it heats and cools completely according to weather fluctuations. Water transparency reached the bottom on most occasions (> 9 m). The results support the idea that the lake is polymictic and oligotrophic. The lake has at least 23 species of planktonic algae, but it was always dominated by dinoflagellates, especially Peridinium inconspicuum. The shore line is populated by a sparse population of Isoetes sp. and Eleocharis sp. mainly in the northern shore where the bottom has a gentle slope and the forest does not reach the shore.  相似文献   

18.
Crustose coralline algae (CCA) fulfill two key functional roles in coral reef ecosystems: they contribute significantly to reef calcification, and they induce larval settlement of many benthic organisms. Percentage cover of CCA, and environmental conditions, were visually estimated on 144 reefs of the Great Barrier Reef between 10 and 24° latitude S. Reefs were located across the shelf and ranged from turbid near-shore reefs close to rivers to clean-water reefs hundreds of kilometers from coastal influences. On each reef, two sites were surveyed between 0.5 and 18 m depth. Strong cross-shelf trends occurred in cover of CCA, amount of sediment deposited, water clarity, and slope angle. Relative distance across the shelf and sedimentation jointly explained 84% of variation in CCA cover. Three regions running parallel to the shore were identified, with a mean CCA cover of <1% on the inner third of the shelf, and >20% cover on the outer half of the shelf, with a narrow transition region between the two. Within each region, the cover of CCA was unrelated to distance across the shelf, but was related to the sedimentary environment, being relatively higher on reefs with low sediment deposits. On the inner third of the shelf, the most sediment-exposed reefs were unsuitable habitats for CCA. The inverse relationship between CCA and sediment has implications for the recruitment of CCA-specialised organisms, and for rates of reef calcification.  相似文献   

19.
Glacioeustatic sea level fluctuations continually cover and expose reefs, alternately allowing growth or erosion to operate. In a simulation model we examine the simultaneous effects of sea level change, island subsidence, reef growth, subaerial erosion, marine backwearing, and fluvial erosion (from central highlands) on reef development. Using values obtained from the literature, we vary the rates of these processes and compare the reefs produced. Our results indicate that subaerial erosion, subsidence and growth are of comparable importance in determining reef morphology. Fore reef terraces, as developed by the model, are primarily drowned growth features; marine backwearing is of little importance in their development. Reef terraces form readily at depths that never had a stable sea stand, their depth is influenced by growth, subaerial erosion, and subsidence rates. Thus reef terraces often do not indicate former sea stands. We examine the causes of reef drowning and attribute it primarily to rapid subsidence and subaerial erosion, not to truncation through marine backwearing. We propose that reefs deeply submerged today are not necessarily drowned out, but may be vertically stable through many sea level cycles. Fluvial erosion is likely an important agent of lagoon formation on high islands in areas with high erosion rates.  相似文献   

20.
This paper provides baseline data on absolute and relative sea level variations and shoreline changes in the Scattered Islands region of the Indian Ocean, based on aerial image analysis, satellite altimetry and field observations and in situ measurements from the 2009 and 2011 TAAF scientific expeditions. The analysis shows the importance of regular observations and monitoring of these islands to better understand reef island responses to climate stressors. We show that Grande Glorieuse Island has increased in area by 7.5 ha between 1989 and 2003, predominantly as a result of shoreline accretion: accretion occurred over 47% of shoreline length, whereas 26% was stable and 28% was eroded. Topographic transects and field observations show that the accretion is due to sediment transfer from the reef outer slopes to the reef flat and then to the beach. This accretion occurred in a context of sea level rise: sea level has risen by about 6 cm in the last twenty years and the island height is probably stable or very slowly subsiding. This island expansion during a period of rising sea level demonstrates that sea level rise is not the primary factor controlling the shoreline changes. This paper highlights the key role of non-climate factors in changes in island area, especially sediment availability and transport. We also evidence rotation of the island, underscoring the highly dynamic nature of reef islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号