首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 159 毫秒
1.
高剪接活性断裂蛋白质内含子的体内切割   总被引:1,自引:1,他引:0  
蛋白质内含子介导的断裂(切割)反应被用于蛋白质纯化、连接和环化等,但目前仍存在断裂效率低、断裂反应的不可控、产物复杂等问题。蛋白质内含子的定点突变可导致其N端或C端断裂。其末位氨基酸突变则剪接反应第3步天冬酰胺环化无法进行,发生N端断裂;其首位氨基酸发生突变则剪接反应第一步酰基重排及其后续步骤均无法进行,而天冬酰胺环化仍可进行,发生C端断裂。利用已获得的高剪接活性的S1和S11型断裂蛋白质内含子Ssp GyrB,分别将其参与剪接反应的首位半胱氨酸或末位天冬酰胺突变为丙氨酸,构建能够发生一端断裂的断裂蛋白质内含子。研究结果表明,突变后断裂蛋白质内含子的剪接反应几乎不发生,其断裂活性有不同程度的提高,获得了在大肠杆菌体内具有较高效断裂活性的断裂蛋白质内含子。这将为进一步研究其体外可控性剪接、构建高效的蛋白纯化系统和深入研究蛋白质内含子的剪接机制提供基础。  相似文献   

2.
基于蛋白质内含子的蛋白质纯化自我断裂标签已经被广泛使用超过15年之久.但这一系统体内表达过程的提前断裂一直是限制这一技术广泛应用的瓶颈,特别是在需要高温表达和长表达周期的真核表达系统中.本研究介绍了一种利用小肽控制的基于蛋白质内含子和非层析标签ELP(elastin-like polypeptide)的自我断裂系统.在这一系统中,蛋白质内含子的体内外活性严格受到其结构互补小肽控制.在体内表达不含有互补小肽时,蛋白质内含子不具有活性;而在体外添加结构互补小肽,蛋白质内含子结构恢复并发生C端断裂反应释放目的蛋白.由于非层析标签ELP的引入,因此整个纯化过程可以简单地通过几步机械沉淀完成.此外,这一系统反应pH、小肽与前体蛋白之间的摩尔比及断裂速率也一并进行了系统的研究.  相似文献   

3.
断裂蛋白质内含子的剪接机制、起源和进化   总被引:1,自引:0,他引:1  
蛋白质内含子(intein)是具有自我催化活性的蛋白质. 翻译后,通过蛋白质剪接从蛋白质前体中去掉,并以肽键连接两侧蛋白质外显子(extein)形成成熟蛋白质. 断裂蛋白质内含子(split intein)在蛋白质内含子中部区域特定位点发生断裂,形成N端片段和C端片段,分别由基因组上相距较远的两个基因编码. 现在已知,它仅分布于蓝细菌和古细菌中. 断裂蛋白质内含子的N端片段和C端片段通过非共价键(如静电作用)相互识别,重建催化活性中心,介导蛋白质反式剪接. 断裂蛋白质内含子的发现进一步深化了人们对基因表达和蛋白质翻译后成熟过程复杂性的认识,而且它在蛋白质工程、蛋白质药物开发和蛋白质结构与功能研究等方面有非常广泛的应用. 本文试图综述断裂蛋白质内含子的分布、结构特征和剪接机制,并分析其可能的起源和进化途径.  相似文献   

4.
蛋白质内含子对于外显子的选择性限制了它的应用范围。目前,已经建立的卡那霉素定向进化系统适用于微小蛋白质内含子,但不适用于断裂蛋白质内含子。为了研究适用于断裂蛋白质内含子的定向进化的方法,我们引入了DNA展示系统。在该系统中,生物素化基因在人工细胞中与其表达的融合蛋白(内含子C端-外显子-生物素结合蛋白)形成DNA 蛋白质连接体。只有能与后续加入的N端蛋白质内含子前体(Flag-内含子N端)发生剪接反应的DNA 蛋白质连接体,才能被加上旗帜标签(Flag),从而被抗旗帜标签抗体纯化柱(Anti Flag antibody M2 agarose)筛选富集。为了验证该系统的可行性,实验构建了2个基因,即含有具剪接活性的蛋白质内含子的阳性基因IRC和含有不具剪接活性的蛋白质内含子的阴性基因IRCM。实验首先通过Western印迹和琼脂糖凝胶电泳证明,人工细胞中的体外转录翻译系统不仅可高表达500个氨基酸的蛋白质,而且表达的蛋白中内含子仍保持原有的剪接能力。生物素结合蛋白能结合95%的DNA,并且形成的DNA 蛋白质连接体可以被筛选富集,最终证明了该系统用于断裂蛋白质内含子定向进化筛选的可行性。随后,为了检测系统的富集效率,制备了人为的基因“突变库”,即将基因IRC和IRCM以摩尔比1:10的比例混合,经过2轮筛选后,阳性基因IRC可以被10倍富集,进一步证明了体外筛选方法的可行性。该方法为后续针对不同宿主进化出不同的断裂蛋白质内含子提供筛选方法支持,也为断裂蛋白质内含子的在生物技术和研究领域的应用奠定了基础。  相似文献   

5.
PRP8蛋白质反式剪接系统的建立   总被引:3,自引:2,他引:1  
真菌病原体Cryptococcus neoformansAD血清型剪接体蛋白PRP8蛋白质内含子是目前 发现的第2个存在于真核生物体核基因组中的蛋白质内含子.它的宿主基因prp8编码的PRP 8蛋白作为剪接体的1个组分,是1个高度保守的mRNA剪接蛋白.将组氨酸标签插入克隆自真菌病原体Cryptococcus neoformans AD血清型的PRP8蛋白质内含子中,并将该蛋白质内含子进行人工断裂,获得断裂蛋白质内含子,在大肠杆菌中鉴定其剪接活性.研究结果表明:所获得的改造型蛋白质内含子均表现出高效的剪接活性.利用此Cryptococcus neoformansAD血清型PRP8 断裂蛋白质内含子,成功构建了蛋白质反式剪接系统.这一反式剪接系统可用于其他蛋白质的连接与合成,有望成为蛋白质工程中的一种有用工具.  相似文献   

6.
Ssp dnaB蛋白质内含子介导的重组人脑钠素的制备   总被引:3,自引:0,他引:3  
脑钠素(BNP)是临床治疗代偿失调性心衰竭的有效药物。将脑钠素与组氨酸标签(His-tag)以及具有自我剪切功能的Ssp dnaB微型蛋白质内含子进行融合表达。表达产物经Ni-Sepharose亲和层析及体外复性处理后,用CM_纤维素对复性产物进行了浓缩,并通过改变CM-纤维素柱内的pH及温度,诱导Ssp dnaB微型蛋白质内含子的剪切作用,使脑钠素从融合蛋白中释放并与载体蛋白(His-DnaB)分离,再经C4反相高效液相色谱法进一步纯化后,从每升培养液中获得了2.8mg纯度达97%的重组人脑钠素。体外活性测定结果表明,重组人脑钠素对兔胸主动脉条具有显著的血管舒张效应,其EC50为1.94×10-6mg/mL。  相似文献   

7.
异源生物中筛选高剪接活性Intein系统的建立   总被引:1,自引:0,他引:1  
原始物种体内蛋白质内含子(intein)介导的自催化蛋白剪接反应以100%效率进行.当这些蛋白质内含子被克隆入异源物种时,其剪接效率往往大大降低,绝大多数甚至完全失去剪接能力.本研究根据蛋白质内含子剪接活性与蛋白质外显子(extein)C端第1个保守氨基酸直接相关的特点,设计含有所有这些保守氨基酸的多个短的蛋白质外显子序列,通过PCR引入到卡那霉素抗性蛋白(KanR)的不同位点中,在此外显子中克隆入相应的蛋白质内含子,构建在大肠杆菌中依赖卡那霉素抗性来筛选高剪接活性蛋白质内含子的系统.结果显示,卡那霉素平板上菌落生长的结果与Western印迹检测的结果基本一致.说明建立的筛选高剪接活性蛋白质内含子系统成功.这种含有可选择蛋白质外显子的筛选系统,将蛋白质剪接与卡那霉素抗性相结合,直接从平板上观测剪接结果,成为快速、稳定筛选在异源物种中具有剪接活性蛋白内含子的新手段.  相似文献   

8.
以中国人胎盘脐带组织为材料 ,提取组织总RNA ,用RT PCR方法合成人血管能抑素cDNA ,将该cD NA克隆进 pSP72载体获得重组质粒 pSP72C。以pSP72C为模板 ,PCR方法合成编码血管能抑素N端 189aa的基因片段 ,将其克隆进pET 3c载体获得重组表达质粒 pET CN ,转化E .coliBL2 1(DE3) ,SDS PAGE分析显示 ,在IPTG诱导下 ,人血管能抑素N端基因片段获得了有效表达 ,表达量约占菌体总蛋白质的 35 .3% ,主要以包涵体形式存在。包涵体经过洗涤、裂解、蛋白质复性以及SephadexG 10 0凝胶过滤层析等步骤纯化后 ,获得了纯度约92 .6 %的人血管能抑素N端片段 ,CAM实验证明具有显著抑制鸡胚新生血管生成活性。  相似文献   

9.
目的:在大肠杆菌中表达猪丹毒丝菌C43065株表面保护性抗原A(SpaA)N端保护区(SpaA-N),并检测其抗原性。方法:利用PCR方法从猪丹毒丝菌C43065株基因组中扩增出spaA基因片段,构建pMD18-spaA重组质粒并对插入片段进行测序;以pMD18-spaA重组质粒为模板,PCR扩增得到spaA-N基因片段,构建重组表达质粒pGEX-spaA-N,经序列测定证实正确后转化大肠杆菌BL21(DE3),再经IPTG诱导表达GST-SpaA-N融合蛋白并纯化。结果:扩增得到的spaA基因长1881bp,编码由626个氨基酸残基构成的多肽;SDS-PAGE和Western印迹检测结果表明,诱导表达获得相对分子质量约64000的GST-SpaA-N融合蛋白,该融合蛋白能与相应抗体发生特异性反应。结论:获得了在大肠杆菌中可溶性表达的GST-SpaA-N融合蛋白,为进一步研究猪丹毒丝菌免疫保护性抗原奠定了基础。  相似文献   

10.
蛋白质的特异位点修饰可以帮助了解蛋白质的结构与功能.但是,现有的蛋白质特异位点标记方法种类有限,而且存在局限性,所以有必要开发新的蛋白质特异位点标记方法.以谷胱甘肽-S-转移酶(GST)为研究对象,借助蛋白质反式剪接技术,建立了利用新型断裂蛋白质内含子对蛋白质进行N端标记的新方法.在这个方法中,通过简单的重组表达、标记和纯化得到带有荧光基团的小肽,经过蛋白质反式剪接,荧光基团被标记到蛋白质的N端.初步研究结果显示,标记效率可达到12%.  相似文献   

11.
Intein‐based protein cleavages, if carried out in a controllable way, can be useful tools of recombinant protein purification, ligation, and cyclization. However, existing methods using contiguous inteins were often complicated by spontaneous cleavages, which could severely reduce the yield of the desired protein product. Here we demonstrate a new method of controllable cleavages without any spontaneous cleavage, using an artificial S1 split‐intein consisting of an 11‐aa N‐intein (IN) and a 144‐aa C‐intein (IC). In a C‐cleavage design, the IC sequence was embedded in a recombinant precursor protein, and the small IN was used as a synthetic peptide to trigger a cleavage at the C‐terminus of IC. In an N‐cleavage design, the short IN sequence was embedded in a recombinant precursor protein, and the separately produced IC protein was used to catalyze a cleavage at the N‐terminus of IN. These N‐ and C‐cleavages showed >95% efficiency, and both successfully avoided any spontaneous cleavage during expression and purification of the precursor proteins. The N‐cleavage design also revealed an unexpected and interesting structural flexibility of the IC protein. These findings significantly expand the effectiveness of intein‐based protein cleavages, and they also reveal important insights of intein structural flexibility and fragment complementation.  相似文献   

12.
A self‐cleaving elastin‐like polypeptide (ELP) tag was used to purify the multisubunit Escherichia coli RNA polymerase (RNAP) via a simple, nonchromatographic method. To accomplish this, the RNAP α subunit was tagged with a self‐cleaving ELP‐intein tag and coexpressed with the β, β′, and ω subunits. The assembled RNAP was purified with its associated subunits, and was active and acquired at reasonable yield and purity. To remove residual polynucleotides bound to the purified RNAP, two polymer precipitation methods were investigated: polyethyleneimine (PEI) and polyethylene (PEG) precipitation. The PEG procedure was shown to enhance purity and was compatible with downstream ELP‐intein purification. Thus, this simple ELP‐based method should be applicable for the nonchromatographic purification of other recombinant, in vivo‐assembled multisubunit complexes in a single step. Further, the simplicity and low cost of this method will likely facilitate scale up for large‐scale production of additional multimeric protein targets. Finally, this technique may have utility in isolating protein interaction partners that associate with a given target.  相似文献   

13.
Inteins catalyze a protein splicing reaction to excise the intein from a precursor protein and join the flanking sequences (exteins) with a peptide bond. In a split intein, the intein fragments (IN and IC) can reassemble non-covalently to catalyze a trans-splicing reaction that joins the exteins from separate polypeptides. An atypical split intein having a very small IN and a large IC is particularly useful for joining synthetic peptides with recombinant proteins, which can be a generally useful method of introducing site-specific chemical labeling or modifications into proteins. However, a large IC derived from an Ssp DnaX intein was found recently to undergo spontaneous C-cleavage, which raised questions regarding its structure-function and ability to trans-splice. Here, we show that this IC could undergo trans-splicing in the presence of IN, and the trans-splicing activity completely suppressed the C-cleavage activity. We also found that this IC could trans-splice with small IN sequences derived from two other inteins, showing a cross-reactivity of this atypical split intein. Furthermore, we found that this IC could trans-splice even when the IN sequence was embedded in a nearly complete intein sequence, suggesting that the small IN could project out of the central pocket of the intein to become accessible to the IC. Overall, these findings uncovered a new atypical split intein that can be valuable for peptide-protein trans-splicing, and they also revealed an interesting structural flexibility and cross-reactivity at the active site of this intein.  相似文献   

14.
Previously, we reported a non‐chromatographic protein purification method exploiting the highly specific interaction between the dockerin and cohesin domains from Clostridium thermocellum and the reversible aggregation property of elastin‐like polypeptide (ELP) to provide fast and cost‐effective protein purification. However, the bound dockerin‐intein tag cannot be completely dissociated from the ELP‐cohesin capturing scaffold due to the high binding affinity, resulting in a single‐use approach. In order to further reduce the purification cost by recycling the ELP capturing scaffold, a truncated dockerin domain with the calcium‐coordinating function partially impaired was employed. We demonstrated that the truncated dockerin domain was sufficient to function as an effective affinity tag, and the target protein was purified directly from cell extracts in a single binding step followed by intein cleavage. The efficient EDTA‐mediated dissociation of the bound dockerin‐intein tag from the ELP‐cohesin capturing scaffold was realized, and the regenerated ELP capturing scaffold was reused in another purification cycle without any decrease in the purification efficiency. This recyclable non‐chromatographic based affinity method provides an attractive approach for efficient and cost‐effective protein purification. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:968–971, 2013  相似文献   

15.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

16.
We have combined Invitrogen's Gateway cloning technology with self-cleaving purification tags to generate a new system for rapid production of recombinant protein products. To accomplish this, we engineered our previously reported DeltaI-CM cleaving intein to include a Gateway cloning recognition sequence, and demonstrated that the resulting Gateway-competent intein is unaffected. This intein can therefore be used in several previously reported purification methods, while at the same time being compatible with Gateway cloning. We have incorporated this intein into a set of Gateway vectors, which include self-cleaving elastin-like polypeptide (ELP), chitin binding domain (CBD), phasin (polyhydroxybutyrate-binding), or maltose binding domain (MBD) tags. These vectors were verified by Gateway cloning of TEM-1 beta-lactamase and Escherichia coli catalase genes, and the expressed target proteins were purified using the four methods encoded on the vectors. The purification methods were unaffected by replacing the DeltaI-CM intein with the Gateway intein. It was observed that some purification methods were more appropriate for each target than others, suggesting utility of this technology for rapid process identification and optimization. The modular design of the Gateway system and intein purification method suggests that any tag and promoter can be trivially added to this system for the development of additional expression vectors. This technology could greatly facilitate process optimization, allowing several targets and methods to be tested in a high-throughput manner.  相似文献   

17.
The Staphylococcus simulans gene encoding lysostaphin has been PCR amplified from pRG5 recombinant plasmid (ATCC 67076) and cloned into Escherichia coli expression pTYB12 vector (IMPACT-CN System, New England BioLabs) which allows the overexpression of a target protein as a fusion to a self-cleavable affinity tag. The self-cleavage activity of the intein allows the release of the lysostaphin enzyme from the chitin-bound intein tag, resulting in a single-column purification of the target protein. This abundant overproduction allows purifying milligram amounts of the enzyme.  相似文献   

18.
An artificial gene encoding oxyntomodulin was obtained using chemical and enzymatic methods and cloned into Escherichia coli. A recombinant plasmid was constructed containing a hybrid oxyntomodulin gene and Ssp dnaB intein from Synechocystis sp. The expression of the resulting hybrid gene in E. coli, its properties, and the conditions of its autocatalytic cleavage to oxyntomodulin were studied.  相似文献   

19.
High throughput methods for recombinant protein production using E. coli typically involve the use of affinity tags for simple purification of the protein of interest. One drawback of these techniques is the occasional need for tag removal before study, which can be hard to predict. In this work, we demonstrate two high throughput purification methods for untagged protein targets based on simple and cost-effective self-cleaving intein tags. Two model proteins, E. coli beta-galactosidase (βGal) and superfolder green fluorescent protein (sfGFP), were purified using self-cleaving versions of the conventional chitin-binding domain (CBD) affinity tag and the nonchromatographic elastin-like-polypeptide (ELP) precipitation tag in a 96-well filter plate format. Initial tests with shake flask cultures confirmed that the intein purification scheme could be scaled down, with >90% pure product generated in a single step using both methods. The scheme was then validated in a high throughput expression platform using 24-well plate cultures followed by purification in 96-well plates. For both tags and with both target proteins, the purified product was consistently obtained in a single-step, with low well-to-well and plate-to-plate variability. This simple method thus allows the reproducible production of highly pure untagged recombinant proteins in a convenient microtiter plate format.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号