首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Preparation of 98% ee (R)-4-chloro-2-butanol was carried out by the enzymatic hydrolysis of chlorohydrin esters, using fungal resting cells and commercial enzymes. Hydrolyzes were carried out using lipases from Candida antarctica (Novozym 435), C. rugosa, Rhizomucor miehei (Lipozyme IM), Burkolia cepacia, and resting cells of Rhizopus oryzae and Aspergillus flavus. The influence of the enzyme, the solvent, the temperature, and the alkyl chain length on the selectivity of hydrolyzes of isomeric mixtures of chlorohydrin esters is described. Regioselectivity was higher than 95% for some of the tested lipases. Novozym 435 allowed preparation of the (R)-4-chloro-2-butanol after 15 min of reaction at 30-40 degrees C.  相似文献   

2.
Lou WY  Zong MH 《Chirality》2006,18(10):814-821
Efficient enantioselective acylation of (R,S)-1-trimethylsilylethanol {(R,S)-1-TMSE} with vinyl acetate catalyzed by immobilized lipase from Candida antarctica B (i.e., Novozym 435) was successfully conducted in ionic liquids (ILs). A remarkable enhancement in the initial rate and the enantioselectivity of the acylation was observed by using ILs as the reaction media when compared to the organic solvents tested. Also, the activity, enantioselectivity, and thermostability of Novozym 435 increased with increasing hydrophobicity of ILs. Of the six ILs examined, the IL C4MIm.PF6 gave the fastest initial rate and the highest enantioselectivity, and was consequently chosen as the favorable medium for the reaction. The optimal molar ratio of vinyl acetate to (R,S)-1-TMSE, water activity, and reaction temperature range were 4:1, 0.75, and 40 -50 degrees C, respectively, under which the initial rate and the enantioselectivity (E value) were 27.6 mM/h and 149, respectively. After a reaction time of 6 h, the ee of the remaining (S)-1-TMSE reached 97.1% at the substrate conversion of 50.7%. Additionally, Novozym 435 was effectively recycled and reused in C4MIm.PF6 for five consecutive runs without substantial lose in activity and enantioselectivity. The preparative scale kinetic resolution of (R,S)-1-TMSE in C4MIm.PF6 is shown to be very promising and useful for the industrial production of enantiopure (S)-1-TMSE.  相似文献   

3.
复合脂肪酶催化生物柴油的初步研究   总被引:6,自引:0,他引:6  
初步探讨了复合脂肪酶催化生物柴油的工艺。优化了复合酶配比条件和叔丁醇反应体系。在无溶剂体系中,Novozym435分别与Lipozyme TLIM和Lipozyme RMIM均以70/30质量比混合时,甲酯得率分别达到94.52%和96.25%,比Novozym435单独催化时的甲酯得率分别提高了9.52%和9.99%。在叔丁醇体系中,当Novozym435与Li-pozyme TLIM和Lipozyme RMIM分别以60/40和80/20的质量比混合时,其甲酯得率分别为85.06%和81.5%,比Novozym435单独催化的效率分别提高了9.89%和7.48%。优化叔丁醇体系中复合酶催化条件后,甲酯得率达92%。  相似文献   

4.
The enzymatic synthesis and hydrolysis of alkyl sebacates and o-, m-, p-phthalates were studied. Biosyntheses were conducted through alcoholysis of dimethyl phthalates and dimethyl sebacate with 2-ethylhexanol and 3,5,5-trimethylhexanol in a solvent-free medium, using lipases from Candida antarctica (Novozym 435), Rhizomucor miehei (Lipozyme IM) and Porcine pancreas (PPL). It was found that the synthesis and hydrolysis of sebacic acid esters were characterised by a satisfactory rate, however, by low enantioselectivity. The yield of synthesis of di-3,5,5-trimethylhexyl sebacate catalysed by Novozym 435 at 50 °C was 84%, after 20 h of reaction. The degree of conversion, 62.9% after 350 h, was obtained for alcoholysis reaction of dimethyl m-phthalate with 3,5,5-trimethylhexanol. For the enzymes used, no activity was detected at all on both the synthesis and hydrolysis of di-2-ethylhexyl o-phthalate and di-3,5,5-trimethylhexyl o-phthalate.  相似文献   

5.
Candida antarctica Lipase B was successfully immobilized on magnetite (Fe3O4) nanoparticles functionalized with chitosan and glutaraldehyde. The obtained magnetic catalyst was characterized and its performance was evaluated in solvent-free synthesis of ethyl oleate at room temperature. The performance of this biocatalyst was compared with the commercial Novozym 435, as a tool to estimate the efficiency of immobilization. It was found that using 33 mg of the biocatalyst it was possible to reach almost the same activity that was obtained using 12 mg of Novozym 435. Furthermore, this new biocatalyst presents the advantages of not being degraded by short alcohols, being easily recovered from the reaction media by magnetic decantation, and low fabrication cost. The possibility of reutilization was also studied, keeping a significant activity up to eight cycles. A special sampling protocol was also developed for the multiphasic reaction system, to assure accurate results. This novel biocatalyst is an interesting alternative for potential industrial applications, considering the above-mentioned advantages.  相似文献   

6.
杜伟  李琼 《微生物学通报》2000,27(6):429-432
从5种脂肪酶中筛选出了具有较高催化活性和对映体选择性的脂肪酶Novozym 435。进一步探讨了酶浓度、底物结构、底物浓度等因素对脂肪酶拆分酮基布洛芬(Ketoprofen)的影响。结果表明,以10mL除水环己烷为反应介质,酶浓度为5mg/mL,Novozym 435催化6.7mmol/L Ketoprofen与26.8mmol/L丙醇进行酯化反应,反应30h,转化率为68%时,S-酮基布洛芬对映  相似文献   

7.
Abstract

This study evaluated coupled effects of molar ratio of substrates and enzyme loading in a solvent-free system using a simple mathematical approach to obtain high conversions on octyl caprylate synthesis with Novozym 435. When molar ratios of caprylic acid to n-octanol (1:1 and 1:3) were evaluated with enzyme loadings of 1% to 4% (wt/wt acid), an interdependence between the masses of reagents and the enzymes was observed, that was expressed as a mathematical relation. The study of this relation, named as SER, indicated a specific range of reaction conditions that resulted in conversions above 90%. The most suitable condition corresponded to an acid:alcohol molar ratio of 1:1.3 and an enzyme loading of 1.5%, resulting in 94.5% of conversion at 65?°C in 3?hours of reaction. A different reaction system (bottle reactor) was used to evaluate the influence of reagents mixture and heat distribution. The use of a bottle reactor allowed yield improvement that reached 99.3%. At this condition, Novozym 435 was reused, without washing steps, in three subsequent batches keeping high conversion. A possible balance between the shift of chemical equilibrium by stoichiometric excess of reagents and enzymatic inhibition effects by substrates can be expressed mathematically in a convenient way, helping to predict the behaviour of synthesis in different conditions. The mathematical relation proposed, SER, allowed the achievement of 99% of conversion on enzymatic synthesis of octyl caprylate.  相似文献   

8.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

9.
A comparative study was made of Novozym 435-catalyzed regioselective acylation of 1-beta-D-arabinofuranosylcytosine with vinyl propionate for the preparation of the 5'-O-monoester in eleven co-solvent mixtures and three pure polar solvents. Novozym 435 displayed low or no acylation activity toward 1-beta-D-arabinofuranosylcytosine in pure polar solvents, although those solvents can dissolve the nucleosides well. When a hexane-pyridine co-solvent system was adopted, both the initial rate and the substrate conversion were enhanced markedly. The polarity of co-solvent mixtures had significant effect on the reaction. Among the solvent mixtures investigated, the higher the polarity of the solvent mixture, the lower the initial reaction rate and the substrate conversion. It was also found that the acylation was dependent on the hydrophobic solvent content, the water activity and the reaction temperature. The most suitable co-solvent, initial water activity, and reaction temperature were hexane-pyridine (28:72, v/v), 0.07, and 50 degrees C, respectively. Under these conditions, the initial rate, the substrate conversion and the regioselectivity were as high as 91.1 mM h(-1), >97% and >98%, respectively, after a reaction time of 6 h. Among the reaction mediums examined, the lowest apparent activation energy was achieved with hexane-pyridine (28:72, v/v), in which Novozym 435 also exhibited good thermal stability.  相似文献   

10.
Organic esters are employed as solvents, fragrance, flavors, and precursors in a variety of industries. Particularly, aliphatic esters are greatly used in flavor industry, mainly as fixatives and modifiers, and aromatic esters in fragrance compositions. Esters are produced by a variety of methods among which esterification and transesterification with acid catalysts under reflux conditions are prominent. The use of biocatalysts provides an opportunity for carrying out reactions under milder conditions leading to better quality products suitable in fragrance and flavor industry. Transesterification of n-octanol with vinyl acetate was studied at 30 °C as a model reaction by employing different lipases as catalysts such as Psedomonas species lipase immobilized on diatomite, free Candida rugosa lipase. Novozym 435 (lipase B from Candida antarctica; immobilized on macro-porous polyacrylic resin beads) and Lipozyme IM 20 (Mucor miehei lipase immobilized on anionic resin). Novozym 435 was found to be the most active catalyst in heptane as a solvent. A conversion of 82% with 100% selectivity of n-octyl acetate was obtained at 30 °C in 90 min using equimolar quantities of the reactants with 0.833 g l−1 of Novozym 435. Transesterification of other alcohols such as n-decanol, benzyl alcohol, cinnamyl alcohol, 2-ethyl-1-hexanol, 1-phenyl ethyl alcohol, and 2-phenyl ethyl alcohol was also studied with vinyl acetate. The analysis of the initial rate data and progress curve data showed that the reaction obeys the ternary complex bi–bi mechanism with inhibition by n-octanol. The experimental and theoretical values matched very well.

The order of transesterification reactivity of vinyl acetate with various alcohols in presence of Novozym 435 under otherwise identical conditions at 30 °C was found to be as follows:

n-octanol>n-decanol>benzylalcohol>cinnamylalcohol>2-ethyl-1-hexanol>2-phenylethylalcohol>1-phenylethylalcohol.
  相似文献   

11.
In this paper, highly regioselective enzymatic acylations of 1-β-D-arabinofuranosylcytosine (ara-C) with vinyl stearate (VS) in binary organic solvents were explored for the preparation of 5′-O-stearate of ara-C with potential antitumor activity. Twelve kinds of hydrolases were tested for the regioselective acylation reaction and the immobilized Candida antarctica lipase B (Novozym 435) showed the highest regioselectivity (>99.9%) towards the 5′-OH of ara-C. A comparative study showed that the lipase had much higher catalytic activity in the binary mixture of hexane and pyridine than in other tested co-solvent systems. To better understand lipase-mediated acylation conducted in the best binary organic solvent system, the effects of hydrophobic solvent content, molar ratio of VS to ara-C, initial water activity, and reaction temperature on the acylation reaction were studied. It was found that the most suitable hexane content, VS–ara-C molar ratio, initial water activity, and reaction temperature were shown to be 25% (v/v), 20:1, 0.07, and 50°C, respectively. Under these reaction conditions, the initial reaction rate, the maximum substrate conversion, and regioselectivity were as high as 86.0 mmol·L−1h−1, 96.6%, and >99.9%, respectively. The product of Novozym 435-catalyzed acylation was characterized by Carbon-13(13C) NMR and confirmed to be 5′-O-stearate of ara-C.  相似文献   

12.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

13.
The enzymatic esterification of glyceryl ferulate (FG) and oleic acid (OA) for feruloylated diacylglycerols (FDAG) synthesis in a solvent-free system was studied in this work. The reactions were catalyzed by different commercially available lipases, among which Novozym 435 was found to be the most active biocatalyst. The effects of glycerol in the reaction mixture and various synthesis parameters on yield of FDAG and the initial reaction rate were studied. The optimum synthesis conditions were as follows: temperature, 65 °C; enzyme load, 7.5%; substrate ratio, 7.5:1 (OA/(FG + glycerol), w/w); and reaction time, 12 h. Under the optimum conditions, the conversion of FG and yield of FDAG reached 98.0 ± 1.0% and 82.6 ± 2.2%, respectively. A linear relationship was established between the initial reaction rate and enzyme load up to 10%, which demonstrated that the influence of external mass transfer limitations on the reaction could be eliminated. The relationship between initial reaction rate and temperature was also established, based on the Arrhenius law. Novozym 435 in the present work can be used 18 times under the optimum conditions without essential losses in activity. The reaction kinetics agrees with the Ping-Pong Bi-Bi mechanism characterized by Vm and Km values of 5.26 × 10−4 mol/(L min) and 0.26 mol/L, respectively.  相似文献   

14.
Esterification of succinic acid with oleyl alcohol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was investigated in this study. Response surface methodology (RSM) based on a five-level, four-variable central composite design (CCD) was used to model and analyze the reaction. A total of 21 experiments representing different combinations of the four parameters including temperature (35–65°C), time (30–450 min), enzyme amount (20-400 mg), and alcohol:acid molar ratio (1:1-8:1) were generated. A partial cubic equation could accurately model the response surface with a R2 of 0.9853. The effect and interactions of the variables on the ester synthesis were also studied. Temperature was found to be the most significant parameter that influenced the succinate ester synthesis. At the optimal conditions of 41.1°C, 272.8 min, 20 mg enzyme amount and 7.8:1 alcohol:acid molar ratio, the esterification percentage was 85.0%. The model can present a rapid means for estimating the conversion yield of succinate ester within the selected ranges.  相似文献   

15.
Immobilized Candida antarctica lipase B (Novozym 435)-catalyzed enantioselective hydrolysis of D,L-phenylglycine methyl ester to enatiopure D-phenylglycine was successfully conducted in the systems with ionic liquids (ILs). Novozym 435 exhibited excellent activity and enantioselectivity in the system containing the IL BMIMxBF(4) compared to several typical organic solvents tested. It has been found that the cations and, particularly, the anions of ILs have a significant effect on the reaction, and the IL BMIMxBF(4), which shows to be the most suitable for the reaction, gave the highest initial rate and enantioselectivity among various ILs examined. The reaction became much less active and enantioselective in the systems with BMIMxHSO(4). Also, it was noticed that the enzymatic hydrolysis was strongly dependent on BMIMxBF(4) content in the co-solvent systems and the favorable content of the IL was 20% (v/v). Of the assayed four co-solvents and phosphate buffer, the lowest apparent K(m) and activation energy, and the highest V(max) of the reaction were achieved using 20% (v/v) BMIMxBF(4) co-solvent with phosphate buffer. Additionally, various influential variables were investigated. The optimum pH, substrate concentration, reaction temperature and shaking rate were 8.0, 80mM, 25-30 degrees Celsius and 150rpm, respectively, under which the initial rate, the residual substrate e.e. and the enantioselectivity were 2.46mM/min, 93.8% (at substrate conversion of 53.0%) and 38, respectively. When the hydrolysis was performed under reduced pressure, the initial rate (2.64mM/min) and the enantioselectivity (E=43) were boosted.  相似文献   

16.
Research work was objectively targeted to synthesize highly pure diacylglycerol (DAG) with glycerolysis of soybean oil in a solvent medium of t-butanol. Three commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) were screened, and Novozym 435 was the best out of three candidates. Batch reaction conditions of the enzymatic glycerolysis, the substrate mass ratio, the reaction temperature and the substrate concentration, were studied. The optimal reaction conditions were achieved as 6.23:1 mass ratio of soybean oil to glycerol, 40% (w/v) of substrate concentration in t-butanol and reaction temperature of 50 °C. A two-stage molecular distillation was employed for purification of DAG from reaction products. Scale-up was attempted based on the optimized reaction conditions, 98.7% (24 h) for the conversion rate of soybean oil, 48.5% of DAG in the glycerolysis products and 96.1% for the content of DAG in the final products were taken in account as the results.  相似文献   

17.
Single-cell protein production from ram horn hydrolysate by bacteria   总被引:23,自引:0,他引:23  
The alcoholysis (transesterification) of the refined cotton seed oil of Turkish origin with primary and secondary alcohols was investigated in the presence of an immobilized enzyme from Candida antarctica, commercially called Novozym 435 in a solvent-free medium. The optimum conditions of the methanolysis were as follows: 30% enzyme based on oil weight; oil/alcohol molar ratio 1:4; temperature: 50 degrees C and reaction time: 7 h. Maximum methyl esters (ME) yield was 91.5%. At the same conditions cotton seed oil was converted with short-chain primary and secondary alcohols to its corresponding esters with conversions between 72% and 94%. Our results indicated that alcoholysis products of cotton seed oil could be used as valuable intermediates in oleochemistry.  相似文献   

18.
The enzymatic synthesis of homogeneous tri-docosahexaenoylglycerol from glycerol and ethyl docosahexaenoate in a solvent-free medium was achieved using Novozym SP 435 (immobilized lipase from Candida antarctica). Two processes were tested: a constant stirred tank reactor with N2 bubbling through and a constant stirred tank reactor under vacuum. The first experimental apparatus was clearly found to be better than the other, giving 100% (w/w) conversion after 10 h.  相似文献   

19.
The enzymatic esterification of dihydrocaffeic acid with linoleyl alcohol, using immobilized lipases (Lipozyme IM 20 and Novozym 435), was investigated in selected organic solvent media. Novozym 435 was found to be more efficient for catalyzing the esterification reaction. The highest enzymatic activity of 0.89 μmol esterified linoleyl alcohol/g solid enzyme/min was obtained in a hexane/2-butanone mixture of 75:25 (v/v), with an esterification yield of 75%; however, an increase in the 2-butanone proportion in the mixture up to 50% (v/v) resulted in a decrease in enzymatic activity and esterification yield to 0.38 μmol esterified linoleyl alcohol/g solid enzyme/min and 40%, respectively. The maximum esterification yield of 99.3% was obtained with a dihydrocaffeic acid to linoleyl alcohol ratio of 1:8. The electrospray ionization-mass spectroscopic structural analysis of the end products confirmed the biosynthesis of dihydrocaffeic acid ester of linoleyl alcohol, which demonstrated an anti-radical activity using 2,2-diphenyl-1-picrylhydrazyl as a radical model.  相似文献   

20.
An operation mode with N(2) bubbling under vacuum was employed for the solvent-free synthesis of 1,3-diconjugated linoleoyl glycerol (1,3-dCLG) from conjugated linoleic acid (CLA) catalyzed by Novozym 435. The response surface methodology (RSM) was adopted for the optimization of the reaction conditions with five major factors (incubation time, temperature, enzyme load, substrate mole ratio, and system vacuum) and three responses (CLA conversion, 1,3-dCLG yield, and acyl migration). Two sets of optimal conditions were recommended. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of 1,3-dCLG yield. Under the optimal conditions, the yield of 1,3-dCLG up to 93% was obtained. The reaction was scaled up to a production level of 100 g of 1,3-dCLG at a yield of 90.7%, indicating a promising feature of the technology in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号