首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Abstract. Chinese hamster ovary cells in vitro were pulse-labelled with bromodeoxyuridine (BrdUrd and were then allowed to progress through the cell cycle. Every half hour after labelling, cells were harvested and prepared for simultaneous flow cytometric determination of DNA content and incorporated BrdUrd, with the intercalating dye propidium iodide and with a monoclonal antibody against incorporated BrdUrd, respectively. The relative movement (RM), i.e. the relative mean DNA content of the moving cohort of BrdUrd-labelled cells in relation to that of G1 and G2 cells, was calculated. RM was then used to calculate DNA synthesis time (TS), at all post-labelling times (t). Since labelled cells in G2 and mitosis (M) in addition to S phase cells, are included in the cohort of moving labelled cells, and since the time of G2 and M (Tg2+M) phases is finite, a non-linear relationship exists between RM and post-labelling time. Because of this, the use of a linear formula in the calculation of TS yields results that are affected by t. We found that RM data can be corrected with regard to TG2+M resulting in the derivation of a non-linear TS formula. This non-linear TS formula gave results that were nearly independent of t. Moreover, windows were set in the mid DNA distributions for G1, S and G2+ M cells in the bivariate DNA v. BrdUrd cytograms, to estimate the fraction of BrdUrd-labelled cells in each window at every post-labelling time. Plots of the fraction of BrdUrd-labelled cells v. post-labelling time were then made for each window. TS obtained in this way was in agreement with TS obtained with the corrected RM method. In conclusion, we present a method to calculate Ts which theoretically first makes the determination of RM independent of TG2+M, and secondly compensates for the non-linear function of RM with post-labelling time caused by accumulation of BrdUrd-labelled cells in G2+ M.  相似文献   

2.
A method is described for quantitative study of the flux of cells through the cell cycle phases in in vitro systems perturbed by chemicals, such as chemotherapeutic agents. The method utilizes cell count and the flow cytometric technique of bromodeoxyuridine (BrdUrd) labeling, according to an optimized strategy. Cells are exposed to BrdUrd during the last minutes of drug treatment and fixed for analysis at 0, 1/3Ts, 2/3Ts, Ts, and Tc + TG1 recovery times, where Ts, TG1, Tc are the mean durations of phases S and G1 and of the whole cycle of control cells. As an example of application of the proposed procedure, a kinetic study of the effect of 1-(2-chloroethyl)-1-nitrosourea (CNU) on the L1210 cell cycle is described. Simple data analysis, requiring only a pocket calculator, showed that cells in phases G1 and G2M at the end of a 1 h treatment with 1 microgram/ml CNU were fully able to leave these phases but were destined to remain blocked in the following G2M phase (G1 for a minority of them). We also found that cells initially in S phase were slightly delayed in completing their S phase and that 50% of them remained temporarily blocked in the subsequent G2M phase, irrespective of their position in the S phase.  相似文献   

3.
B Kirkhus  O P Clausen 《Cytometry》1990,11(2):253-260
Hairless mice were injected intraperitoneally with bromodeoxyuridine (Brd-Urd). Basal cells were isolated from epidermis, fixed in 70% ethanol, and prepared for bivariate BrdUrd/DNA flow cytometric (FCM) analysis. Optimum detection of incorporated BrdUrd in DNA was obtained by combining pepsin digestion and acid denaturation. The cell loss was reduced to a minimum by using phosphate-buffered saline containing Ca2+ and Mg2+ to neutralize the acid. The percentage of cells in S phase and the average uptake of BrdUrd per labelled cell in eight consecutive windows throughout the S phase were measured after pulse labelling at intervals during a 24 h period. Furthermore, the cell cycle progression of a pulse-labelled cohort of cells was followed up to 96 h after BrdUrd injection. In general the results from both experiments were in good agreement with previous data from 3H-thymidine labelling studies. The percentage of cells in S phase was highest at night and lowest in the afternoon, whereas the average uptake of BrdUrd per labelled cell showed only minor circadian variations. There were no indications that BrdUrd significantly perturbed normal epidermal growth kinetics. A cell cycle time of about 36 h was observed for the labelled cohort. Indications of heterogeneity in traverse through G1 phase were found, and the existence of slowly cycling or temporarily resting cells in G2 phase was confirmed. There was, however, no evidence of a significant population of temporarily resting cells in the S phase. Bivariate DNA/keratin FCM analysis revealed a high purity of basal cells in the suspensions and indicated that the synthesis of the differentiation-keratin K10 was turned on only in G1 phase and after the last division.  相似文献   

4.
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation. The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase, when cells are undergoing dramatic shifts in biochemical activity.  相似文献   

5.
This report describes a mathematical model of cell proliferation for simulation of bivariate DNA/bromodeoxyuridine (BrdUrd) distributions. The model formulates the change with time in the frequency of cells with any DNA content and in the amount of incorporated BrdUrd, according to given cytokinetic parameters, i.e., durations and dispersions of cell cycle phases and DNA synthesis rate during S-phase. We have applied this model to sequential DNA/BrdUrd distributions measured for Chinese hamster ovary cells asynchronously grown in vitro, 1) for 30 min in 10 microM BrdUrd followed by growth in BrdUrd-free medium for 0 to 24 h, or 2) during continuous incubation in 3 microM BrdUrd plus 30 microM thymidine for 2 to 24 h. The matches between the experimental and simulated distributions give the G1, S, G2M, and total cell cycle durations (and coefficients of variation) of 5.6 h (0.08), 7.0 h (0.07), 1.4 h (0.16), and 14.0 h (0.05), respectively. The model is shown to be useful for quantitative interpretation of the bivariate distributions.  相似文献   

6.
The effects of ultraviolet light on cellular DNA replication were evaluated in an asynchronous Chinese hamster ovary cell population. BrdUrd incorporation was measured asa function of cell-cycle position, using an antibody against bromodeoxyuridine (BrdUrd) and dual parameter flow cytometric analysis. After exposure to UV light, there was an immediate reduction ( 50%) of BrdUrd incorporation in S phase cells, with most of the cells of the population being affected to a similar degree. At 5 h after UV, a population of cells with increased BrdUrd appeared as cells that were in G1 phase at the time of irradiation entered S phase with apparently increased rates of DNA synthesis. For 8 h after UV exposure, incorporation of BrdUrd by the original S phase cells remained constant, whereas a significant portion of original G1 cells possessed rates of BrdUrd incorporation surpassing even those of control cells. Maturation rates of DNA synthesized immediately before or after exposure by alkaline elution, were similar. Therefore, DNA synthesis measured in the short pulse by anti-BrdUrd fluorescence after exposure to UV light was representative of genomic replication. Anti-BrdUrd measurements after DNA damage provide quantitative and qualitative information of cellular rates of DNA synthesis especially in instances where perturbation of cell-cycle progression is a dominant feature of the damage. In this study, striking differences of subsequent DNA synthesis rates between cells in G1 or S phase at the time of exposure were revealed.  相似文献   

7.
R A White  N H Terry 《Cytometry》1992,13(5):490-495
A method is presented for analyzing data from bivariate analysis of cell populations exposed to bromodeoxyuridine and subsequently examined both for the presence of BrdUrd and for the cellular DNA content. It is shown that certain features may be defined in the bivariate data which are constant independent both of cell type and, within limits, experimental variability. These landmark features include the ratio of red, DNA, fluorescence of G2 + M cells to G1 cells, the ratio of green fluorescence corresponding to the non-specific binding of unlabeled G2 + M cells to unlabeled G1 cells, and the distribution of green fluorescence in unlabeled cells. The landmarks make it possible to standardize rules for establishing the separation line between-labeled and unlabeled cells as required in these experiments to obtain estimates of cytokinetic parameters. Values obtained for the DNA synthesis time and the potential doubling time which result from different decision rules for distinguishing labeled from unlabeled are compared in two murine tumor lines. The potential doubling time, but not the DNA synthesis time is shown to depend sensitively on the separation line. Suggestions are presented for analyzing clinical data with this procedure.  相似文献   

8.
This report describes a method by which mitotic cells were isolated from nonsynchronized Cloudman melanoma cells that had been pulse labeled with 5-bromo-2'-deoxyuridine (BrdUrd) and double-stained with a fluoresceinated monoclonal antibody to BrdUrd and with propidium iodide (PI). In initial experiments, melanoma cells were first pulse labeled with BrdUrd, treated with prostaglandin E1 (PGE1 10 micrograms/m1) or vehicle (0.1% ethanol) for up to 24 hours, then stained with anti-BrdUrd and PI. PGE1-treated cells monitored at 3-hour intervals were observed to migrate from S phase to G2 phase, then, enigmatically, back into the late S phase region of the distribution. In other experiments, cells treated with PGE1 were pulse labeled with BrdUrd at the end of the treatment period and harvested. In these experiments, there was a small, discrete subpopulation of cells within the late S phase region of the DNA distribution that was negative for anti-BrdUrd. This subpopulation of cells was sorted and examined by light microscopy. We observed that 95% of these BrdUrd-negative "S phase" cells were mitotic cells. Since mitotic cells and G2 cells have equivalent amounts of DNA, the reduced red fluorescence exhibited by these cells may be due to a greater sensitivity to denaturation, which has been described for DNA of mitotic cells, and would account for the phenomenon of cells appearing to move "backwards" in the cell cycle. This report indicates that although the BrdUrd/PI method can further define the cell cycle into four compartments, it can also lead to over-estimation of S phase cells in kinetic studies because of contaminating mitotic cells.  相似文献   

9.
Although sister-chromatid exchange (SCE) analysis is recognized as an indicator of exposure to DNA-damaging agents, the results of these analyses have been confounded by the use of bromodeoxyuridine (BrdUrd) to differentially label the sister chromatids. Not only does BrdUrd itself induce SCE, it also modulates the frequency of SCE induced by certain DNA-damaging agents. In order to examine this effect of BrdUrd on SCE frequency, an indirect method which lends itself to measurements both with and without BrdUrd was employed. Human teratocarcinoma-derived (P3) cells were exposed to ethyl methanesulfonate (EMS) and cultured with increasing concentrations of BrdUrd for lengths of time corresponding to one, two, and three generations of cell growth. At each time point, the distribution of nuclei among the phases of the cell-cycle and cell growth were evaluated for each concentration and chemical. A statistical model was employed which tested both for the main effects of chemicals and culture times and for interactions between these factors. Both EMS and BrdUrd significantly affected the percentages of nuclei within the cell-cycle. Exposure to EMS resulted in decreases in the percentages of nuclei in G0 + G1 and increases in the G2 + M compartment. Exposure to BrdUrd affected the size of the G0 + G1 compartment as well as the percentage of S-phase nuclei. Cell growth was reduced as a consequence of increasing EMS concentration and as a function of BrdUrd concentration; the effects of these chemicals were more readily apparent at the later time points. Most importantly, for both the cell-cycle kinetics data and the cell growth data, no evidence of an interaction between the effects of EMS and the effects of BrdUrd was detected statistically. These results may be interpreted to mean that while both EMS and BrdUrd affect the induction of SCE, under the conditions of this experiment, the effects are additive rather than interactive.Abbreviations: EMS, ethyl methanesulfonate - BrdUrd, bromodeoxyuridine - BrdUTP, bromodeoxyuridine triphosphate - dCTP, deoxycytidine triphosphate - SCE, sister-chromatid exchange - P3, human teratocarcinoma derived - HBSS, Hank's Balanced Salt Solution - HOUR, culture time - REP, replicate  相似文献   

10.
Analysis of the third and fourth cell cycles of mouse early development   总被引:1,自引:0,他引:1  
The third (4-cell) and fourth (8-cell) cell cycles of early mouse development have been analysed in populations of blastomeres synchronized to the preceding cleavage division. DNA content was measured microdensitometrically. The entry of blastomeres into these cell cycles showed considerable heterogeneity both within and between individual embryos. This heterogeneity was greater in the fourth than in the third cell cycle. The component phases of the third cell cycle were estimated as G1 = 1 h, S = 7 h, and G2 + M = 2-5 h, and those of the fourth cell cycle as G1 = 2 h, S = 7 h, and G2 + M = 1-3 h.  相似文献   

11.
The effect of simian virus 40 large T-antigen (Tag) expression on the cell cycle of exponentially growing, established, mouse NIH 3T3 fibroblasts was examined by using a sensitive flow cytometric assay to analyze nonselected cells immediately after infection with a Tag-encoding recombinant retrovirus. Tag expression resulted in reduced percentages of G1-phase cells and increased percentages of S- and G2 + M-phase cells compared with cell populations infected with a control virus not encoding the Tag gene. Cell cycle-blocking drugs were used to examine the exit rate for each of the cell cycle phases, G1, S, and G2 + M, for Tag-expressing and Tag-nonexpressing cells growing in the same cell culture dish. As a result of Tag expression, the duration of the G1 phase was decreased (average G1-phase exit duration decreased by 18%) and the duration of the G2 + M phase was increased (average G2 + M exit duration increased by 29%). The duration of S phase was unaffected by Tag expression.  相似文献   

12.
An immunofluorescent staining procedure has been developed to identify, with flow cytometry, replicating cells of Saccharomyces cerevisiae after incorporation of bromodeoxyuridine (BrdUrd) into the DNA. Incorporation of BrdUrd is made possible by using yeast strains with a cloned thymidine kinase gene from the herpes simplex virus. An exposure time of 4 min to BrdUrd results in detectable labeling of the DNA. The BrdUrd/DNA double staining procedure has been optimized and the flow cytometry measurements yield histograms comparable to data typically obtained for mammalian cells. On the basis of the accurate assessment of cell fractions in individual cell cycle phases of the asynchronously growing cell population, the average duration of the cell cycle phases has been evaluated. For a population doubling time of 100 min it was found that cells spend in average 41 min in the replicating phase and 24 min in the G2+M cell cycle period. Assuming that mother cells immediately reenter the S phase after cell division, daughter cells spend 65 min in the G1 cell cycle phase. Together with the single cell fluorescence parameters, the forward-angle light scattering intensity (FALS) has been determined as an indicator of cell size. Comparing different temporal positions within the cell cycle, the determined FALS distributions show the lowest variability at the beginning of the S phase. The developed procedure in combination with multiparameter flow cytometry should be useful for studying the kinetics and regulation of the budding yeast cell cycle.  相似文献   

13.
The relationship between the basal (spontaneous) motility of murine lymphocytes and their position in the cell cycle was examined in a new collagen gel motility assay system. Concanavalin A-stimulated or control lymphocytes were allowed to locomote into slabs of type I collagen gel. The assay configuration permitted extraction of both total populations and locomotory subpopulations as viable, single-cell suspensions suitable for phenotypic and cell analysis. Concanavalin A stimulation resulted in a significant increase in the mean distance traveled by the leading cell front in 4 hr, from 23 microns (controls) to 67 microns. The estimated percentage of motile cells increased from 0.9 to 2.8%. Similar increases were observed after 18 hr of locomotion. The SIg+, Thy-1+, L3T4+, and Ly-2+ subsets exhibited equivalent increases in motility. Total populations and locomotory subpopulations were allowed to incorporate 5-bromo-2'-deoxyuridine, and their cell cycle profiles were compared by dual parameter anti-5-bromo-2'-deoxyuridine, propidium iodide fluorescence analysis. Total population and locomotory subpopulations did not differ significantly with respect to the ratio G0/G1:S, indicating that lymphocytes in these two phases exhibited approximately equal motility. Cells in late S and G2 + M were significantly less motile; locomotory subpopulations contained 60 to 75% fewer G2 + M cells than the total populations from which they were derived. Taken together, the results indicate that the concanavalin A-induced increase in motility commences before S phase and that motility diminishes shortly before or during G2 + M.  相似文献   

14.
The influence of cell cycling on the density and binding properties of IgG2a Fc receptors and their associated antibody-dependent phagocytic activity was investigated with the P388D1 murine macrophage cell line. Unseparated macrophages and subpopulations of elutriated macrophages, enriched for cells in G1, S, and G2 + M phases were compared to detect possible differences in IgG2a-dependent phagocytosis. Suspensions of G2 + M phase cells were appreciably enhanced in phagocytic activity over G1-phase cells, which were less phagocytic than unseparated macrophage populations. An analysis of the binding of 125I-IgG2a myeloma protein disclosed that the IgG2a Fc receptor avidity remained essentially unchanged during cell cycle traverse, whereas the number of IgG2a Fc receptors more than doubled as cells cycled from G1 to G2 + M (1.5 X 10(5) vs 3.4 X 10(5) receptors per cell). With their increased size relative to G1 cells, and the resultant increase in receptor number, G2 phase cells should have more productive collisions with the antibody-coated target cells and greater phagocytic capacity.  相似文献   

15.
B N Nayak 《Mutation research》1985,143(1-2):45-49
The baseline sister-chromatid exchanges (SCEs) and the percentage of first (M1), second (M2) and third or higher metaphase (M3+) chromosomes were analysed in bone-marrow cells of male and female C57BL/6 mice and Chinese hamsters following serial intraperitoneal injections of 40 micrograms/g body weight (b.w.) of 5-bromo-2'-deoxyuridine (BrdUrd) and 2 micrograms/g b.w. of 5-fluorodeoxyuridine (FdUrd) or 40 micrograms/g b.w. of BrdUrd and 10 micrograms/g b.w. of deoxycytidine (dC). Female animals receiving BrdUrd/FdUrd showed significantly higher (P less than 0.01) baseline SCEs compared to the other groups. No sex difference in the baseline SCEs was found in animals treated with BrdUrd/dC. The distribution patterns of M1, M2 and M3+ metaphases in BrdUrd/FdUrd-treated animals differ significantly from those in BrdUrd/dC-treated animals.  相似文献   

16.
A simple method with which to determine the cell cycle parameters, TG1, TS and TG2M (the durations of the G1, S and G2 + M phases) is described. V79 Chinese hamster lung cells were used to evaluate the method. After continuous labeling with bromodeoxyuridine (BrdU), V79 cells were stained with anti BrdU-monoclonal antibody with FITC (fluorescein isothiocyanate) and with PI (propidium iodide). The individual cells were checked by flow cytometry for green and red fluorescences whose signal intensities corresponded to the BrdU and cellular DNA contents. The durations of G1, S and G2 + M phases of V79 cells were determined by measuring the cell fractions containing the nonlabeled G1, labeled S and nonlabeled G2 + M phases. The reliability of this method is discussed.  相似文献   

17.
Pierrez  José  Ronot  Xavier 《Acta biotheoretica》1992,40(2-3):131-137
Estimation of the repartition of asynchronous cells in the cell cycle can be explained by two hypotheses: the cells are supposed to be distributed into three groups: cells with a 2c DNA content (G0/1 phase), cells with a 4c DNA content (G2 + M phase) and cells with a DNA content ranging from 2c to 4c (S phase); there is a linear relationship between the amount of fluorescence emitted by the fluorescent probe which reveals the DNA and the DNA content. According to these hypotheses, the cell cycle can be represented by the following equation: [formula: see text] All the solutions for this equation are approximations. Non parametric methods (or graphical methods: rectangle, peak reflect) only use one or two phase(s) of the cell cycle, the remaining phase(s) being estimated by exclusion. In parametric methods (Dean & Jett, Baisch II, Fried), the DNAT(x) distribution is supposed to be known and is composed of two gaussians (representative of G0/1 and G2 + M) and a P(x,y) function representative of S phase. Despite the generality, these models are not applicable to all sample types, particularly heterogeneous cell populations with various DNA content. In addition, the cell cycle is dependent on several regulation points (transition from quiescence to proliferation, DNA synthesis initiation, mitosis induction) and biological perturbations can also lead to cytokinesis perturbations. Before the emergence of flow cytometry, the current view of cell cycle resided in the assessment of cell proliferation (increase in cell number) or the kinetic of molecules incorporation (DNA precursors).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In laser based flow cytometers, UV excitation of Hoechst 33258 and propidium iodide (PI) or ethidium bromide (EB) is performed with 351/364 nm high power lines of UV-capable argon ion lasers, which are expensive and short-lived. In this paper we note for the first time that helium-cadmium lasers emitting 10 to 30 mW at 325 nm are even more superior for cell kinetic bivariate bromodeoxyuridine (BrdUrd)/Hoechst PI or EB cell cycle analysis. HeCd single laser UV excitation gives comparable CVs for cell cycle distributions, and almost normal G2M/G1 ratios of 1.9 to 2.0 for all cell cycles. This is shown for synchronous and asynchronous cell populations on a FACStar+ and an Ortho Cytofluorograf. Therefore we recommend helium-cadmium lasers as low-power, cheap, and long-lived UV excitation sources for the cytochemically simple but high resolution multiparameter BrdUrd-Hoechst cell kinetic analysis.  相似文献   

19.
Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G(2)/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G(1), S, and G(2) cells were treated with photoactivated 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G(2) did not result in a G(2)/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G(1) did not cause a G(1)/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to approximately 2,500 ICLs/genome at an average rate of 11 ICLs/genome/h.  相似文献   

20.
L-cells synchronized by mitotic selection were investigated by flow-cytometry and the fractions of cells in the various cell cycle compartments were determined as a function of time. A new analytical evaluation procedure was developed, by which the mean transit-times of cells through various cell cycle phases can be calculated from these data. Three examples for application of the method are presented: (1) determination of the duration of G1, S, G2 + M and of the whole cell cycle; (2) calculation of the rate of DNA synthesis in several subcompartments of the S-phase; and (3) evaluation of the degree of synchronization at different stages of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号