首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
Slit scanning flow cytometry has been applied to the analysis of the cell cycle and cell-cycle-dependent events in Saccharomyces cerevisiae, yielding information on the low-resolution spatial distribution of cellular components in single cells of unperturbed cell populations. Because this process is rapid, large numbers of cells can be analyzed to give distributions of parameters in a given population. To study asymmetric cell division and cell cycle progression, forward-angle light scattering (FALS) signals together with fluorescence signals from acriflavine-stained nuclei have been measured in cells from exponentially growing yeast populations. An algorithm has been developed that assigns the position of the bud neck in the FALS signals so that both FALS and DNA signals can be analyzed in terms of the contributions from the mother cell and the cell bud. The data indicate that mother cell FALS, on average, remains constant while FALS due to the cell bud increases as a cell progresses through the cell cycle. By identifying mitotic cells and measuring their properties, we have found that the coefficient of variation for the distribution of FALS is smallest within the dividing cell population and largest within the newborn cell population, in accordance with the critical size control mechanism of yeast cell growth. The use of this experimental approach to provide data for statistical population models is discussed.  相似文献   

2.
Summary Chinese hamster ovary cells were synchronized into purified populations of viable G1-, S-, G2-, and M-phase cells by a combination of methods, including growth arrest, aphidicolin block, cell cycle progression, mitotic shake-off, and centrifugal elutriation. The DNA content and bromodeoxyuridine (BrdUrd) labeling index were measured in each purified fraction by dual-parameter flow cytometry. The cell cycle distributions determined from the DNA measurements alone (single parameter) were compared with those calculated from both DNA and BrdUrd data (dual parameter). The results show that highly purified cells can be obtained using these methods, but the assessed purity depends on the method of cell cycle analysis. Using the single versus dual parameter measurement to determine cell cycle distributions gave similar results for most phases of the cell cycle, except for cells near the transition from G1- to S-phase and S- to G2-phase. There the BrdUrd labeling index determined by flow cytometry was more sensitive for detecting small amounts of DNA synthesis. As an alternative to flow cytometry, a simple method of measuring BrdUrd labeling index on cell smears was used and gave the same result as flow cytometry. Measuring both DNA content and DNA synthesis improves characterization of synchronized cell populations, especially at the transitions in and out of S-phase, when cells are undergoing dramatic shifts in biochemical activity.  相似文献   

3.
An estimation of cell kinetic parameters was made by simultaneous flow cytometric measurements of DNA and bromodeoxyuridine (BrdUrd) contents of cells. The procedure described in this paper involves the incorporation of BrdUrd by S phase cells, labeling the BrdUrd with an indirect immunofluorescent technique using a monoclonal anti-BrdUrd antibody, and staining DNA with propidium iodide (PI). The amount of incorporated BrdUrd in HeLa cells was proportional to that of synthesized DNA through S phase. For all cell lines examined, the pattern of BrdUrd incorporation was essentially the same and the rate of DNA synthesis during S phase was not constant. The bivariate BrdUrd/DNA distributions showed a horse-shoe pattern, maximum in the mid S phase and minimum in the early and late S phases. Furthermore, the durations of cell cycle (Tc) and S phase (Ts) were estimated from a FLSm (fraction of labeled cells in mid S phase) curve that was generated by plotting the percentage of BrdUrd pulse-labeled cells in a narrow window defined in the mid S phase of the DNA histogram. The values of these parameters in NIH 3T3, HeLa S3, and HL-60 cells were in good accordance with the reported data. This FCM method using the monoclonal anti-BrdUrd antibody allows rapid determination of both cell cycle compartments and also Ts and Tc without the use of radioactive DNA precursors.  相似文献   

4.
The incorporation of bromodeoxyuridine (BrdUrd) into newly synthesized DNA has been analysed during hepatocellular regeneration induced by partial hepatectomy in young rats. The kinetic state of the liver has been studied by flow cytometric analysis of the incorporated BrdUrd, while the fine localization of DNA replication sites through the cell cycle has been investigated at the ultrastructural level by the immunogold technique. Eighteen hours after partial hepatectomy flow cytometry revealed an early S phase distribution which corresponded to a specific staining of the interchromatin domains of the hepatocyte nucleus. Thirty-four hours after hepatectomy, on the other hand, when most cells were in late S, a specific staining of heterochromatin domains was observed. The effect of the BrdUrd technique on nuclear aggregation has also been analysed and discussed. The results demonstrate that specific patterns of DNA replication can be recognized during the cell cycle and that flow cytometry and electron microscopy appear to be complementary in the kinetic study of liver regeneration.  相似文献   

5.
Use of flow cytometry in the measurement of cell mitotic cycle   总被引:1,自引:0,他引:1  
Variations in many cellular characteristics during the cell cycle can be analyzed simply and directly by flow cytometry. Using multiparameter analysis of DNA content, RNA content, cell size and 5-bromodeoxyuridine (BrdUrd) incorporation, it is now possible to define cells' positions in the cell cycle with a precision previously unimaginable. It is also possible, by using the sorting function of the flow cytometer, to separate populations in different phases of the cell cycle for biological and biochemical studies. This review describes the technical aspects of flow cytometric instrumentation, DNA staining procedures, and the cytometric applications of both in cell cycle analysis including some of the more innovative, new approaches with antibody against BrdUrd.  相似文献   

6.
A method for the simultaneous measurement of cell surface components and nucleic acids (DNA and RNA) of human lymphocytes by flow cytometry has been developed, thereby providing a means of analyzing cell surface changes during the various phases of the cell cycle. Unfixed cells were coated with fluorescein-conjugated concanavalin A (F Con A) or surface antigen-specific antibody, fixed sequentially with paraformaldehyde and methanol, treated with specific nucleases, and then stained with propidium iodide. Neither portion of the procedure (cell surface staining, nucleic acid staining) interfered significantly with the other. Cell cycle phases of phytohemagglutinin-stimulated human lymphocytes as determined by this method were comparable with those identified by acridine orange staining. Cell cycle-specific blocking agents were used to additionally demonstrate the specificity of the staining procedure. Simultaneous measurement of cell cycle phase and detection of surface receptors for Con A and T lymphocyte surface determinants was performed with this method.  相似文献   

7.
EUE cells adapted to grow for long times in a hypertonic medium have a longer cell cycle than those growing in isotonic medium. To elucidate whether this lengthening involves specific cycle phases to differing extents, the expression of two cycle-related protein, PCNA and statin, was studied by dual parameter flow cytometry of indirect immunofluorescence protein labelling and DNA content. In isotonic medium, most cells, in all the cycle phases, were PCNA positive; in contrast, PCNA negative cells and statin positive cells were very few in number and only fell in the G0/1 range of DNA contents. In hypertonic medium, the frequency of PCNA positive cells was lower, and that of statin positive cells higher, than in isotonic medium, particularly in the G0/1 range of DNA contents: this suggests that a G0 block occurs under long-term hypertonic stress. Consistently, dual parameter flow cytometric measurement of BrdUrd immunofluorescence labelling and DNA content showed that fewer cells entered S phase in hypertonic medium and their progression through the S phase was slower; evidence was also found for the occurrence of a G2 block. These kinetics changes were fully reversible in isotonic medium, thus indicating the adaptive nature of the EUE response to hypertonicity.  相似文献   

8.
A multiparametric analysis of the effects of human recombinant interferon alpha type A on Daudi cells involving flow cytometry and in vitro analysis of alpha and beta DNA polymerase activities has been performed. Results have disclosed (within 60 min of interferon treatment) a decrease of alpha polymerase driven DNA synthesis persisting to at least 24 h, while beta polymerase was poorly affected. Moreover, after 24 h of interferon treatment, a reduction of BrdUrd incorporation per cell, assessed by flow cytometry, was observed suggesting that DNA synthesis in S phase cells is almost completely abolished. The analysis of the effect of interferon on the distribution of cell cycle phases indicated that the G1/S transition is not inhibited by the treatment. These results support the hypothesis that interferon generates a transient initiating signal which quickly reaches the nucleus and produces a rapid inhibition of alpha polymerase activity, leading finally to the slowing of cell cycle progression.  相似文献   

9.
A method is described for quantitative study of the flux of cells through the cell cycle phases in in vitro systems perturbed by chemicals, such as chemotherapeutic agents. The method utilizes cell count and the flow cytometric technique of bromodeoxyuridine (BrdUrd) labeling, according to an optimized strategy. Cells are exposed to BrdUrd during the last minutes of drug treatment and fixed for analysis at 0, 1/3Ts, 2/3Ts, Ts, and Tc + TG1 recovery times, where Ts, TG1, Tc are the mean durations of phases S and G1 and of the whole cycle of control cells. As an example of application of the proposed procedure, a kinetic study of the effect of 1-(2-chloroethyl)-1-nitrosourea (CNU) on the L1210 cell cycle is described. Simple data analysis, requiring only a pocket calculator, showed that cells in phases G1 and G2M at the end of a 1 h treatment with 1 microgram/ml CNU were fully able to leave these phases but were destined to remain blocked in the following G2M phase (G1 for a minority of them). We also found that cells initially in S phase were slightly delayed in completing their S phase and that 50% of them remained temporarily blocked in the subsequent G2M phase, irrespective of their position in the S phase.  相似文献   

10.
Nuclear protein and DNA content of HeLa cells was determined as a function of time following hyperthermia by staining isolated nuclei with two fluorescent dyes: fluorescein isothiocyanate (FITC) for protein content and propidium iodide (PI) for DNA content. Bivariate FITC and PI histograms were obtained by flow cytometry. Univariate flow cytometric analysis was shown to be inadequate for this study, because some of the nuclear protein changes were due to cell cycle redistribution. Posthyperthermia cell kinetics could be divided into two distinct phases: an early phase characterized by the removal of heat-induced excess nuclear proteins with little or no cell progression through the cell cycle; and a late phase characterized by a redistribution of cells in the cell cycle resulting in an accumulation of cells in G2. The duration of these phases was dependent upon the hyperthermia dose. In the early phase, the rate of removal of excess nuclear protein was found to vary with heating time and temperature for time-temperature combinations which resulted in the same amount of excess nuclear protein. In the late phase, the cells blocked in G2 did not reduce their nuclear protein levels back to control values.  相似文献   

11.
The effect of tulipin, a protein from plant origin recently purified, on cell cycle progression has been analyzed in the sensitive EUE cells by BrdUrd incorporation. The cytofluorimetric results demonstrate that tulipin specifically interacts with the S phase, with a dose-dependent decrease of the total S phase cells and an increase of the G1/G2 cells after 4 h of treatment in the synchronized EUE cells, whereas in the asynchronous population it mainly causes a dose-dependent decrease in the incorporation of BrdUrd per cell.  相似文献   

12.
C Wiezorek 《Histochemistry》1984,81(5):493-495
The effect of staining cellular DNA with the bisbenzimidazole dye Hoechst 33342 on the colony forming efficiency of Chinese Hamster Ovary Cells in different cell cycle phases has been studied. Exposures of 90 and 120 min to 5 microM Hoechst 33342 provided a considerable loss of clonogenicity depending on the cycle phase at staining procedure. The G2+M cells reveal to be the most sensitive fraction followed by the G1 cells. The highest resistance was found on S-phase cells with a colony forming efficiency exceeding that of the G2+M fraction by a factor of two.  相似文献   

13.
Abstract. Different sets of cell kinetic data obtained over many years from hairless mouse epidermis have been simulated by a mathematical model including circadian variations. Simulating several independent sets of data with the same mathematical model strengthens the validity of the results obtained. The data simulated in this investigation were all obtained with the experimental system in a state of natural synchrony. The data include cell cycle phase distributions measured by DNA flow cytometry of isolated epidermal basal cells, fractions of tritiated thymidine ([3H]TdR) labelled cells within the cell cycle phases measured by cell sorting at intervals after [3H]TdR pulse labelling, bivariate bromodeoxyuridine (BrdUrd)/DNA data from epidermal basal cells isolated at intervals after pulse labelling with BrdUrd, mitotic rate and per cent labelled mitosis (PLM) data from histologic sections. The following main new findings were made from the simulations: the second PLM peak observed at about 35 h after pulse labelling is hardly influenced by circadian variations; the peak is mainly determined by persisting synchrony of a rapidly cycling population with a G1-duration (TG1) of 20 h to 30 h; and there is a highly significant population of slowly cycling G1-cells (G). However, no significant circadian variations were found in the number of these cells.  相似文献   

14.
Techniques for the measurement of bromodeoxyuridine (BrdUrd) positive cells generally include either microscopic evaluation of paraffin embedded sections or measurements on cell suspensions using a fluorescent activated cell sorter. The accuracy of these measurements and their correlations can be affected by a number of technical and intrinsic tumor factors. Extrinsic parameters including degree of necrosis and tumor growth fraction are less easily analyzed in BrdUrd stained material. Retinoblastoma tumor cell cycling was prospectively studied in 11 children using in vivo and one child using in vitro BrdUrd. BrdUrd measurements were made by staining cell suspensions or sections of paraffin embedded tumor and analyzing by microscopy. Approximately 14% of viable cells were in the synthesis-phase of the cell cycle. The correlation between BrdUrd in cell suspensions and BrdUrd in paraffin embedded sections did not reach significance (r = 0.48). DNA analysis of these tumors was also performed using flow cytometry. Nine tumors were found to have a normal diploid DNA content, one had a G1 peak below the diploid control, two had a G1 peak above the diploid control, and one had two G1 peaks (a diploid and a hyperdiploid peak). There was no correlation between abnormal DNA content and the percent of cells in synthesis.  相似文献   

15.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

16.
Mimosine reversibly arrests cell cycle progression at the G1-S phase border   总被引:7,自引:0,他引:7  
It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis. It is demonstrated here that mimosine arrests cell cycle progression at the G1-S phase border. The onset of DNA replication occurs within 15 min of releasing the cells from the mimosine block. In contrast, treatment with aphidicolin results in the accumulation of cells in early S phase. These results indicate that mimosine is a suitable compound for affecting the synchronous release of cells from G1 into S phase and for analyzing the biochemical events associated with this cell cycle phase transition.  相似文献   

17.
The aim of this study was to assess by flow cytometry the cell cycle of brown bear fibroblast cells cultured under different growth conditions. Skin biopsies were taken in Cantabria (Spain) from a live, anaesthetized brown bear. DNA analysis was performed by flow cytometry following cell DNA staining with propidium iodide. Serum starvation increased (P<0.01) the percentage of G0/G1 phase cells (92.7+/-0.86) as compared to cycling cells (39.7+/-0.86) or cells cultured to confluency (87.3+/-0.86). DMSO included for 48h in the culture significantly increased (P<0.01) the percentage of G0/G1 phase of the cell cycle at all concentrations used and decreased percentages of S phase in a dose-dependent fashion. Roscovitine increased the G0/G1 phase of the cell cycle (P<0.01) at 15microM concentration. Interestingly, the G2/M stage significantly increased at 30 and 50microM compared to the control and 15microM (P<0.02). The cell cycle of brown bear adult fibroblast cells can be successfully synchronized under a variety of culture conditions.  相似文献   

18.
BACKGROUND:The detection of DNA-incorporated bromodeoxyuridine (BrdUrd) in mammalian cells is a well-known and important technique to study cell cycle. The use of TO-PRO-3 for detection of BrdUrd substitution of DNA by dual-laser flow cytometry has been investigated. METHODS:Fluorescence enhancement of TO-PRO-3 in BrdUrd-labeled cells is registered in combination with the fluorescence emission of the intercalating dye propidium iodide (PI) as a total DNA stain to give bivariate DNA/BrdUrd histograms. By the low concentration of only 0.3 mircoM TO-PRO-3, BrdUrd detection is optimized, and undisturbed total DNA content by PI can be detected as well. TO-PRO-3 is excited by a red HeNe laser and PI by an argon ion laser. RESULTS:In order to understand the binding of TO-PRO-3, energy transfer from PI to TO-PRO-3 has been measured as well as the influence of an external DNA binding dye such as Hoechst 33258 with Adenine-Thymine (AT) binding specificity. Cell cycle studies of human SCL-2 keratinocytes and mouse 3T3 cells prove the method to be as generally applicable as the classical BrdUrd/Hoechst quenching technique, but without need for expensive ultraviolet laser excitation. No BrdUrd sensitivity could be found for the similar dyes TO-PRO-1 and YO-PRO-3, whereas TO-PRO-5 and YOYO-3 showed only very little sensitivity to BrdUrd labeling as compared with TO-PRO-3. CONCLUSIONS:Cell cycle studies of mammalian cells can be done by dual-laser flow cytometry without the need for ultraviolet lasers by using the BrdUrd-dependent fluorescence enhancement of TO-PRO-3. Total DNA content can be measured simultaneously using PI.  相似文献   

19.
M G Ormerod  M Kubbies 《Cytometry》1992,13(7):678-685
Continuous labelling of cells with deoxybromouridine (BrdUrd) followed by staining with a bis-benzimidazole (Hoechst 33258) and a phenanthridinium (propidium iodide or ethidium bromide) allows the cells to be separated by flow cytometry according to the extent of their DNA replication. This BrdUrd-Hoechst/PI method has been used mainly to observe perturbations of the cell cycle in synchronously growing cells. In this paper we demonstrate that, when the method is applied to asynchronously dividing cells, more extensive information can be derived about the effects of cytotoxic and other treatments on the kinetics of the cell cycle. The interpretation of the data is explained, the effects of different types of cytotoxic agent are described, and the method is compared briefly to other methods for following cell cycle kinetics.  相似文献   

20.
A method is described which allows estimation of the lengths of the cell cycle phases of Saccharomyces cerevisiae from asynchronous culture data. It is based upon a DNA labelling and nuclear staining procedure which is related to known features of yeast physiology. Estimates obtained indicate that the lengths of the periods of DNA synthesis (S phase) and mitosis (M phase) are relatively independent of the carbon source on which the culture was grown, whilst the lengths of the G1 and G2 phases show considerable variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号