首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The objective of the present study was to evaluate the superovulatory response and ova/embryo recovery from Nelore donors following treatment with a controlled internal drug releasing device and estradiol benzoate (CIDR-B program) at different stages of the estrous cycle. The control group (TI; n=40) received a standard superovulation protocol with females of this group being between days 9 and 12 of the estrous cycle (estrus = day 0). The donors that received a CIDR-B program containing 1.9 g progesterone and an intramuscular injection of estradiol benzoate (2 mg) were at day 0 (TII; n=30), between days 2 and 6 (TIII; n=30), days 7 and 12 (TIV; n=30), days 13 and 16 (TV; n=30) and days 17 and 20 (TVI; n=30) of the estrous cycle. Superovulation was induced with 400 IU of p-FSH, divided into eight decreasing doses (80/80; 60/60; 40/40; 20/20) at intervals of 12h. The donors received PGF2alpha (Cloprostenol) 48 h after beginning the treatment and CIDRs were removed 12h later. Artificial inseminations (AI) were performed 12 and 22 h after the initiation of estrus and embryos were collected 7 days after AI. The mean numbers (+/-S.E.M.) of total ova and embryos, viable (transferable) and degenerated embryos were 14.2+/-11.3, 7.4+/-6.9 and 3.2+/-3.5 (TI), 13.3+/-10.4, 7.1+/-6.2 and 3.3+/-4.3 (TII), 13.5+/-7.0, 8.1+/-6.7 and 2.3+/-3.0 (TIII), 17.4+/-9.9, 9.4+/-6.9 and 4.0+/-4.4 (TIV), 16.9+/-8.8, 9.8+/-8.1 and 2.7+/-2.5 (TV) and 13.0+/-7.8, 7.2+/-6.9 and 2.3+/-2.5 (TVI), with no significant differences (P>/=0.05) among groups. Pregnancy rates of 67.1% (TI; n=86/128), 60.8% (TII; n=59/97), 62.5% (TIII; n=73/115), 64.1% (TIV; n=84/131), 72.3% (TV; n=81/112) and 60.6% (TVI; n=63/104) were obtained with embryos transferred from these collections and did not differ significantly (P>/=0.05) among groups. The results of the present study allow us to conclude that a combination of steroid hormones may be used prior to superovulation in Nelore donors, at any stage of the estrous cycle without affecting the efficiency of embryo transfer programs.  相似文献   

2.
The aim of this study was to determine the efficiency of a porcine pituitary gonadotrophin extract with a defined pLH content in the superovulation of sheep. Estrus was synchronized in 61 Polish Mountain ewes with intravaginal fluorogestone acetate sponges. Twenty-four hours before the sponges were removed, the ewes underwent different superovulatory treatments: Group I 250 IU of pFSH with 250 IU of pLH (n=19); Group II 500 IU of pFSH with 500 IU of pLH (n=19); and Group III 750 IU of pFSH and 750 IU of pLH (n=18). Gonadotrophine was administered intramuscularly twice a day over a 3-day period in decreasing dosages. A control group of ewes (n=5) was treated with saline. In most of the ewes estrus began about 20 hours after sponges were removed. All the ewes were bred naturally every 12 hours. Superovulation was confirmed in 75% of the treated animals. The ewes receiving 250 IU each of pFSH and pLH produced an average of 7.6 +/- 3.1 corpora lutea (CL), 6.3 +/- 2.4 ova and 4.3 +/- 4.1 transferable embryos. Group II (500 IU of pFSH and pLH) produced 8.5 +/- 4.0 CL, 7.6 +/- 4.1 ova, and 4.1 +/- 2.9 transferable embryos. Group III (750 IU each of pFSH and pLH) produced 8.3 +/- 5.2 CL, 7.5 +/- 5.5 ova and 5.2 +/- 5.1 transferable embryos. The mean embryo recovery rate was 87% for all three groups. Differences in superovulatory response and embryo recovery rate among the groups were not statistically significant (P>0.05).  相似文献   

3.
The objective was to analyze and report field data focusing on the effect of type of progesterone-releasing vaginal insert and dose of pLH on embryo production, following a superstimulatory protocol involving fixed-time artificial insemination (FTAI) in Nelore cattle (Bos taurus indicus). Donor heifers and cows (n = 68; 136 superstimulations over 2 years) received an intravaginal, progesterone-releasing insert (CIDR or DIB, with 1.9 or 1.0 g progesterone, respectively) and 3-4 mg of estradiol benzoate (EB) i.m. at random stages of the estrous cycle. Five days later (designated Day 0), cattle were superstimulated with a total of 120-200 mg of pFSH (Folltropin-V), given twice daily in decreasing doses from Days 0 to 3. All cattle received two luteolytic doses of PGF2alpha at 08:00 and 20:00 h on Day 2 and progesterone inserts were removed at 20:00 h on Day 3 (36 h after the first PGF2alpha injection). Ovulation was induced with pLH (Lutropin-V, 12.5 or 25 mg, i.m.) at 08:00 h on Day 4 with FTAI 12, 24 and in several cases, 36 h later. Embryos were recovered on Days 11 or 12, graded and transferred to synchronous recipients. Overall, the mean (+/-S.E.M.) number of total ova/embryos (13.3 +/- 0.8) and viable embryos (9.4 +/- 0.6) and pregnancy rate (43.5%; 528/1213) did not differ among groups, but embryo viability rate (overall, 70.8%) was higher in donors with a DIB (72.3%) than a CIDR (68.3%, P = 0.007). In conclusion, the administration of pLH 12 h after progesterone removal in a progestin-based superstimulatory protocol facilitated fixed-time AI in Nelore donors, with embryo production, embryo viability and pregnancy rates after embryo transfer, comparable to published results where estrus detection and AI was done. Results suggested a possible alternative, which would eliminate the need for estrus detection in donors.  相似文献   

4.
Objective of the present study was to investigate the effect of season and dose of FSH on superovulatory responses in Iranian Bos indicus beef cattle (Sistani). Cyclic cows, in summer (n=16) and winter (n=16), were assigned randomly to three dose-treatment groups of 120 (n=10), 160 (n=12) and 200 (n=10) total mg of Folltropin-V with injections given twice daily for 4 days in decreasing doses. Estrous cycles were synchronized with two prostaglandin F2alpha injections given 14 days apart. From day 5 after the ensuing cycle, daily ovarian ultrasonography was conducted to determine emergence of the second follicular wave at which time superovulation was initiated. Relative humidity, environmental and rectal temperatures were measured at 08:00, 14:00 and 20:00 h for the 3 days before and 2 days after the estrus of superovulation. Non-surgical embryo recovery was performed on day 7 after estrus. The effects of season, dose, time of estrous expression and all two-way interactions were evaluated on superovulatory responses: total numbers of CL, unovulated follicles (10 mm), ova/embryo, transferable and non-transferable embryos. Season (summer or winter), doses of Folltropin-V (120, 160 or 200 mg NIH) and time of estrous expression (08:00, 14:00 or 20:00 h) did not affect the number of transferable embryos (3.1+/-0.58). When superovulatory estrus was detected at 08:00, a FSH dose effect was detected with the greatest numbers of CL (12.2+/-0.87) and total ova/embryos (12.2+/-1.46) occurring with 200 mg FSH (dosextime of estrous expression; P<0.01).  相似文献   

5.
Pregnancy rates were compared between fertile and infertile donors in an embryo transfer program. Non-surgical embryo transfer techniques were utilized for examination of uterine contents and collection of ova. Recovered embryos were transferred surgically into suitable recipients. Three groups of donors were included in this investigation: a) fertile; b) infertile, due to known causes (diagnosed); c) infertile, due to unknown causes (undiagnosed). There were 11.3, 6.6 and 8.0 corpora lutea; 6.8, 1.2 and 1.0 fertilized ova; 3.6, 0.8 and 0.4 pregnancies per superovulation for the fertile, diagnosed and undiagnosed groups, respectively. In 23 months, unsuperovulated, fertile, diagnosed and undiagnosed donors yielded 17, 15 and 9 fertilized ova which resulted in 15, 13, and 3 pregnancies, respectively. Donors treated for uterine infections, adhesions or cystic ovaries prior to superovulation responded with 10.1, 7.6 and 4.1 corpora lutea; 1.9, 4.0 and 0.3 fertilized ova; 1.1, 3.3 and 0.2 pregnancies per superovulation, respectively. Relatively few viable embryos were recovered from donors with chronic cystic ovaries or from infertile cows of unknown etiology. Infertile donors, when compared to fertile donors, were unproductive when used for embryo transfer.  相似文献   

6.
Forty superovulated dairy ewes of the Greek Chios breed were used in an experiment to evaluate the efficiency of laparoscopic intrauterine insemination on fertilization and embryo recovery rates as well as embryo quality. Estrus was synchronized by intravaginal progestagen impregnated sponges and superovulation was induced by administration of 8.8 mg o-FSH i.m. following a standard 8 dose protocol. A small volume (0.3 mL) of diluted fresh ram semen was deposited in each uterine horn 24 to 28 h after onset of the estrus by a laparoscopic technique. The animals were allocated randomly into two groups (Group A and B) of 20 animals each. In Group A, embryos were recovered 18 to 24 h after the intrauterine insemination and in Group B on Day 6. The average number of corpora lutea was 12.8 +/- 1.2 and 11.5 +/- 1.1 (+/- SEM); the overall embryo recovery was 66.4% and 57% and the percentage of recovered fertilized ova was 81% and 82.8% in Groups A and B, respectively. More fertilized ova were collected per ewe from Group A (P < or = 0.1). Results indicated that in Chios breed, superovulation using homologous FSH combined with laparoscopic AI leads to good ovarian response with satisfactory results in fertilization, embryo recovery and quality of embryos. This could lead to improved and more efficient methods for obtaining large numbers of high quality oocytes and embryos for embryo transfer programs which could contribute to genetic improvement and increase of the population size.  相似文献   

7.
Previous studies indicated that the use of bovine somatotropin (bST) in concurrence with a timed artificial insemination (TAI) protocol increased pregnancy rates. However, the mechanisms for such a bST effect on fertility were not clear. Objectives of this study were to determine the effects of bST on fertilization and early embryonic development after cows received a superovulation treatment, test whether embryos recovered from bST-treated cows were more likely to survive after transfer to recipients, and evaluate whether treatment of recipient cows with bST affects pregnancy rates. Lactating (n = 8) and nonlactating (n = 4) Holstein donor cows were superovulated, inseminated at detected estrus and assigned to a nontreated control group or to a treatment group receiving a single injection of bST (500 mg, sc) at insemination. Embryos were nonsurgically flushed 7 days after AI and frozen in ethylene glycol for direct transfer. Embryos derived from bST-treated (bST-embryos) or control (control-embryos) donors were transferred to lactating Holstein recipient cows that received either bST treatment 1 day after estrus (500 mg, sc; bST-recipients) or were untreated controls (control-recipients). Thus, there were four treatment groups: control-embryos/control-recipients (n = 43), bST-embryos/control-recipients (n = 41), control-embryos/bST-recipients (n = 37), and bST-embryos/bST-recipients (n = 60). Pregnancy was determined by palpation per rectum 33-43 days after embryo transfer. Unfertilized ova per flush was less for bST than for control (1.0 +/- 0.9 < 3.7 +/- 0.9; P < 0.04). Percentage of transferable embryos was greater for bST than for control (77.2% > 56.4%; P < 0.01). Number of blastocysts per flush was greater for bST than for control (2.4 +/- 0.7 > 0.4 +/- 0.7; P < 0.04). Pregnancy rates following embryo transfer were 25.6% for control-recipient/control-embryo, 43.2% for bST-recipient/control-embryo, 56.1% for control-recipient/bST-embryo, and 43.3% for bST-recipient/bST-embryo. Transfer of bST-embryos increased pregnancy rates compared with transfer of control-embryos (P < 0.04). An interaction between embryo and recipient treatments (P < 0.05) indicated that treatment of recipient cows with bST increased pregnancy rates as compared to control-recipients that received a control-embryo. However, there was no additive effect when bST-recipients received a bST-embryo. Administration of bST at AI decreased the number of unfertilized ova, increased the percentage of transferable embryos, and stimulated embryonic development to the blastocyst stage. Moreover, bST affected both early embryonic development and recipient components to increase pregnancy rates following embryo transfer.  相似文献   

8.
Superovulation and embryo recovery from peripubertal Holstein heifers   总被引:1,自引:0,他引:1  
The use of peripubertal donors in embryo transfer (ET) programs presents significant opportunity to accelerate genetic gain in domestic livestock by reducing the generation interval. These studies were designed to evaluate feasibility of superovulation and embryo recovery in peripubertal heifers (starting at 7.8 months of age), and to determine whether subsequent reproductive and lactational performance of donor heifers were impaired. Study 1 utilized 10 pairs of contemporary full-sibling heifers in which one heifer in each pair was assigned to receive a superovulation regimen and her full-sibling contemporary received placebo. Treated heifers were artificially inseminated at estrus and embryos were flushed transcervically 4-6 days later. Based on recovery of oocytes and/or embryos, 9 of 10 heifers responded to the hormonal regimen and 12 total embryos were recovered. Seven embryos (58%) were transferred into recipients resulting in five pregnancies. Control and treated heifers remained in the herd and were bred at a natural estrus by AI at 15 months of age. Lactation records, i.e., 305 days mature equivalent (305 d ME) were obtained, and all animals were evaluated for udder conformation traits between 32 and 38 months of age. Reproductive traits (age at first calving and days to conception) and lactational traits of heifers subjected to embryo transfer and their non-treated full-siblings did not differ (P > 0.05). Study 2 was conducted to establish the commercial feasibility of hormonally programming peripubertal heifers ranging in age from 7.8 to 9.9; 10 to 11.9; 12 to 13.9 and >/= 14 months. In total, 3982 embryos were recovered from 520 heifers, with 2419 (60.7%) of those categorized as viable (transferable). The number of ova/embryos obtained per flush (5.6 +/- 1.0) and the number of transferable embryos (2.8 +/- 0.5) was reduced (P < 0.05) in heifers of age 7.8-9.9 months compared to all other age groups. There was no difference (P > 0.05) in the number of ova/embryos recovered (7.8 +/- 0.3), or the number of transferable embryos (4.8 +/- 0.2), among heifers that were >/=10 months of age. The number of unfertilized ova did not differ by age, however, more degenerate embryos tended to be recovered from heifers <10 months of age compared to heifers >/=14 months of age. These data indicate that transferable embryos can be safely recovered from heifers beginning at 10 months of age without compromising subsequent reproductive or lactational performance of the donor.  相似文献   

9.
This study was conducted to compare the superovulatory (SOV) response of dairy cows (n=172) and heifers (n=172), with two SOV treatments started at the mid-luteal-phase of the estrus cycle. Donors were randomly treated either with equine chorionic gonadotrophin (eCG) plus neutra-eCG serum (eCG+N group, n=167) or follicle stimulating gonadotrophin (FSH-P group, n=177).No significant differences were observed among groups in the percentage of superovulatory responsive donors (SR donors; corpora lutea (CL) >/=2), the mean number of total ova, fertilized ova and viable embryos recovered. Cows yielded significantly less total ova and less fertilized ova (P<0.05) and tended to yield less viable embryos (P<0.06) than heifers.Plasma progesterone (P4) concentrations (n=135 donors) on the day of PGF(2alpha) (PGF) injection and on the day of SOV estrus were significantly higher (P<0.01) in eCG+N than in FSH-P donors and, the increase between those 2 days was also significantly higher (P<0.05) in group eCG+N than in group FSH-P, suggesting a higher luteotrophic effect of eCG than FSH-P. SR donors had P4 levels significantly higher (P<0.001) than non-SR donors only on day 5 after the SOV estrus and on the day of embryo recovery. Plasma P4 concentrations at 5 days after the SOV estrus and at embryo recovery correlated significantly (r=0.76, P<0.001).Heifers had significantly higher P4 levels than cows at gonadotrophin injection (P<0.01), PGF injection (P<0.001), 5 days (P<0.01) and 7 days (P<0.001) after the SOV estrus. At day 7 after the SOV estrus, P4 concentrations per ova recovered were significantly higher in heifers than in cows (P<0.01). The increase of plasma P4 per ova recovered, between days 5 and 7 after the SOV estrus, was significantly (P<0.01) higher in heifers than in cows. Also, the increase of plasma P4 between injections of gonadotrophin and PGF was significantly higher (P<0.05) in heifers than in cows.These results suggest that heifers have higher plasma P4 concentrations at diestrus (either before or after the SOV treatment) and this is associated with a higher embryo yield and quality, as compared to lactating cows. These higher plasma P4 concentrations reflect not only differences in ovulation rate as well as the competence of the corpus luteum, which is potentialized by gonadotrophin stimulation.  相似文献   

10.
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V, 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean +/- SEM) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8+/-1.8, 6.1+/-1.3, 51.5), P48 (12.6+/-1.9, 7.1+/-1.0, 52.3), P60 (10.5+/-1.6, 5.7+/-1.3, 40.0) and D60 (10.3+/-1.7, 5.0+/-1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol.  相似文献   

11.
Forty crossbred beef heifers were superovulated with 2000 IU pregnant mare serum gonadotropin (PMSG) and mated twice by natural service during estrus. Ovulations were counted and ova were recovered during mid-ventral laparotomy between 44 and 54 h after the onset of estrus. The overall donor ovulation rate (M+/-SEM) was 15.2+/-1.3. There was a positive association between ovulation rate and the number of ova recovered (P<0.001), and between ovulation rate and the incidence of ova advanced beyond the two-cell stage of development (P<0.05). When grouped on the basis of superovulation response, the numbers (M+/-SEM) of recovered one-cell, two-cell and more advanced ova were 3.7+/-0.7, 1.0+/-0.3 and 0.5+/-0.3, respectively, for donors with up to 15 ovulations. The corresponding numbers for donors with more than 15 ovulations were 7.2+/-1.8, 6.0+/-1.3 and 2.8+/-1.2, respectively. Following centrifugation, pronuclei were visible in 68% of one-cell ova, and nuclei were visible in 80% of two-cell ova. Approximately 20% of ova were destroyed during DNA microinjection. A total of 66 centrifuged and DNA-injected ova were transferred to the oviducts of 26 crossbred beef heifers, each receiving two, three or four ova. Echography at Day 55 confirmed that 14 (54%) heifers were pregnant with 26 (39%) fetuses. Eleven heifers were held to calve and produced 21 calves.  相似文献   

12.
In gilts ovulation occurs over a 4 to 8-hour period, with 70% of the ova being shed over a relatively short span of time. These oocytes supposedly give rise to more developed embryos at Days 10 to 12 which advance the uterine environment and reduce survival rates of less developed embryos because of an asynchronous environment. The aim of this experiment was to reduce embryo mortality by influencing the duration and pattern of ovulation. Crossbred gilts (n = 98) were bred at their first observed estrus after being exposed to boars at 200 days of age. Estrus detection was carried out daily at 0000, 0800 and 1600 hours. All gilts were artifically inseminated with fresh semen, with a minimum of 2.7 billion spermatozoa, at both 16 and 32 hours after detection of estrus. Gilts were randomly assigned to one of the following treatments at detection of estrus: 1) 500 IU (2ml) chorionic gonadotrophin (hCG) injected intravenously at the onset of estrus (n = 22); 2) 16 mug (4 ml) gonadotrophin releasing hormone (GnRH) injected intravenously at the onset of estrus (n = 25); 3) 11.5 mug estrogen added to the semen at the time of AI (n = 25); 4) control, untreated gilts (n = 26). All gilts were slaughtered at Day 30 of gestation (Day 0 = day of detected estrus). The mean (+/-SEM) number of ovulations in pregnant gilts per treatment was 13.0 +/- 0.52, 12.6+/-0.51, 13.6+/-0.54 and 13.3+/-0.52, while the mean (+/-SEM) number of normal embryos per treatment was 10.3+/-0.67, 10.5+/-0.66, 10.3 +/- 0.69 and 10.5 +/- 0.67 for hCG, GnRH, estrogen and control groups, respectively, for an embryonic survival rate of 80 +/- 4.2%, 83 +/- 4.1%, 74 +/- 4.3% and 79+/-4.2% in pregnant gilts. If nonpregnant gilts are included, the embryonic survival rate for treatments 1 to 4 was 76+/-7.0%, 73+/-6.5%, 60+/-6.5%, and 64+/-6.4%, respectively. There was no significant difference between treatments for any of these variables. There was no evidence that administration of hCG, or GnRH at the onset of estrus, or the addition of estrogen to semen improved embryonic survival in gilts by Day 30 in this experiment.  相似文献   

13.
To determine whether follicular development, superovulation and embryo production were affected by the absence or presence of a dominant follicle, cows were administered injections of FSH twice daily in the early (Days 2 to 6, estrus = Day 0) or middle stage (beginning on Day 10 or 11) of the estrous cycle. Treatment with FSH early in the cycle stimulated follicular development in 83 to 100% of all cows from 4 groups evaluated at different times after PGF2alpha treatment on Days 6 and 7. However, the proportion of cows with > 2 ovulations varied from 31 to 62.5%, indicating that induction of follicular development may occur in the absence of superovulation. When compared with cows treated in the middle of the cycle, no differences were observed in the proportion of cows with > 2 ovulations (31 vs 20%), ovulation rate. (26.0 +/- 6.3 vs 49.6 +/- 25.8), production of ova/embryos (13.3 +/- 3.2 vs 14.4 +/- 3.4), or the number of transferable embryos (8.0 +/- 3.6 vs 5.4 +/- 1.5; early vs middle, respectively). The proportion of the total number of embryos collected that were suitable for transfer was greater (P<0.01) in cows treated early in the cycle (60%) than at midcycle (37.5%). The diameter of the largest follicle observed by ultra-sound prior to initiation of FSH treatment in the early stage of the cycle (10.0 +/- 2.0 mm) was smaller (P<0.05) than at midcyle (16.8 +/- 1.3 mm). These results demonstrate that superinduction of follicular development is highly consistent after FSH treatment at Days 2 to 6 of the cycle and that superovulation and embryo production are not less variable than when FSH is administered during the middle of the cycle. However, superovulation in the early stage of the cycle may increase the proportion of embryos suitable for transfer.  相似文献   

14.
Three experiments were conducted to evaluate the effects of exogenous progesterone on superovulatory response and ova/embryo quality in Bos indicus donors superstimulated during the first follicular wave (FFW). We hypothesized that exogenous progesterone during gonadotropin treatments would improve ova and embryo quality. In Experiment 1, 18 Nelore cows were randomly allocated to three groups: (1) FFW; (2) FFW plus a progesterone-releasing device (FFW+P4); and (3) control (E2+P4). Cows in the FFW groups were superstimulated beginning at synchronized ovulation, whereas cows in the control group were superstimulated after synchronization of follicular wave emergence with estradiol plus progesterone (E2+P4). There were no differences in mean (± SD) numbers of transferable embryos between FFW+P4 (8.0 ± 4.5) and control (6.7 ± 4.8) groups, but both were higher (P = 0.006) than the FFW group (0.2 ± 0.4). In Experiment 2, FFW and FFW+P4 were compared in 20 Nelore donors; exogenous progesterone increased the number of transferable embryos (3.9 ± 3.4 vs. 1.3 ± 4.1, P = 0.003). In Experiment 3, FFW and FFW+P4 were compared in 10 Nelore donors except that cows were slaughtered 12 h after pLH (Lutropin-V®, Bioniche Animal Health, Belleville, ON, Canada) treatment. More mature cumulus oocyte complex (COC) (expanded cumulus cell layers) were collected in the FFW+P4 group than in the FFW group (21.8 ± 13.1 vs. 10.8±14.7; P = 0.003). In summary, superovulatory response was satisfactory when FSH (Folltropin-V®, Bioniche Animal Health) treatment was initiated at emergence of the first follicular wave in Nelore (Bos indicus) donors, and the hypothesis that administration of exogenous progesterone during the treatment will improve oocyte and embryo quality was supported.  相似文献   

15.
Multiple ovulation and embryo transfer (MOET) is a very important tool for the genetic improvement and preservation of endangered livestock. However, the success of a MOET programme highly depends on the number of transferable embryos in response to a superovulation treatment. Thus, the aim of this study was to compare the number and quality of embryos produced during natural oestrus under porcine FSH treatment without the use of progesterone devices to more traditional protocols. Forty Sarda sheep were divided into 2 groups: without sponges (WS) (n = 20) and with sponges (S) containing 40mg FGA for 12 d (n = 20) (control group); 350 I.U. of porcine FSH per sheep was administered in eight decreasing doses twice daily starting four days after estrus was detected (Day 0) in group WS and 48 h before sponge removal in group S. A single i.m. dose of 125 μg of cloprostenol was administered on Day 6 after estrus in group WS to induce luteolysis. Sheep were naturally mated 24 h after cloprostenol injection or sponge removal. Seven days after mating, an inguinal laparotomy was performed and the number of corpora lutea (CL) recorded. Embryos were recovered surgically by flushing each uterine horn. A total of 38 fresh and 22 vitrified embryos were transferred in pairs into 3 groups of recipients seven days after estrus detection: fresh embryos from group S (S-F) (n = 9), fresh embryos from group WS (WS-F) (n = 10) and vitrified embryos from group WS (WS-V) (n = 11). Data on the number of corpora lutea (CL), recovered ova and embryos (OER), and quality 1-2 and 3 embryos (EQ1-2, EQ3) per ewe were analyzed by ANOVA. Recovery (RR), fertility (FR) and quality 1-2 embryo (Q1-2R) rates per treatment were analyzed by a Chi Square analysis. A Chi Square analysis was also applied to pregnancy rate (PR), lambing rate (LR) and twinning rate (TR) of fresh and vitrified embryos in order to analyze embryo transfer results. Among all superovulation variables analysed, results show statistically significant differences in mean number of CL/ ewe (9.3 ± 3.9 vs 7 ± 3.2), RR (67% vs 80 %) and FR (100% vs 80%) (P < 0.05) between WS and S groups respectively. There were no significant differences in PR (78%, 70% and 82%), LR (67%, 60% and 59%) and TR (71%, 71% and 44.4%) among S-F, WS-F and WS-V groups respectively. In conclusion, it is possible to produce a good number of transferable embryos during natural oestrus avoiding the use of sponges.  相似文献   

16.
Callesen H  Bak A  Greve T 《Theriogenology》1992,38(5):959-968
Two Pregnant Mare Serum Gonadotrophin (PMSG) antisera were tested in 174 dairy cows that were superovulated with PMSG and were then given prostaglandin at 60 hours after PMSG. At 48 hours after injection of prostaglandin, the cows were given either PMSG antiserum (monoclonal (n=56) or polyclonal (n=57)), or saline as control (n=61). Ova (n=1,206) were recovered either nonsurgically or after slaughter. Of these, 757 were evaluated morphologically to be transferable embryos. A proportion of these embryos (n=295 from 52 flushed donors) were transferred to synchronized recipients and the pregnancy results were recorded. The reproductive function of 37 flushed donors was followed for 6 months after superovulation. No significant effect of the PMSG antisera could be demonstrated in any of the parameters studied (i.e., ovulation rate, number of follicles at collection, total yield of ova, fertilization rate, number of transferable embryos, pregnancy results after transfer of embryos, or period required by the donor cows for restitution of reproductive function after superovulation and recovery). It is concluded that use of PMSG antiserum did not improve the embryo yield in terms of the number and quality of transferable embryos or enhance normalization of reproductive function of the donor in the 6-month period after superovulation. Therefore, in an embryo transfer operation, the routine use of PMSG antiserum in a PMSG superovulation regimen in cattle is not recommended.  相似文献   

17.
The objective of the present study was to evaluate the effects of double uterine flushing on the recovery of embryos/ova in cattle. Two hundred and ten embryo recovery procedures were conducted using a double uterine flushing method, and the results were compared with 432 conventional single-flushing procedures. Cyclic Limousin (n = 403) and Guzera (n = 239) donor cows received an intravaginal progesterone releasing device and 2 mg of estradiol benzoate on Day 0. Between Days 5 and 9, donors received decreasing doses of FSH, which ranged from 200 to 300 IU (Bos indicus) and 300 to 500 IU (Bos taurus). On the afternoon of Day 7, donors received an injection of 500 microg cloprostenol and progesterone implants were removed 12 h later (morning of Day 8). Artificial insemination was performed between 14 and 26 h after first detection of behavioral estrus. Cows were randomly assigned to have embryos recovered by a double-flushing method (n = 210) or the conventional single-flushing procedure (n = 432). For the double-flushing procedure, after first flushing the whole uterus with 1L of Dubelco's Phosphate Buffered Saline (DPBS), a Foley catheter was positioned in the uterine body to permit refilling of the uterus with fresh DPBS (80-150 mL). The catheter was closed with the plunger of a disposable 5 mL syringe, and the donors were allowed to rest in a holding area for 30 min. Thereafter, a second flush was performed to recover the solution remaining in the uterus. Animals from the control group were subjected to a single uterine flush. From 210 double-flushing procedures, 1409 viable embryos were recovered. In comparison, from 432 cows receiving the single-flushing procedure, 1993 embryos were recovered. Double flushing increased (P < 0.05) the number of embryos recovered per procedure compared to single flushing (6.7 +/- 0.4 versus 4.6 +/- 0.2, respectively; mean +/- S.E.M.). When double flushing was performed, average recovered embryos/ova increased (P < 0.05) from 8.3 +/- 0.4 to 12.7 +/- 0.7 in Limousin and from 7.9 to 11.5 in Guzera. Also, utilization of double flushing increased (P < 0.05) the number of viable embryos from 4.7 +/- 0.3 to 6.9 +/- 0.5 in Limousin and from 4.5 +/- 0.4 to 6.4 +/- 0.7 in Guzera. Mean total embryos/ova was similar (P > 0.05) between the control group and after the first uterine flushing in the double-flushing group; therefore, both flushings were conducted efficiently. In conclusion, double uterine flushing increased embryo recovery in cattle.  相似文献   

18.
Gonadotropin releasing hormone (GnRH) was given to 109 cows and heifers during the course of 224 superovulations. Follicle stimulating hormone (FSH) was administered twice daily (5 or 6 mg) for 3.5 to 4 days beginning on any of Days 9 to 14 of the estrous cycle; prostaglandin (45 mg PGF(2)alpha or 750 ug cloprostenol) was given in a split dose on the fourth day. Donor cows and heifers were placed into four groups according to previous superovulation treatments, which consisted of one to three treatments or of no previous treatment. Every other cow or heifer within each of the four subgroups was treated with GnRH (200 mug i.m.) at standing estrus. Only donors that exhibited estrus within 32 to 72 h after the first prostaglandin treatment were used in the study. Animals were inseminated artificially 12 and 24 h after standing estrus was first observed. No differences were noted in the number of ovulations, total ova or transferable embryos recovered from the GnRH or control groups; however, two interactions were detected. Cows given GnRH had fewer palpable corpora lutea than control cows (P < 0.05), but this difference was not seen in heifers. The second interaction was that GnRH seemed to depress ovulation rate in donors not previously superovulated, but this effect was not observed with subsequent superovulations. Cows yielded more total ova than heifers (P < 0.01). There was no difference in return to estrus between GnRH and control groups after a second prostaglandin treatment at the time of embryo recovery. Most donors within each group resumed cycling between 5 and 12 d after embryo recovery.  相似文献   

19.
On Day 3 of the estrous cycle (estrus = Day 0), dairy heifers were given either 10 mg i.m. FSH-P (FSH-P primed; n = 9) or a saline vehicle (saline primed; n = 9). On Day 10, all heifers were superovulated with FSH-P (total = 27.7 mg i.m.) in declining doses over 5 d. Heifers were inseminated artificially at estrus. From Day 2 until estrus, the number and size of follicles >2 mm were monitored daily by ultrasonography. The mean (+/- SEM) number of corpora lutea (CL) (6.2 +/- 1.5 vs 10.7 +/- 0.9; P<0.05) and the mean number of recovered embryos and unfertilized ova (3.6 +/- 1.7 vs 8.4 +/- 2.2; P<0.05) were lower in FSH-P-primed than in saline-primed heifers. Prior to initiation of superovulation, follicles >10 mm appeared on Days 6 to 7 in saline-primed heifers but only on Days 8 to 10 in FSH-P-primed heifers (P<0.05). Also, until Day 10, the mean number of follicles 4 to 6 mm and 7 to 10 mm was higher (P<0.05) in FSH-P-primed than in saline-primed heifers. After initiation of the superovulatory treatment (Day 10 to estrus), saline-primed heifers had a greater and faster increase in the mean number of follicles >10 mm (P<0.02) than FSH-P-primed heifers did. Depletion in the number of follicles 2 to 3 mm (P<0.001) between Day 10 and estrus and in the number of follicles 4 to 6 mm (P<0.05) between Day 12 and estrus occurred in both groups of heifers. Decreased superovulatory response and embryo recovery in FSH-P-primed heifers may have been due to the presence of large follicles (>10 mm) prior to the initiation of the superovulatory treatment which reduced the ability of small follicles to grow into larger size classes during superovulatory treatment.  相似文献   

20.
云南水牛的同期发情、超数排卵和胚胎移植试验   总被引:6,自引:0,他引:6  
为探讨水牛胚胎移植的效果 ,于 2 0 0 2年对云南水牛进行了胚胎移植试验 :①用国产氯前列烯醇(PG) 0 6mg/头·次处理供、受体水牛的同期发情率和可用率分别为 4 3 33% (13/ 30 )和 16 6 7% (5 / 30 ) ;同期发情率经产水牛高于青年水牛 (P =0 0 86 ) ,杂交水牛高于德宏水牛 (P =0 15 3) ,体重 4 0 1~ 5 30kg水牛显著高于体重 30 0~ 4 0 0kg水牛 (P <0 0 5 ) ;发情明显水牛的可用率极显著高于发情不明显的水牛 (P <0 0 1)。②选用河流型摩拉水牛与沼泽型德宏水牛的杂交一代 5头为供体 ,分进口激素组 (n =2 )和国产激素组 (n =3)进行超数排卵 ,共有 2头获 9枚胚胎 ;进口激素组供体的平均获胚数和可移植胚数分别为 2 0枚和 1 5枚 ,比国产激素组分别多 0 33枚 (P =0 4 5 4 )和 1 17枚 (P =0 2 88)。③所获 4枚可用鲜胚分别移植 3头受体 ,结果 90d的妊娠率为 33 33% ,但最终无一头产犊。试验结果表明使用进口FSH 2 4mg +PG (Lutalyse○R) 35mg和国产FSH 11mg +PG 0 8mg对水牛超数排卵有效 ,同时提示需要足够数量的受体 ,从中选用发情表现明显、黄体发育良好的进行胚胎移植 ,才能取得良好效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号