首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In order to construct a saturated genetic map and facilitate marker-assisted selection (MAS) breeding, it is necessary to enhance the current reservoir of known molecular markers in Gossypium. Microsatellites or simple sequence repeats (SSRs) occur in expressed sequence tags (EST) in plants (Kantety et al., Plant Mol Biol 48:501–510, 2002). Many ESTs are publicly available now and represent a good tool in developing EST-SSRs. From 13,505 ESTs developed from our two cotton fiber/ovule cDNA libraries constructed for Upland cotton, 966 (7.15%) contained one or more SSRs and from them, 489 EST-SSR primer pairs were developed. Among the EST-SSRs, 59.1% are trinucleotides, followed by dinucleotides (30%), tetranucleotides (6.4%), pentanucleotides (1.8%), and hexanucleotides (2.7%). AT/TA (18.4%) is the most frequent repeat, followed by CTT/GAA (5.3%), AG/TC (5.1%), AGA/TCT (4.9%), AGT/TCA (4.5%), and AAG/TTC (4.5%). One hundred and thirty EST-SSR loci were produced from 114 informative EST-SSR primer pairs, which generated polymorphism between our two mapping parents. Of these, 123 were integrated on our allotetraploid cotton genetic map, based on the cross [(TM-1×Hai7124)TM-1]. EST-SSR markers were distributed over 20 chromosomes and 6 linkage groups in the map. These EST-SSR markers can be used in genetic mapping, identification of quantitative trait loci (QTLs), and comparative genomics studies of cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Zhiguo Han and Changbiao Wang contributed equally to this work.  相似文献   

2.
Guo W  Cai C  Wang C  Han Z  Song X  Wang K  Niu X  Wang C  Lu K  Shi B  Zhang T 《Genetics》2007,176(1):527-541
The mapping of functional genes plays an important role in studies of genome structure, function, and evolution, as well as allowing gene cloning and marker-assisted selection to improve agriculturally important traits. Simple sequence repeats (SSRs) developed from expressed sequence tags (ESTs), EST-SSR (eSSR), can be employed as putative functional marker loci to easily tag corresponding functional genes. In this paper, 2218 eSSRs, 1554 from G. raimondii-derived and 754 from G. hirsutum-derived ESTs, were developed and used to screen polymorphisms to enhance our backbone genetic map in allotetraploid cotton. Of the 1554 G. raimondii-derived eSSRs, 744 eSSRs were able to successfully amplify polymorphisms between our two mapping parents, TM-1 and Hai7124, presenting a polymorphic rate of 47.9%. However, only a 23.9% (159/754) polymorphic rate was produced from G. hirsutum-derived eSSRs. No relationship was observed between the level of polymorphism, motif type, and tissue origin, but the polymorphism appeared to be correlated with repeat type. After integrating these new eSSRs, our enhanced genetic map consists of 1790 loci in 26 linkage groups and covers 3425.8 cM with an average intermarker distance of 1.91 cM. This microsatellite-based, gene-rich linkage map contains 71.96% functional marker loci, of which 87.11% are eSSR loci. There were 132 duplicated loci bridging 13 homeologous At/Dt chromosome pairs. Two reciprocal translocations after polyploidization between A2 and A3, and between A4 and A5, chromosomes were further confirmed. A functional analysis of 975 ESTs producing 1122 eSSR loci tagged in the map revealed that 60% had clear BLASTX hits (<1e(-10)) to the Uniprot database and that 475 were associated mainly with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function; many of the ESTs were associated with two or more category functions. The results presented here will provide new insights for future investigations of functional and evolutionary genomics, especially those associated with cotton fiber improvement.  相似文献   

3.
Chen X  Guo W  Liu B  Zhang Y  Song X  Cheng Y  Zhang L  Zhang T 《PloS one》2012,7(1):e30056
Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) and QTL-by-environment interactions by multi-QTL joint analysis. Further analysis of fiber growth and gene expression between TM-1 and Hai7124 showed greater differences at 10 and 25 days post-anthesis (DPA). In this two period important for fiber performances, we integrated genome-wide expression profiling with linkage analysis using the same genetic materials and identified in total 916 expression QTL (eQTL) significantly (P<0.05) affecting the expression of 394 differential genes. Many positional cis-/trans-acting eQTL and eQTL hotspots were detected across the genome. By comparative mapping of eQTL and fiber QTL, a dataset of candidate genes affecting fiber qualities was generated. Real-time quantitative RT-PCR (qRT-PCR) analysis confirmed the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism for G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulated expression of abscisic acid (ABA) and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities.  相似文献   

4.
Gossypium tomentosum, a wild tetraploid cotton species with AD genomes, possesses genes conferring strong fibers and high heat tolerance. To effectively transfer these genes into Gossypium hirsutum, an entire microsatellite (simple sequence repeat, SSR)-based genetic map was constructed using the interspecific cross of G. hirsutum × G. tomentosum (HT). We detected 1800 loci from 1347 pairs of polymorphic primers. Of these, 1204 loci were grouped into 35 linkage groups at LOD?≥?4. The map covers 3320.8 cM, with a mean density of 2.76 cM per locus. We detected 420 common loci (186 in the At subgenome and 234 in Dt) between the HT map and the map of TM-1 (G. hirsutum) and Hai 7124 (G. barbadense; HB map). The linkage groups were assigned chromosome numbers based on location of common loci and the HB map as reference. A comparison of common markers revealed that no significant chromosomal rearrangement exist between G. tomentosum and G. barbadense. Interestingly, however, we detected numerous (33.7%) segregation loci deviating from 3:1 ratio (P?<?0.05) in HT, mostly clustering on eight chromosomes in the Dt subgenome, with some on three chromosomes in At. Two morphological traits, leaf hairiness and leaf nectarilessness were mapped on chromosomes 6 (A6) and 26 (D12), respectively. The SSR-based map constructed in this study will be useful for further genetic studies on cotton breeding, including mapping loci controlling quantitative traits associated with fiber quality, stress tolerance and developing chromosome segment specific introgression lines from G. tomentosum into G. hirsutum using marker-assisted selection.  相似文献   

5.
Sampling nucleotide diversity in cotton   总被引:1,自引:0,他引:1  

Background  

Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum) × 3-79 (G. barbadense) have been developed to allow high-density genetic mapping of traits.  相似文献   

6.
7.
Gossypium hirsutum is a high yield cotton species that exhibits only moderate performance in fiber qualities. A promising but challenging approach to improving its phenotypes is interspecific introgression, the transfer of valuable traits or genes from the germplasm of another species such as G. barbadense, an important cultivated extra long staple cotton species. One set of chromosome segment introgression lines (CSILs) was developed, where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS) in BC5S1–4 and BC4S1–3 generations. After four rounds of MAS, the CSIL population was comprised of 174 lines containing 298 introgressed segments, of which 86 (49.4%) lines had single introgressed segments. The total introgressed segment length covered 2,948.7 cM with an average length of 16.7 cM and represented 83.3% of tetraploid cotton genome. The CSILs were highly varied in major fiber qualities. By integrated analysis of data collected in four environments, a total of 43 additive quantitative trait loci (QTL) and six epistatic QTL associated with fiber qualities were detected by QTL IciMapping 3.0 and multi-QTL joint analysis. Six stable QTL were detected in various environments. The CSILs developed and the analyses presented here will enhance the understanding of the genetics of fiber qualities in long staple G. barbadense and facilitate further molecular breeding to improve fiber quality in Upland cotton.  相似文献   

8.
9.
There is an immediate need for a high-density genetic map of cotton anchored with fiber genes to facilitate marker-assisted selection (MAS) for improved fiber traits. With this goal in mind, genetic mapping with a new set of microsatellite markers [comprising both simple (SSR) and complex (CSR) sequence repeat markers] was performed on 183 recombinant inbred lines (RILs) developed from the progeny of the interspecific cross Gossypium hirsutum L. cv. TM1 × Gossypium barbadense L. Pima 3-79. Microsatellite markers were developed using 1557 ESTs-containing SSRs (≥10 bp) and 5794 EST-containing CSRs (≥12 bp) obtained from ~14,000 consensus sequences derived from fiber ESTs generated from the cultivated diploid species Gossypium arboreum L. cv AKA8401. From a total of 1232 EST-derived SSR (MUSS) and CSR (MUCS) primer-pairs, 1019 (83%) successfully amplified PCR products from a survey panel of six Gossypium species; 202 (19.8%) were polymorphic between the G. hirsutum L. and G. barbadense L. parents of the interspecific mapping population. Among these polymorphic markers, only 86 (42.6%) showed significant sequence homology to annotated genes with known function. The chromosomal locations of 36 microsatellites were associated with 14 chromosomes and/or 13 chromosome arms of the cotton genome by hypoaneuploid deficiency analysis, enabling us to assign genetic linkage groups (LG) to specific chromosomes. The resulting genetic map consists of 193 loci, including 121 new fiber loci not previously mapped. These fiber loci were mapped to 19 chromosomes and 11 LG spanning 1277 cM, providing approximately 27% genome coverage. Preliminary quantitative trait loci analysis suggested that chromosomes 2, 3, 15, and 18 may harbor genes for traits related to fiber quality. These new PCR-based microsatellite markers derived from cotton fiber ESTs will facilitate the development of a high-resolution integrated genetic map of cotton for structural and functional study of fiber genes and MAS of genes that enhance fiber quality. Electronic Supplementary Material Supplementary material is available for this article at Names are necessary to report factually on available data, however, the USDA neither guarantees nor warrants the standard of products or service, and the use of the name by the USDA implies no approval of the products or service to the exclusion of others that may also be suitable.  相似文献   

10.
Cotton, the leading natural fiber crop, is largely produced by two primary cultivated allotetraploid species known as Upland or American cotton (Gossypium hirsutum L.) and Pima or Egyptian cotton (G. barbadense L.). The allotetraploid species diverged from each other and from their diploid progenitors (A or D genome) through selection and domestication after polyploidization. To analyze cotton AD genomes and dissect agronomic traits, we have developed a genetic map in an F2 population derived from interspecific hybrids between G. hirsutum L. cv. Acala-44 and G. barbadense L. cv. Pima S-7. A total of 392 genetic loci, including 333 amplified fragment length polymorphisms (AFLPs), 47 simple sequence repeats (SSRs), and 12 restriction fragment length polymorphisms (RFLPs), were mapped in 42 linkage groups, which span 3,287 cM and cover approximately 70% of the genome. Using chromosomal aneuploid interspecific hybrids and a set of 29 RFLP and SSR framework markers, we assigned 19 linkage groups involving 223 loci to 12 chromosomes. Comparing four pairs of homoeologous chromosomes, we found that with one exception linkage distances in the A-subgenome chromosomes were larger than those in their D-subgenome homoeologues, reflecting higher recombination frequencies and/or larger chromosomes in the A subgenome. Segregation distortion was observed in 30 out of 392 loci mapped in cotton. Moreover, approximately 29% of the RFLPs behaved as dominant loci, which may result from rapid genomic changes. The cotton genetic map was used for quantitative trait loci (QTL) analysis using composite interval mapping and permutation tests. We detected seven QTLs for six fiber-related traits; five of these were distributed among A-subgenome chromosomes, the genome donor of fiber traits. The detection of QTLs in both the A subgenome in this study and the D subgenome in a previous study suggests that fiber-related traits are controlled by the genes in homoeologous genomes, which are subjected to selection and domestication. Some chromosomes contain clusters of QTLs and presumably contribute to the large amount of phenotypic variation that is present for fiber-related traits.Communicated by J. Dvorak  相似文献   

11.
Gossypium species represent a vast resource of genetic multiplicity for the improvement of cultivated cotton. To determine genetic diversity and relationships within a diverse collection of Gossypium, we employed 120 SSR primers on 20 diploid species representing seven basic genome groups of the genus Gossypium, five AD allotetraploid cotton accessions while T. populnea served as an outgroup species. Out of 120 SSR primers, 49 pairs are polymorphic, which produced a total of 99 distinct alleles with an average of 2.0 alleles per primer pair. A total of 1139 major SSR bands were observed. Genetic similarities among all the diploid species ranged from 0.582 (between G. herbaceum and G. trilobum) up to 0.969 (between G. arboreum and G. herbaceum). Phylogenetic trees based on genetic similarities were consistent with known taxonomic relationships. The results also indicated that G. raimondii is the closest living relative of the ancestral D-genome donor of tetraploid species and the A-genome donor is much similar to the present-day G. herbaceum and G. arboreum. Ancient tetraploid cotton species were formed by hybridizing and chromosome doubling between them, then different tetraploid cotton species appeared by further geographical and genetic isolation and separating differentiation. The results showed that SSRs could be an ideal means for the identification of the genetic diversity and relationship of cotton resources at the genomic level.  相似文献   

12.
Kantartzi SK  Ulloa M  Sacks E  Stewart JM 《Genetica》2009,136(1):141-147
The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relationships among accessions of geographically diverse G. arboreum cultivars. From more than 1,500 previously developed simple sequence repeat (SSR) markers, 115 genomic (BNL) and EST-derived (MUCS and MUSS) markers were used to evaluate the allelic diversity of a core panel of G. arboreum accessions. These SSR data enabled advanced genome analyses. A set of 25 SSRs were selected based both upon their high level of informativeness (PIC ≥ 0.50) and the production of clear PCR bands on agarose gels. Subsequently, 96 accessions representing a wide spectrum of diversity of G. arboreum cultivars were analyzed with these markers. The 25 SSR loci revealed 75 allelic variants (polymorphisms) ranging from 2 to 4 alleles per locus. The Neighborjoining (NJ) method, based on genetic dissimilarities, revealed that cultivars from geographically adjacent countries tend to cluster together. Outcomes of this research should be useful in decreasing redundancy of effort and in constructing a core collection of G. arboreum, important for efficient use of this genetic resource in cotton breeding.  相似文献   

13.
A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.  相似文献   

14.
Genetic mapping provides a powerful tool for quantitative trait loci (QTL) analysis at the molecular level. A simple sequence repeat (SSR) genetic map containing 590 markers and a BCI population from two cultivated tetraploid cotton (Gossypium hirsutum L.) cultivars, namely TM-1 and Hai 7124 (G. barbadense L.), were used to map and analyze QTL using the composite interval mapping (CIM) method. Thirty one QTLs, 10 for lobe length, 13 for lobe width, six for lobe angle, and two for leaf chlorophyll content, were detected on 15 chromosomes or linkage groups at logarithm of odds (LOD)≥2.0, of which 15 were found for leaf morphology at LOD≥3.0. The genetic effects of the QTL were estimated. These results are fundamental for marker-assisted selection (MAS) of these traits in tetraploid cotton breeding.  相似文献   

15.
Asiatic desi cotton (Gossypium arboreum) shows great potential against biotic and abiotic stresses. The stress resistant nature makes it a best source for the identification of biotic and abiotic stress resistant genes. As in many plants same set of genes show responding behavior against the various abiotic and biotic stresses. Thus in the present study the ESTs from the G. arboreum drought stressed leaves were subjected to find the up-regulated ESTs in abiotic and biotic stresses through homology and in-silico analysis. A cDNA library has been constructed from the drought stressed G. arboreum plant. 778 clones were randomly picked and sequenced. All these sequences were subjected to in-silico identification of biotic and abiotic up-regulated ESTs. Total 39 abiotic and biotic up-regulated ESTs were identified. The results were further validated by real-time PCR; by randomly selection of ten ESTs. These findings will help to develop stress resistant crop varieties for better yield and growth performance under stresses.  相似文献   

16.
The wilt defense reaction of cotton is a complicated continuous process and involves a battery of genes. In this study, we adopted the suppression subtractive hybridization (SSH) technique to isolate differentially expressed ESTs from Gossypium barbadense variety 7124 during the Verticillium wilt defense process. An array of 1165 clones from the subtractive library has been screened with reverse northern blotting, of which 131 ESTs were considered as overexpressed and 16 ESTs were downregulated. Sequence analysis and blast search showed that 83 ESTs were homologous to 45 unique sequences in the databases. Among all these differentially expressed ESTs, at least three kinds of genes were characterized. The majority of ESTs with a deduced identity as aerobic metabolism enzymes were strongly expressed in the infection process. Likewise, ESTs similar to those reported for pathogen-related protein genes were also picked out in this study. These ESTs, in combination with other kinase-like genes and a defensin-like EST, constituted an assembly of genes which responded during pathogenic infection. These results imply that sea-island cotton undergoes strong oxidative stress and results in a series of defense responses when attacked by V. dahliae. To our knowledge, this is the first report on the isolation of global ESTs during the sea-island cotton defense reaction.__________From Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 214–223.Original English Text Copyright © 2005 by Zuo, Wang, Wu, Chai, Sun, Tang.This article was submitted by the authors in English.  相似文献   

17.
The genus Gossypium is comprised of 50 diverse cotton species representing eight different genomes (A through G and K), however, phylogenetic relationship using various DNA marker types such as RAPD and SSRs was determined on limited number of cotton species. In this report, we have demonstrated the application of genomic SSRs (gSSRs) and EST-SSRs, and after combining both the data sets, for resolving the phylogenies of 36 cotton species including seven races. Out of the 100 primer pairs surveyed (50 for gSSRs and 50 for EST-SSRs), 75 produced scorable amplification products in all species. Out of these, 73 were found to be polymorphic and amplified 135 alleles ranging from 1 to 5 alleles per SSR marker (average 2.87 alleles per marker). The gSSRs amplified higher number of alleles (72) compared to the EST-SSRs (63). In total 22 highly informative SSRs with PIC values ≥0.5 were identified. Genomic SSRs containing di-while EST-SSRs containing tri-nucleotide repeats exhibited high polymorphism compared to the other nucleotide repeats containing gSSRs/EST-SSRs. Number of tandem repeats and polymorphism were positively correlated. Neither the type of chromosome nor the location of the SSRs showed association with the polymorphism. Gossypium herbaceum var. africanum (Watt) Hutch. ex and Ghose and Gossypium robinsonii F. Muell. were found the most genetically diverse, while among races of Gossypium hirsutum L. “yucatanense” and G. hirsutum “punctatum” were found genetically diverse. Of the three data sets, clustering analysis based on EST-SSRs and combined data sets, revealed parallel results reported in earlier studies. This study further confirmed that Gossypium darwinii Watt has close relationship with Gossypium barbadense L. Moreover, Gossypium raimondii Ulbr. and G. herbaceum/Gossypium arboreum L. are close living relatives of the ancestor allotetraploid species. Our studies suggest that for resolving phylogenetic relationship among the various plant species EST-SSRs could be a better choice. This information can be instrumental in transferring novel alleles or loci from the wild species into the cultivated cotton species which would set a stage for cultivating genetically diverse cultivars—a way to achieve sustainable cotton production in changing climate.  相似文献   

18.
Long noncoding RNAs (lncRNAs) have several known functions in plant development, but their possible roles in responding to plant disease remain largely unresolved. In this study, we described a comprehensive disease‐responding lncRNA profiles in defence against a cotton fungal disease Verticillium dahliae. We further revealed the conserved and specific characters of disease‐responding process between two cotton species. Conservatively for two cotton species, we found the expression dominance of induced lncRNAs in the Dt subgenome, indicating a biased induction pattern in the co‐existing subgenomes of allotetraploid cotton. Comparative analysis of lncRNA expression and their proposed functions in resistant Gossypium barbadense cv. ‘7124’ versus susceptible Gossypium hirsutum cv. ‘YZ1’ revealed their distinct disease response mechanisms. Species‐specific (LS) lncRNAs containing more SNPs displayed a fiercer inducing level postinfection than the species‐conserved (core) lncRNAs. Gene Ontology enrichment of LS lncRNAs and core lncRNAs indicates distinct roles in the process of biotic stimulus. Further functional analysis showed that two core lncRNAs, GhlncNAT‐ANX2‐ and GhlncNAT‐RLP7‐silenced seedlings, displayed an enhanced resistance towards V. dahliae and Botrytis cinerea, possibly associated with the increased expression of LOX1 and LOX2. This study represents the first characterization of lncRNAs involved in resistance to fungal disease and provides new clues to elucidate cotton disease response mechanism.  相似文献   

19.
Fibers of three cotton cultivars (Gossypium hirsutum L.) H-4, H-8 and (G. arboreum) G. Cot-15, which shows variation in staple length were analyzed for growth in terms of fiber length and fresh and dry mass. From the growth analysis cotton fiber development is divided in four distinct phases i.e. (i) initiation (ii) elongation (iii) secondary thickening and (iv) maturation. Rate of fiber elongation and rate of water content shows close parallelism. Highly esterified and less esterified pectic fraction along with high and low molecular weight xyloglucan fractions were estimated from fiber walls of all the three cotton genotypes. Xyloglucans were fractioned in to high and low molecular weight by alkali treatment, 1 M and 4 M KOH respectively. Xyloglucan content shows inverse correlation with fiber elongation. Role of water content and wall components in determination of staple length in cotton genotypes is discussed.  相似文献   

20.

Key message

This study demonstrates the first practical use of CSILs for the transfer of fiber quality QTLs into Upland cotton cultivars using SSR markers without detrimentally affecting desirable agronomic characteristics.

Abstract

Gossypium hirsutum is characterized by its high lint production and medium fiber quality compared to extra-long staple cotton G. barbadense. Transferring valuable traits or genes from G. barbadense into G. hirsutum is a promising but challenging approach through a traditional interspecific introgression strategy. We developed one set of chromosome segment introgression lines (CSILs), where TM-1, the genetic standard in G. hirsutum, was used as the recipient parent and the long staple cotton G. barbadense cv. Hai7124 was used as the donor parent by molecular marker-assisted selection (MAS). Among them, four CSILs, IL040-A4-1, IL080-D6-1, IL088-A7-3 and IL019-A2-6, found to be associated with superior fiber qualities including fiber length, strength and fineness QTL in Xinjiang were selected and backcrossed, and transferred these QTLs into three commercial Upland cotton cultivars such as Xinluzao (XLZ) 26, 41 and 42 grown in Xinjiang. By backcrossing and self-pollinating twice, five improved lines (3262-4, 3389-2, 3326-3, 3380-4 and 3426-5) were developed by MAS of background and introgressed segments. In diverse field trials, these QTLs consistently and significantly offered additive effects on the target phenotype. Furthermore, we also pyramided two segments from different CSILs (IL080-D6-1 and IL019-A2-6) into cultivar 0768 to accelerate breeding process purposefully with MAS. The improved lines pyramided by these two introgressed segments showed significant additive epistatic effects in four separate field trials. No significant alteration in yield components was observed in these modified lines. In summary, we first report that these CSILs have great potential to improve fiber qualities in Upland cotton MAS breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号