首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the era of proteomics, high-throughput screening of posttranslational modification states of proteins, especially protein phosphorylation, is considered of utmost importance. However, current protein phosphorylation detection methods depend on either the combination of proteolysis and mass spectrometry, or time-consuming immunoassay that requires inevitable washing processes. As a way to rapidly assay protein phosphorylation events, here we propose the use of Open Sandwich immunoassay that detects antigen-dependent stabilization of antibody variable region (Fv). As a model system, the heavy and light chain variable regions (V(H)/V(L)) of anti-phosphotyrosine antibody PY20 were used to evaluate its performance. When V(H)/V(L) interaction was first estimated by phage ELISA, wild-type Fv showed a modest phosphotyrosine (PY)-dependent increase in signal. However, after screening of mutants at an interface residue, one with weak V(H)/V(L) interaction (HQ39R) showed markedly improved (>200%) antigen-dependent signals. Using this mutant, two fusion proteins in which each variable region fragment was tethered to a GFP color variant were made (V(H)-eYFP/V(L)-eCFP) to monitor PY-induced fluorescence resonance energy transfer (FRET) between them. The results showed significant PY- or tyrosine phosphorylated peptide-induced enhancement in FRET in homogeneous solutions, indicating applicability of the method for rapid screening of tyrosine phosphorylation in vitro or in situ and possibly in vivo.  相似文献   

2.
A site-specific and efficient fluorolabeling of antibody variable regions with green fluorescent protein (GFP) variants and its application to an energy transfer-based homogeneous fluoroimmunoassay (open sandwich FIA) were attempted. Two chimeric proteins, Trx-V(H)-EBFP and Trx-V(L)-EGFP, consisting of V(H) and V(L) fragments of anti-hen egg lysozyme (HEL) antibody HyHEL-10 and two GFP color variants, EBFP and EGFP, respectively, were designed to be expressed in cytoplasm of trxB - mutant Escherichia coli as fusions with thioredoxin from E.coli The mixture of two proteins could be purified with HEL-affinity chromatography, retaining sufficient intrinsic fluorescence and binding activity to HEL. A significant increase in fluorescence resonance energy transfer (FRET) dependent on HEL concentration was observed, indicating the reassociation of the V(H) and V(L) domains of these chimeric proteins due to co-existing antigen. With this open sandwich FIA, an HEL concentration of 1-100 microg/ml could be non-competitively determined. The assay could be performed in a microplate format and took only a few minutes to obtain a sufficient signal after simple mixing of the chimeric proteins with samples. This represents the first demonstration that the FRET between GFP variants is applicable to homogeneous immunoassay.  相似文献   

3.
The quantitation of low-molecular-weight haptens has been difficult with conventional sandwich immunoassays due to their small size. Many researchers have attempted to develop sandwich assays for haptens due to the significant advantages of the sandwich format over competitive assays including greater dynamic range, ease of automation, and sensitivity. Here we apply the open-sandwich ELISA (OS-ELISA), an immunoassay based on antigen-dependent stabilization of antibody variable regions (V(H) and V(L) domains), to hapten quantitation. Two fusion proteins, the high-affinity mutant V(H) domain from anti-4-hydroxy-3-nitrophenacetyl (NP) antibody B1-8 tethered with Escherichia coli alkaline phosphatase (V(H)(W33L)-PhoA) and the V(L) domain from the same antibody tethered with Streptococcus sp. protein G, were made. These fusion proteins when added together achieved Fv reassociation consequent to the addition of NP. Signal was generated in a direct relationship to the NP concentration with better sensitivity compared with competitive immunoassay, demonstrating this assay to be a quick noncompetitive alternative to the conventional assays for small compounds, such as environmental pollutants, drugs of abuse, and therapeutic drugs. With our previous demonstration that the OS-ELISA works well with large proteins, the OS-ELISA becomes the first practical immunoassay approach capable of quantifying any molecule regardless of their size.  相似文献   

4.
A substantial range of protein-protein interactions can be readily monitored in real time using bioluminescence resonance energy transfer (BRET). The procedure involves heterologous coexpression of fusion proteins, which link proteins of interest to a bioluminescent donor enzyme or acceptor fluorophore. Energy transfer between these proteins is then detected. This protocol encompasses BRET1, BRET2 and the recently described eBRET, including selection of the donor, acceptor and substrate combination, fusion construct generation and validation, cell culture, fluorescence and luminescence detection, BRET detection and data analysis. The protocol is particularly suited to studying protein-protein interactions in live cells (adherent or in suspension), but cell extracts and purified proteins can also be used. Furthermore, although the procedure is illustrated with references to mammalian cell culture conditions, this protocol can be readily used for bacterial or plant studies. Once fusion proteins are generated and validated, the procedure typically takes 48-72 h depending on cell culture requirements.  相似文献   

5.
Taking advantage of the phenomenon of bioluminescence resonance energy transfer (BRET), we developed a bioluminescent probe composed of EYFP and Renilla reniformis luciferase (RLuc)--BRET-based autoilluminated fluorescent protein on EYFP (BAF-Y)--for near-real-time single-cell imaging. We show that BAF-Y exhibits enhanced RLuc luminescence intensity and appropriate subcellular distribution when it was fused to targeting-signal peptides or histone H2AX, thus allowing high spatial and temporal resolution microscopy of living cells.  相似文献   

6.
The bioluminescence emitted by Aequorea victoria jellyfish is greenish while its single bioluminescent photoprotein aequorin emits blue light. This phenomenon may be explained by a bioluminescence resonance energy transfer (BRET) from aequorin chromophore to green fluorescent protein (GFP) co-localized with it. However, a slight overlapping of the aequorin bioluminescence spectrum with the GFP absorption spectrum and the absence of marked interaction between these proteins in vitro pose a question on the mechanism providing the efficient BRET in A. victoria. Here we report the in vitro study of BRET between homologous Ca(2+)-activated photoproteins, aequorin or obelin (Obelia longissima), as bioluminescence energy donors, and GFP, as an acceptor. The fusions containing donor and acceptor proteins linked by a 19 aa peptide were purified after expressing their genes in Escherichia coli cells. It was shown that the GFP-aequorin fusion has a significantly greater BRET efficiency, compared to the GFP-obelin fusion. Two main factors responsible for the difference in BRET efficiency of these fusions were revealed. First, it is the presence of Ca(2+)-induced interaction between the donor and acceptor in the aequorin-containing fusion and the absence of the interaction in the obelin-containing fusion. Second, it is a red shift of GFP absorption toward better overlapping with aequorin bioluminescence induced by the interaction of aequorin with GFP. Since the connection of the two proteins in vitro mimics their proximity in vivo, Ca(2+)-induced interaction between aequorin and GFP may occur in A. victoria jellyfish providing efficient BRET in this organism.  相似文献   

7.
Here we describe the design and construction of an imaging construct with high bioluminescent resonance energy transfer (BRET) efficiency that is composed of multiple quantum dots (QDs; λem = 655 nm) self-assembled onto a bioluminescent protein, Renilla luciferase (Rluc). This is facilitated by the streptavidin–biotin interaction, allowing the facile formation of a hybrid-imaging construct (HIC) comprising up to six QDs (acceptor) grafted onto a light-emitting Rluc (donor) core. The resulting assembly of multiple acceptors surrounding a donor permits this construct to exhibit high resonance energy transfer efficiency (∼64.8%). The HIC was characterized using fluorescence excitation anisotropy measurements and high-resolution transmission electron microscopy. To demonstrate the application of our construct, a generation-5 (G5) polyamidoamine dendrimer (PAMAM) nanocarrier was loaded with our HIC for in vitro and in vivo imaging. We envision that this design of multiple acceptors and bioluminescent donor will lead to the development of new BRET-based systems useful in sensing, imaging, and other bioanalytical applications.  相似文献   

8.
Here we report the design of a bioluminescence resonance energy transfer (BRET)-based sensing system that could detect nucleic acid target in 5 min with high sensitivity and selectivity. The sensing system is based on adjacent binding of oligonucleotide probes labeled with Renilla luciferase (Rluc) and quantum dot (Qd) on the nucleic acid target. Here Rluc, a bioluminescent protein that generates light by a chemical reaction, is employed as an energy donor, and a quantum dot is used as an energy acceptor. Bioluminescence emission of Rluc overlaps with the Qd absorption whereas the emission of Qd is shifted from the emission of Rluc allowing for monitoring of BRET. In the presence of target, the labeled probes bind adjacently in a head-to-head fashion leading to BRET from Rluc to Qd upon addition of a substrate coelenterazine. The sensing system could detect target nucleic acid in buffer as well as in Escherichia coli cellular matrix in 5 min with a detection limit of 0.54 pmol. The ability to detect target nucleic acid rapidly in a cellular matrix with high sensitivity will prove highly beneficial in biomedical and environmental applications.  相似文献   

9.
A variety of fluorescent proteins with different spectral properties have been created by mutating green fluorescent protein. When these proteins are split in two, neither fragment is fluorescent per se, nor can a fluorescent protein be reconstituted by co-expressing the complementary N- and C-terminal fragments. However, when these fragments are genetically fused to proteins that associate with each other in cellulo, the N- and C-terminal fragments of the fluorescent protein are brought together and can reconstitute a fluorescent protein. A similar protein complementation assay (PCA) can be performed with two complementary fragments of various luciferase isoforms. This makes these assays useful tools for detecting the association of two proteins in living cells. Bioluminescence resonance energy transfer (BRET) or fluorescence resonance energy transfer (FRET) occurs when energy from, respectively, a luminescent or fluorescent donor protein is non-radiatively transferred to a fluorescent acceptor protein. This transfer of energy can only occur if the proteins are within 100 Å of each other. Thus, BRET and FRET are also useful tools for detecting the association of two proteins in living cells. By combining different protein fragment complementation assays (PCA) with BRET or FRET it is possible to demonstrate that three or more proteins are simultaneous parts of the same protein complex in living cells. As an example of the utility of this approach, we show that as many as four different proteins are simultaneously associated as part of a G protein-coupled receptor signalling complex.  相似文献   

10.
Here we describe a homogeneous assay for biotin based on bioluminescence resonance energy transfer (BRET) between aequorin and enhanced green fluorescent protein (EGFP). The fusions of aequorin with streptavidin (SAV) and EGFP with biotin carboxyl carrier protein (BCCP) were purified after expression of the corresponding genes in Escherichia coli cells. Association of SAV-aequorin and BCCP-EGFP fusions was followed by BRET between aequorin (donor) and EGFP (acceptor), resulting in significantly increasing 510 nm and decreasing 470 nm bioluminescence intensity. It was shown that free biotin inhibited BRET due to its competition with BCCP-EGFP for binding to SAV-aequorin. These properties were exploited to demonstrate competitive homogeneous BRET assay for biotin.  相似文献   

11.
12.
Photodynamic therapy (PDT) is widely used in clinical practice to influence neoplasms in the presence of a photosensitizer, oxygen, and light source. The main problem of PDT of deep tumors is the problem of delivering excitation light (without lost of its intensity) inside the body. An alternative to the external light sources can be the internal light sources based on luciferase–substrate bioluminescent systems. In our work, we used the NanoLuc–furimazine system as an internal light source. This system can be successfully used to excite the protein photosensitizer miniSOG and to induce the phototoxicity of this flavoprotein in cancer cells during bioluminescent resonance energy transfer (BRET). It was shown that the mechanism of cell death caused by BRET-induced phototoxicity of mimiSOG in the presence of furimazine depends on the intracellular localization of the NanoLuc–miniSOG fusion protein: BRET-mediated activation of miniSOG in mitochondrial localization causes apoptosis, while the membrane localization of PS causes necrosis of cancer cells.  相似文献   

13.
The antigen-dependent stabilization of an anti-hen egg lysozyme (HEL) antibody HyHEL-10 variable region was monitored with fluorescence resonance energy transfer (FRET) between fluorolabeled heavy chain (VH) and light chain (VL) fragments. The VH and VL fragments labeled with succinimide esters of fluorescein and rhodamine-X, respectively, were mixed in a cooled cuvette, and the change in fluorescence spectra upon antigen addition was monitored. When excited at 490 nm, significant decrease in the fluorescence at 520 nm and its increase at 605 nm were observed when an increasing amount of HEL was added to the mixture in the concentration range of 1-100 micrograms/mL. The assay, named open sandwich fluoroimmunoassay (FIA), is noncompetitive and homogeneous and can be conducted with one clone of antibody. With the use of appropriate antibodies, it is thought to be a quick and inexpensive alternative to the conventional laborious and/or expensive immunoassays.  相似文献   

14.
Kim J  Lee J  Kwon D  Lee H  Grailhe R 《Molecular bioSystems》2011,7(11):2991-2996
Fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) are extensively used to analyze protein interactions occurring in living cells. Although these two techniques are broadly applied in cellular biology, comparative analysis of their strengths and limitations is lacking. To this end, we analyzed a small network of proteins involved in the amyloidogenic processing of the Alzheimer β-amyloid precursor using FRET based cytometry, BRET, and fluorescence lifetime imaging microscopy (FLIM). Using all three methods, we were able to detect the interactions of the amyloid precursor protein with APBB1, APBB2, and APP itself. And we found an unreported interacting pair, APP-APH1A. In addition, we show that these four interacting pairs exhibit a strong FRET correlation with the acceptor/donor expression ratios. Overall the FRET based cytometry was the most sensitive and reliable approach to screen for new interacting proteins. Therefore, we applied FRET based cytometry to study competitive binding of two proteins, APBB1 and APBB2, with the same APP target.  相似文献   

15.
Oligomerization of adenosine A2A and dopamine D2 receptors in living cells   总被引:5,自引:0,他引:5  
We investigated whether oligomerization of adenosine A(2A) receptor (A(2A)R) and dopamine D(2) receptor (D(2)R) exists in living cells using modified bioluminescence resonance energy transfer (BRET(2)) technology. Fusion of these receptors to a donor, Renilla luciferase (Rluc), and to an acceptor, modified green fluorescent protein (GFP(2)), did not affect the ligand binding affinity, subcellular distribution, and coimmunoprecipitation of the receptors. BRET was detected not only between Myc-D(2)R-Rluc and A(2A)R-GFP(2) but also between HA-tagged A(2A)R-Rluc and A(2A)R-GFP(2). These results indicate A(2A)R, either homomeric or heteromeric with D(2)R, exists as an oligomer in living cells.  相似文献   

16.
Bioluminescence energy transfer (BRET) is a powerful tool for the study of protein-protein interactions and conformational changes within proteins. We directly compared two recently developed variants of Renilla luciferase (RLuc), RLuc2 and RLuc8, as BRET donors using an in vitro thrombin assay. The comparison was carried out by placing a thrombin-specific cleavage sequence between the donor luciferase and a green fluorescent protein (GFP(2)) acceptor. Substitution of native RLuc with the RLuc mutants, RLuc2 and 8, in a BRET(2) fusion protein increased the light output by a factor of ~10. Substitution of native RLuc with either of the RLuc mutants resulted in a decrease in BRET(2) ratio by a factor of ~2 when BRET(2) components were separated by the thrombin cleavage sequence. BRET(2) ratios changed by factors of 18.8±1.2 and 18.2±0.4 for GFP(2)-RG-RLuc2 and GFP(2)-RG-RLuc8 fusion proteins, respectively, on thrombin cleavage compared to 28.8±0.20 for GFP(2)-RG-RLuc. The detection limits for thrombin were 0.23 and 0.26 nM for RLuc2 and RLuc8 BRET(2) systems, respectively, and 15 pM for GFP(2)-RG-RLuc. However, overall, the mutant BRET systems remain more sensitive than FRET and brighter than standard BRET(2).  相似文献   

17.
Bioluminescence resonance energy transfer (BRET), which relies on nonradiative energy transfer between luciferase-coupled donors and GFP-coupled acceptors, is emerging as a useful tool for analyzing the quaternary structures of cell-surface molecules. Conventional BRET analyses are generally done at maximal expression levels and single acceptor/donor ratios. We show that under these conditions substantial energy transfer arises from random interactions within the membrane. The dependence of BRET efficiency on acceptor/donor ratio at fixed surface density, or expression level at a defined acceptor/donor ratio, can nevertheless be used to correctly distinguish between well-characterized monomeric and oligomeric proteins, including a very weak dimer. The pitfalls associated with the nonrigorous treatment of BRET data are illustrated for the case of G protein-coupled receptors (GPCRs) proposed to form homophilic and/or mixed oligomers on the basis of previous, conventional BRET experiments.  相似文献   

18.
Identification of higher-order oligomers in the plasma membrane is essential to decode the properties of molecular networks controlling intercellular communication. We combined bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) in a technique called sequential BRET-FRET (SRET) that permits identification of heteromers formed by three different proteins. In SRET, the oxidation of a Renilla luciferase (Rluc) substrate by an Rluc fusion protein triggers acceptor excitation of a second fusion protein by BRET and subsequent FRET to a third fusion protein. We describe two variations of SRET that use different Rluc substrates with appropriately paired acceptor fluorescent proteins. Using SRET, we identified complexes of cannabinoid CB(1), dopamine D(2) and adenosine A(2A) receptors in living cells. SRET is an invaluable technique to identify heteromeric complexes of more than two neurotransmitter receptors, which will allow us to better understand how signals are integrated at the molecular level.  相似文献   

19.
Although homo-oligomerization has been reported for several G protein-coupled receptors, this phenomenon was not studied at low concentrations of receptors. Furthermore, it is not clear whether homo-oligomerization corresponds to an intrinsic property of nascent receptors or if it is a consequence of receptor activation. Here CCR5 receptor oligomerization was studied by bioluminescence resonance energy transfer (BRET) in cells expressing physiological levels of receptors. A strong energy transfer could be observed, in the absence of ligands, in whole cells and in both endoplasmic reticulum and plasma membrane subfractions, supporting the hypothesis of a constitutive oligomerization that occurs early after biosynthesis. No change in BRET was observed upon agonist binding, indicating that the extent of oligomerization is unrelated to the activation state of the receptor. In contrast, a robust increase of BRET, induced by a monoclonal antibody known to promote receptor clustering, suggests that microaggregation of preformed receptor homo-oligomers can occur. Taken together, our data indicate that constitutive receptor homo-oligomerization has a biologically relevant significance and might be involved in the process of receptor biosynthesis.  相似文献   

20.
Homogeneous protein-protein interaction assays without the need of a separation step are an essential tool to unravel signal transduction events in live cells. We have established an isoform specific protein kinase A (PKA) subunit interaction assay based on bioluminescence resonance energy transfer (BRET). Tagging human Ralpha(I)-, Ralpha(II)-, as well as Calpha-subunits of PKA with Renilla luciferase (Rluc) as the bioluminescent donor or with green fluorescent protein (GFP2) as the energy acceptor, respectively, allows to directly probe PKA subunit interaction in living cells as well as in total cell extracts in order to study side by side PKA type I versus type II holoenzyme dynamics. Several novel, genetically encoded cAMP sensors and-for the first time PKA type I sensors-were generated. When C- and R-subunits are assembled to the respective holoenzyme complexes inside the cell, BRET occurs with a signal up to three times above the background. An increase of endogenous cAMP levels as well as treatment with the cAMP analog 8-Br-cAMP is reflected by a dose-dependent BRET signal reduction in cells expressing wild type proteins. In contrast to type II, the dissociation of the PKA type I holoenzyme complex was never complete in cells with maximally elevated cAMP levels. Both sensors dissociated completely upon treatment with 8-Br-cAMP after cell lysis, consistent with in vitro activation assays using holoenzymes assembled from purified PKA subunits. Interestingly, incubation of cells with the PKA antagonist Rp-8-Br-cAMPS leads to a significant BRET signal increase in cells expressing PKA type I or type II isoforms, indicating a stabilization of the holoenzyme complexes in vivo. Mutant RI subunits with reduced (hRIalpha-R210K) or abolished (hRIalpha-G200E/G324E) cAMP binding capability were studied to quantify maximal signal to noise ratios for the RI-BRET sensor. Utilizing BRET we demonstrate that PKA type II holoenzyme was rendered insensitive to beta-adrenergic receptor stimulation with isoproterenol when anchoring to the plasma membrane of COS-7 cells was disrupted by either using Ht31 peptide or by depletion of membrane cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号