首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 163 毫秒
1.
Internalin B (InlB) is a protein present on the surface of Listeria monocytogenes that mediates bacterial entry into mammalian cells. It is thought that InlB acts by binding directly to the hepatocyte growth factor (HGF) receptor, present on the surface of host cells. Binding of InlB to the HGF receptor results in mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase activation, followed by changes in the organization of the actin cytoskeleton. Here we have compared signaling by HGF and InlB. Whereas stimulation with equivalent concentrations of HGF and InlB elicits similar activation of the HGF receptor, we observed striking differences in downstream activation of MAP kinase. InlB leads to a greater activation of the Ras-MAP kinase pathway than does HGF. The leucine-rich repeat region, which was previously shown to be sufficient for binding and activation of the HGF receptor, lacks the ability to super-activate the Ras-MAP kinase pathway. Analysis of a series of deletion mutants suggests that it is the B repeat region between the leucine-rich repeat and GW domains that endows InlB with an increased ability to turn on the Ras-MAP kinase pathway. These unexpected observations suggest that HGF and InlB use alternative mechanisms to turn on cellular signaling pathways.  相似文献   

2.
The Listeria monocytogenes surface protein InlB mediates bacterial invasion into host cells by activating the human receptor tyrosine kinase Met. So far, it is unknown how InlB or the physiological Met ligand hepatocyte growth factor/scatter factor causes Met dimerization, which is considered a prerequisite for receptor activation. We determined two new structures of InlB, revealing a recurring, antiparallel, dimeric arrangement, in which the two protomers interact through the convex face of the leucine-rich repeat domain. The same contact is found in one structure of the InlB-Met complex. Mutations disrupting the interprotomeric contact of InlB reduced its ability to activate Met and downstream signaling. Conversely, stabilization of this crystal contact by two intermolecular disulfide bonds generates a constitutively dimeric InlB variant with exceptionally high signaling activity, which can stimulate cell motility and cell division. These data demonstrate that the signaling-competent InlB-Met complex assembles with 2:2 stoichiometry around a back-to-back InlB dimer, enabling the direct contact between the stalk region of two Met molecules.  相似文献   

3.
The tyrosine kinase Met, the product of the c-met proto-oncogene and the receptor for hepatocyte growth factor/scatter factor (HGF/SF), mediates signals critical for cell survival and migration. The human pathogen Listeria monocytogenes exploits Met signaling for invasion of host cells via its surface protein InlB. We present the crystal structure of the complex between a large fragment of the human Met ectodomain and the Met-binding domain of InlB. The concave face of the InlB leucine-rich repeat region interacts tightly with the first immunoglobulin-like domain of the Met stalk, a domain which does not bind HGF/SF. A second contact between InlB and the Met Sema domain locks the otherwise flexible receptor in a rigid, signaling competent conformation. Full Met activation requires the additional C-terminal domains of InlB which induce heparin-mediated receptor clustering and potent signaling. Thus, although it elicits a similar cellular response, InlB is not a structural mimic of HGF/SF.  相似文献   

4.
Host cell invasion by the facultative intracellular pathogen Listeria monocytogenes requires the invasion protein InlB in many cell types. InlB consists of an N-terminal internalin domain that binds the host cell receptor tyrosine kinase Met and C-terminal GW domains that bind to glycosaminoglycans (GAGs). Met binding and activation is required for host cell invasion, while the interaction between GW domains and GAGs enhances this effect. Soluble InlB elicits the same cellular phenotypes as the natural Met ligand hepatocyte growth factor/scatter factor (HGF/SF), e.g. cell scatter. So far, little is known about the central part of InlB, the B-repeat. Here we present a structural and functional characterization of the InlB B-repeat. The crystal structure reveals a variation of the β-grasp fold that is most similar to small ubiquitin-like modifiers (SUMOs). However, structural similarity also suggests a potential evolutionary relation to bacterial mucin-binding proteins. The B-repeat defines the prototype structure of a hitherto uncharacterized domain present in over a thousand bacterial proteins. Generally, this domain probably acts as a spacer or a receptor-binding domain in extracellular multi-domain proteins. In cellular assays the B-repeat acts synergistically with the internalin domain conferring to it the ability to stimulate cell motility. Thus, the B-repeat probably binds a further host cell receptor and thereby enhances signaling downstream of Met.  相似文献   

5.
The intracellular bacterial pathogen Listeria monocytogenes causes food-borne illnesses leading to gastroenteritis, meningitis or abortion. Listeria induces its internalization into some mammalian cells through binding of the bacterial surface protein InlB to its host receptor, the Met Receptor Tyrosine Kinase. InlB-induced activation of Met stimulates host signal transduction pathways that culminate in cell surface changes driving pathogen engulfment. One mammalian protein with the potential to couple Met to downstream signalling is the adaptor CrkII. CrkII contains an unusual carboxyl-terminal SH3 domain (SH3C) that promotes entry of Listeria. However, binding partners or downstream effectors of SH3C remain unknown. Here, we use RNA interference and overexpression studies to demonstrate that SH3C affects bacterial uptake, at least in part, through stimulation of host phosphatidylinositide (PI) 3-kinase. Experiments with latex beads coated with InlB protein indicated that one potential role of SH3C and PI 3 kinase is to promote changes in the F-actin cytoskeleton necessary for particle engulfment. Taken together, our results indicate that the CrkII SH3C domain engages a cellular ligand that regulates PI 3 kinase activity and host cell surface rearrangements.  相似文献   

6.
InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion.  相似文献   

7.
Listeria monocytogenes uptake by nonphagocytic cells is promoted by the bacterial invasion proteins internalin and InlB, which bind to their host receptors E-cadherin and hepatocyte growth factor receptor (HGF-R)/Met, respectively. Here, we present evidence that plasma membrane organization in lipid domains is critical for Listeria uptake. Cholesterol depletion by methyl-beta-cyclodextrin reversibly inhibited Listeria entry. Lipid raft markers, such as glycosylphosphatidylinositol-linked proteins, a myristoylated and palmitoylated peptide and the ganglioside GM1 were recruited at the bacterial entry site. We analyzed which molecular events require membrane cholesterol and found that the presence of E-cadherin in lipid domains was necessary for initial interaction with internalin to promote bacterial entry. In contrast, the initial interaction of InlB with HGF-R did not require membrane cholesterol, whereas downstream signaling leading to F-actin polymerization was cholesterol dependent. Our work, in addition to documenting for the first time the role of lipid rafts in Listeria entry, provides the first evidence that E-cadherin and HGF-R require lipid domain integrity for their full activity.  相似文献   

8.
Shen Y  Naujokas M  Park M  Ireton K 《Cell》2000,103(3):501-510
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.  相似文献   

9.
The signalling pathway for the hepatocyte growth factor receptor, Met/HGF-R, is hijacked by the bacterial surface protein InlB to induce Listeria monocytogenes entry into non-phagocytic cells. We previously showed that Listeria invades host cells by interacting with specialized microdomains of the host plasma membrane called lipid rafts. In this study, we analysed in living cells signalling events that are crucial for Listeria entry using a fluorescence resonance energy transfer-based microscopic method. Phosphoinositide (PI) 3-kinase activity and Rac1 signalling induced by Listeria interacting with epithelial cells were monitored as well as signalling induced by soluble InlB and the Met natural ligand HGF. We found that InlB and HGF induced similar kinetics of PI 3-kinase and Rac1 activation. PI 3-kinase activation was upstream and independent of Rac1 activation. Cholesterol-depletion experiments were performed to address the role of lipid rafts in Met signalling. The amount of 3'-phosphoinositides produced by PI 3-kinase was not affected by cholesterol depletion, while their membrane dynamic was cholesterol-dependent. Rac1 activation, downstream from PI 3-kinase, was cholesterol-dependent suggesting that the spatial distribution of 3'-phosphoinositides within membrane microdomains is critical for Rac1 activation and consequently for F-actin assembly at bacterial entry site.  相似文献   

10.
The bacterium Listeria monocytogenes has the unusual capacity to enter and to multiply in nonphagocytic cells. Bacterially induced phagocytosis is triggered mainly by the two surface proteins internalin (also called InlA) and InlB, which interact with host cell receptors and either mimic or act in place of the normal cellular ligands. Internalin interacts specifically with human E-cadherin, whereas InlB activates the tyrosine kinase receptor Met and also interacts with the ubiquitous receptor gC1qR and proteoglycans. Signals induced by crosstalk between the bacterium and the host cell allow internalization, which is a prelude to intracellular multiplication, actin-based movement and spread of the bacterium from cell to cell. Manipulating the bacterial invasion proteins offers us an unprecedented tool with which to understand the complex phenomenon of phagocytosis.  相似文献   

11.
The bacterial pathogen Listeria monocytogenes uses the surface protein InlB to invade a variety of cell types. The interaction of InlB with the hepatocyte growth-factor receptor, Met, is crucial for infection to occur. Remarkably, the ubiquitin ligase Cbl is rapidly recruited to InlB-activated Met. Recent studies have shown that ligand-dependent endocytosis of Met and other receptor tyrosine kinases is triggered by monoubiquitination of the receptor, a process that is mediated by Cbl. Here, we show that purified InlB induces the Cbl-dependent monoubiquitination and endocytosis of Met. We then demonstrate that the bacterium exploits the ubiquitin-dependent endocytosis machinery to invade mammalian cells. First, we show that L. monocytogenes colocalizes with Met, EEA1, Cbl, clathrin and dynamin during entry. Then, we assess the role of different proteins of the endocytic machinery during L. monocytogenes infection. Over-expression or down-regulation of Cbl, respectively, increases or decreases bacterial invasion. Furthermore, RNA interference-mediated knock-down of major components of the endocytic machinery (for example, clathrin, dynamin, eps15, Grb2, CIN85, CD2AP, cortactin and Hrs), inhibit bacterial entry, establishing that the endocytic machinery is key to the bacterial internalization process.  相似文献   

12.
The bacterial surface protein InlB mediates internalization of Listeria monocytogenes into mammalian cells through interaction with the host receptor tyrosine kinase, Met. InlB/Met interaction results in activation of the host phosphoinositide (PI) 3-kinase p85-p110, an event required for bacterial entry. p85-p110 activation coincides with tyrosine phosphorylation of the host adaptor Gab1, and formation of complexes between Gab1 and the p85 regulatory subunit of PI 3-kinase. When phosphorylated in response to agonists, Gab1 is known to recruit several Src-homology 2 (SH2) domain-containing proteins including p85, the tyrosine phosphatase Shp2 and the adaptor CrkII. Here, we demonstrate that Gab1.p85 and Gab1.CrkII complexes promote entry of Listeria. Overexpression of wild-type Gab1 stimulated entry, whereas Gab1 alleles unable to recruit all SH2 proteins known to bind wild-type Gab1 inhibited internalization. Further analysis with Gab1 alleles defective in binding individual effectors suggested that recruitment of p85 and CrkII are critical for entry. Consistent with this data, overexpression of wild-type CrkII stimulated bacterial uptake. Experiments with mutant CrkII alleles indicated that both the first and second SH3 domains of this adaptor participate in entry, with the second domain playing the most critical role. Taken together, these findings demonstrate novel roles for Gab1 and CrkII in Listeria internalization.  相似文献   

13.
Internalin B (InlB), a surface protein of the human pathogen Listeria monocytogenes, promotes invasion into various host cell types by inducing phagocytosis of the entire bacterium. The N-terminal half of InlB (residues 36-321, InlB321), which is sufficient for this process, contains a central leucine-rich repeat (LRR) domain that is flanked by a small alpha-helical cap and an immunoglobulin (Ig)-like domain. Here we investigated the spectroscopic properties, stability and folding of InlB321 and of a shorter variant lacking the Ig-like domain (InlB248). The circular dichroism spectra of both protein variants in the far ultraviolet region are very similar, with a characteristic minimum found at approximately 200 nm, possibly resulting from the high 3(10)-helical content in the LRR domain. Upon addition of chemical denaturants, both variants unfold in single transitions with unusually high cooperativity that are fully reversible and best described by two-state equilibria. The free energies of GdmCl-induced unfolding determined from transitions at 20 degrees C are 9.9(+/-0.8)kcal/mol for InlB321 and 5.4(+/-0.4)kcal/mol for InlB248. InlB321 is also more stable against thermal denaturation, as observed by scanning calorimetry. This suggests, that the Ig-like domain, which presumably does not directly interact with the host cell receptor during bacterial invasion, plays a critical role for the in vivo stability of InlB.  相似文献   

14.
J L Gaillard  P Berche  C Frehel  E Gouin  P Cossart 《Cell》1991,65(7):1127-1141
We report the identification of a previously unknown gene, inlA, which is necessary for the gram-positive intracellular pathogen Listeria monocytogenes to invade cultured epithelial cells. The inlA region was localized by transposon mutagenesis, cloned, and sequenced. inlA was introduced into Listeria innocua and shown to confer on this normally noninvasive species the ability to enter cells. Sequencing of inlA predicts an 80 kd protein, internalin. Two-thirds of internalin is made up of two regions of repeats, region A and region B, and the C-terminus of the molecule is similar to that of surface proteins from gram-positive cocci. Internalin has a high content of threonine and serine residues, and the repeat motif of region A has regularly spaced leucine residues. As evidenced by Southern blot analysis, inlA is part of a gene family. One of them is the gene situated directly downstream of inlA, called inlB, which also encodes a leucine-rich repeat protein.  相似文献   

15.
Many bacterial pathogens that invade non-phagocytic cells first interact with host cell surface receptors. Adhesion to the host cell is followed by the activation of specific host signalling pathways that mediate bacterial internalization. The food-borne Gram-positive bacterium Listeria monocytogenes makes use of two surface proteins, internalin (InlA) and InlB to engage in a species-specific manner the adhesion molecule E-cadherin and the hepatocyte growth factor receptor Met, respectively, to induce its internalization. After entry, Listeria has the capacity to spread from cell to cell and disseminate to its target organs after breaching the intestinal, blood–brain and placental barriers in human. InlA but not InlB is critical for the crossing of the intestinal barrier, whereas the conjugated action of both InlA and InlB mediates the crossing of the placental barrier. Here we review the InlA–E-cadherin interaction, the signalling downstream of this interaction, the molecular mechanisms involved in bacterial internalization and the role of InlA–E-cadherin interaction in the breaching of host barriers and the progression to listeriosis. Together, this review illustrates how in vitro data were validated by epidemiological approaches and in vivo studies using both natural hosts and genetically engineered animal models, thereby elucidating key issues of listeriosis pathophysiology.  相似文献   

16.
采用PCR技术扩增单核细胞增多性李氏杆菌TA野毒株内化素B(InlB)基因,进行编码分子的序列和结构分析,并克隆入大肠杆菌表达载体pET28a中诱导表达。该基因全长1893bp,编码630个氨基酸,其中前35个氨基酸残基构成信号肽序列。在推导的InlB蛋白氨基酸序列中,从N端到C端分别包括1个α-螺旋的Cap结构域、6个富含亮氨酸的重复基序(LRR)、1个免疫球蛋白样结构域(IR)、1段B重复序列和3个串联的GW结构域,同时还存在5个潜在的N-联糖基化位点,Leu占所有氨基酸残基的10.2%。与GenBank已经报道的18个不同流行株InlB基因相比,核苷酸和推导的氨基酸序列的同源性分别在91.1%~99.6%和92.3%~99.8%之间。重组菌菌体裂解物经SDS-PAGE和Western blot分析证实该基因已经正确表达。用Ni2 亲和层析柱纯化了InlB重组蛋白。  相似文献   

17.
The Listeria monocytogenes protein InlB promotes intracellular invasion by activating the receptor tyrosine kinase Met. Earlier studies have indicated that the LRR fragment of InlB is sufficient for Met activation, but we show that this is not the case unless the LRR fragment is artificially dimerized through a disulphide bond. In contrast, activation of Met proceeds through monomers of intact InlB and, at physiologically relevant concentrations, requires coordinated action in cis of both InlB N-terminal LRR region and C-terminal GW domains. The GW domains are shown to be crucial for potentiating Met activation and inducing intracellular invasion, with these effects depending on association between GW domains and glycosaminoglycans. Glycosaminoglycans do not alter the monomeric state of InlB, and are likely to enhance Met activation through a receptor-mediated mode, as opposed to the ligand-mediated mode observed for the LRR fragment. Surprisingly, we find that gC1q-R, a host protein implicated in InlB-mediated invasion, specifically antagonizes rather than enhances InlB signalling, and that interaction between InlB and gC1q-R is unnecessary for bacterial invasion. Lastly, we demonstrate that HGF, the endogenous ligand of Met, substitutes for InlB in promoting intracellular invasion, suggesting that no special properties are required of InlB in invasion besides its hormone-like mimicry of HGF.  相似文献   

18.
InlB is a Listeria monocytogenes protein promoting entry in non-phagocytic cells, and has been shown recently to activate the hepatocyte growth factor receptor (HGFR or Met). The N-terminal domain of InlB (LRRs) binds and activates Met, whereas the C-terminal domain of InlB (GW modules) mediates loose attachment of InlB to the listerial surface. As HGF activation of Met is tightly controlled by glycosaminoglycans (GAGs), we tested if GAGs also modulate the Met-InlB interactions. We show that InlB-dependent invasion of non-phagocytic cells decreases up to 10 times in the absence of GAGs, and that soluble heparin releases InlB from the bacterial surface and promotes its clustering. Furthermore, we demonstrate that InlB binds cellular GAGs by its GW modules, and that this interaction is required for efficient InlB-mediated invasion. Therefore, GW modules have an unsuspected dual function: they attach InlB to the bacterial surface and enhance entry triggered by the LRRs domain. Our results thus provide the first evidence for a synergy between two host factor-binding domains of a bacterial invasion protein, and reinforce similarities between InlB and mammalian growth factors.  相似文献   

19.
Decorin, a member of the small leucine-rich proteoglycan gene family, impedes tumor cell growth by down-regulating the epidermal growth factor receptor. Decorin has a complex binding repertoire, thus, we predicted that decorin would modulate the bioactivity of other tyrosine kinase receptors. We discovered that decorin binds directly and with high affinity (Kd = ∼1.5 nM) to Met, the receptor for hepatocyte growth factor (HGF). Binding of decorin to Met is efficiently displaced by HGF and less efficiently by internalin B, a bacterial Met ligand. Interaction of decorin with Met induces transient receptor activation, recruitment of the E3 ubiquitin ligase c-Cbl, and rapid intracellular degradation of Met (half-life = ∼6 min). Decorin suppresses intracellular levels of β-catenin, a known downstream Met effector, and inhibits Met-mediated cell migration and growth. Thus, by antagonistically targeting multiple tyrosine kinase receptors, decorin contributes to reduction in primary tumor growth and metastastic spreading.  相似文献   

20.
The bacterial surface protein InlB mediates internalisation of Listeria monocytogenes into human cells through interaction with the host receptor tyrosine kinase, Met. InlB‐mediated entry requires localised polymerisation of the host actin cytoskeleton. Apart from actin polymerisation, roles for other host processes in Listeria entry are unknown. Here, we demonstrate that exocytosis in the human cell promotes InlB‐dependent internalisation. Using a probe consisting of VAMP3 with an exofacial green fluorescent protein tag, focal exocytosis was detected during InlB‐mediated entry. Exocytosis was dependent on Met tyrosine kinase activity and the GTPase RalA. Depletion of SNARE proteins by small interfering RNA demonstrated an important role for exocytosis in Listeria internalisation. Depletion of SNARE proteins failed to affect actin filaments during internalisation, suggesting that actin polymerisation and exocytosis are separable host responses. SNARE proteins were required for delivery of the human GTPase Dynamin 2, which promotes InlB‐mediated entry. Our results identify exocytosis as a novel host process exploited by Listeria for infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号