首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
2.
The insecticidal potency of a nucleopolyhedrovirus population (SfNIC) that infects Spodoptera frugiperda (Lepidoptera) is greater than the potency of any of the component genotypes alone. Occlusion bodies (OBs) produced in mixed infections comprising the complete genotype and a deletion genotype are as pathogenic as the natural population of genotypes from the field. To test whether this increased potency was due to the deletion or to some other characteristic of the deletion variant genome, we used the SfNIC-B genome to construct a recombinant virus (SfNIC-BΔ16K) with the same 16.4-kb deletion as that observed in SfNIC-C and another recombinant (SfNIC-BΔpifs) with a deletion encompassing two adjacent genes (pif1 and pif2) that are essential for transmission per os. Mixtures comprising SfNIC-B and SfNIC-BΔ16K in OB ratios that varied between 10:90 and 90:10 were injected into insects, and the progeny OBs were fed to larvae in an insecticidal potency assay. A densitometric analysis of PCR products indicated that SfNIC-B was generally more abundant than expected in mixtures based on the proportions of OBs used to produce the inocula. Mixtures derived from OB ratios of 10, 25, or 50% of SfNIC-BΔ16K and the corresponding SfNIC-B proportions showed a significant increase in potency compared to SfNIC-B alone. The results of potency assays with mixtures comprising various proportions of SfNIC-B plus SfNIC-BΔpifs were almost identical to the results observed with SfNIC-BΔ16K, indicating that deletion of the pif gene region was responsible for the increased potency observed in mixtures of SfNIC-B and each deletion recombinant virus. Subsequently, mixtures produced from OB ratios involving 10 or 90% of SfNIC-BΔ16K with the corresponding proportions of SfNIC-B were subjected to four rounds of per os transmission in larvae. The composition of each experimental mixture rapidly converged to a common equilibrium with a genotypic composition of ∼85% SfNIC-B plus ∼15% SfNIC-BΔ16K. Nearly identical results were observed in peroral-passage experiments involving mixtures of SfNIC-B plus SfNIC-BΔpifs. We conclude that (i) the deletion of the pif1 and pif2 region is necessary and sufficient to explain the increased potency observed in mixtures of complete and deletion genotypes and (ii) viral populations with decreased ratios of pif1- and pif2-deficient genotypes in the virus population increase the potency of genotypic mixtures and are likely to positively influence the transmission of this pathogen.When hosts are infected by multiple genotypes of a pathogen, competition between genotypes of low relatedness may favor rapid exploitation of host resources, resulting in an increase in the virulence of the infection, reflected in the degree of damage inflicted on the host (12). Because individual self-interest prevails under such conditions, a rapidly replicating genotype will quickly use up host resources for the production of progeny particles, thereby penalizing a more prudent coinfecting genotype, an interaction known as the “tragedy of the commons” (33, 44, 49). In contrast, when relatedness between genotypes is high, cooperative exploitation of host resources is favored because the rate of exploitation of host resources is often determined by the production of intracellular products by the infecting group, an interaction known as “collective action” (2). Each of these models entail different temptations to cheat or defect from the common goal, by excessive greed in the acquisition of public goods (intracellular products) in the case of the tragedy model, and by overly frugal contribution to the pool of public goods in the case of the collective action model (3). In the case of viruses, such game theory approaches to social dilemmas have provided unique insights into the role of cooperation and defection in the evolution of virulence (2, 11, 24, 44), pathogenesis (45), disease management, and the development of potential therapeutic agents (7, 15, 26).Coinfection by multiple genotypes is a common characteristic of many host-parasite systems, especially insect viruses (5, 6, 14, 19-21). When multiple virus particles infect individual host cells, deletion mutants can arise that have lost genes that are essential for transmission or replication (35). These defective particles survive by sequestering the gene products of complete genotypes in coinfected cells. Recently, we demonstrated that deletion genotypes were prevalent in a genotypically diverse population of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) originally isolated in Nicaragua (SfNIC). The most abundant deletion genotype, named SfNIC-C, comprised a 16.4-kb deletion compared to the complete genotype, named SfNIC-B (40). This deletion included two genes, pif1 and pif2, that encode peroral infection factors that are essential for per os infection (9, 25, 32, 36), which is the usual route of transmission of these viruses. SfNIC-C survives by complementation with PIF-encoding genotypes in the population, a process that requires that complete and deletion genotypes replicate simultaneously in the same cells. The persistence of deletion genotypes at a high frequency in the population signifies that multiple infection of cells is likely to be a common event. However, pif1- and pif2-defective genotypes can replicate autonomously in cell culture or in larvae, if injected. Remarkably, the progeny viruses from insects that had been simultaneously inoculated with a mixture of complete and deletion genotypes, in a ratio similar to that found in nature (∼3:1), were ∼2.5 times more pathogenic, as indicated by concentration-mortality metrics, than the complete genotype alone (28, 38, 39). Whether the increased pathogenicity of mixed genotype inocula was specifically due to the deletion has remained unclear and identifying the gene(s) involved represents a key to our understanding of baculovirus infection strategies.The structure of NPV is complex (46). The multiple NPVs consist of single genomes of double-stranded DNA inside individual nucleocapsids. Groups of approximately one to seven nucleocapsids are then wrapped by an envelope to form occlusion-derived virions (ODVs) that are in turn occluded by a protein matrix to form occlusion bodies (OBs) with approximately 20 to 80 virions within each OB. When consumed by a susceptible insect larva, the OBs dissolve in the alkaline insect midgut releasing numerous virions. The ODV membrane fuses with the membranes of midgut epithelial cells, a process that requires the presence of PIFs in the virion membrane (25, 31). After membrane fusion, the package of nucleocapsids is delivered into the host cell and nucleocapsids migrate to the nucleus, where they uncoat and commence replication. Initially, progeny nucleocapsids migrate from the nucleus and bud from the cell as individual virions, each containing a single genome that spread within the host to initiate secondary infections. It is estimated that each cell of the insect is infected by ∼4 budded virions (4, 38). Later, nucleocapsids are retained in the nucleus, wrapped into ODVs and occluded into OBs. After death, the tegument of the insect breaks down and OBs are released onto plant surfaces for transmission to other susceptible insects. It is clear that both the physical structure and the replication cycle of these viruses foster a high prevalence of infection by multiple genotypes.In the present study we examine the genetic basis for increased pathogenicity and test the hypothesis that coinfection of cells by complete and deleted genotypes results in OBs with increased potency compared to those of the complete genotype alone. Here, we use the term potency to mean the quantity of OBs required to produce a certain prevalence of host mortality, such as the 50% lethal concentration, compared to a standard reference, which in this case are OBs of the complete genotype B. As such, potency is a comparative measure of virus insecticidal activity. We demonstrate that the deletion of the pif1 and pif2 region is necessary and sufficient to explain this increased potency. Finally, we examine the dynamics of mixed infection in serial passage in the natural host and demonstrate that previous findings, in which the ratios of genotypes in experimental mixtures converged to a common equilibrium, were determined by the influence that pif1- and pif2-deficient genotypes exert on OB potency, thereby indirectly influencing the probability of virus transmission.  相似文献   

3.
Defective viruses, that are deficient in certain essential genes, are maintained in the population by trans-complementation, exploiting the gene products of complete genotypes in co-infected cells. This process becomes prevalent only when cells are frequently infected by several virus particles, and only then will the fitness of defective viruses be subjected to frequency-dependent selection. Deletion variants that are not infectious per os are present in a multicapsid nucleopolyhedrovirus (SfMNPV, Baculoviridae) that infects the fall army worm, Spodoptera frugiperda. These variants enhance the pathogenicity and, therefore, the likelihood of transmission of the virus when co-infecting cells with complete genotypes, resulting in occlusion bodies (OBs) that may contain both genotypes co-occluded. Mixtures of complete (B) and defective (C) variants in ratios of 90% B+10% C, 50% B+50% C and 10% B+90% C were used to inoculate by injection S. frugiperda larvae. Viral OBs extracted from diseased insects were subjected to four or five successive rounds of per os infection. Following successive passages, genotype frequencies in all three experimental populations converged to a single equilibrium frequency comprising approximately 20% of deletion genotype C and approximately 80% of complete genotype B. This mirrors the relative proportions of deletion (22%) and complete (78%) genotypes observed in the wild-type SfMNPV population. The pathogenicity of experimental populations at the final passage was not significantly different from that of the wild-type isolate. In contrast, OBs of all genotype mixtures were significantly more pathogenic than OBs of genotype B alone. A population genetics model, in which virus populations were assigned linear frequency-dependent transmissibility values, was in remarkably close agreement to empirical data. Clearly, non-infectious deletion variants can profoundly affect the likelihood of transmission and the genetic structure and stability of virus populations.  相似文献   

4.
A Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides.  相似文献   

5.
A Colombian field isolate (SfCOL-wt) of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfMNPV) is a mixture of different genotypes. To evaluate the insecticidal properties of the different genotypic variants, 83 plaque purified virus were characterized. Ten distinct genotypes were identified (named A through J). SfCOL-A was the most prevalent (71±2%; mean ± SE) showing a PstI restriction profile indistinguishable to that of SfCOL-wt. The remaining nine genotypes presented genomic deletions of 3.8 - 21.8 Kb located mainly between nucleotides 11,436 and 33,883 in the reference genome SfMNPV-B, affecting the region between open reading frames (ORFs) sf20 and sf33. The insecticidal activity of each genotype from SfCOL-wt and several mixtures of genotypes was compared to that of SfCOL-wt. The potency of SfCOL-A occlusion bodies (OBs) was 4.4-fold higher than SfCOL-wt OBs, whereas the speed of kill of SfCOL-A was similar to that of SfCOL-wt. Deletion genotype OBs were similarly or less potent than SfCOL-wt but six deletion genotypes were faster killing than SfCOL-wt. The potency of genotype mixtures co-occluded within OBs were consistently reduced in two-genotype mixtures involving equal proportions of SfCOL-A and one of three deletion genotypes (SfCOL-C, -D or -F). Speed of kill and OB production were improved only when the certain genotype mixtures were co-occluded, although OB production was higher in the SfCOL-wt isolate than in any of the component genotypes, or mixtures thereof. Deleted genotypes reduced OB potency but increased OB production of the SfCOL-wt population, which is structured to maximize the production of OBs in each infected host.  相似文献   

6.
The Nicaraguan population of Spodoptera frugiperda multiple nucleopolyhedrovirus, SfMNPV-NIC, is structured as a mixture of nine genotypes (A-I). Occlusion bodies (OBs) of SfMNPV-C, -D and -G pure genotypes are incapable of oral transmission; a phenotype which in SfMNPV-C and -D is due to the absence of pif1 and pif2 genes. The complete sequence of the SfMNPV-G genome was determined to identify possible factors involved in this phenotype. Deletions of 4860 bp (22,366-27,225) and 60 bp (119,759-119,818) were observed in SfMNPV-G genome compared with that of the predominant complete genotype SfMNPV-B (132,954 bp). However no genes homologous to previously described per os infectivity factors were located within the deleted sequences. Significant differences were detected in the nucleotide sequence in sf58 gene (unknown function) that produced changes in the amino acid sequence and the predicted secondary structure of the corresponding protein. This gene is conserved only in lepidopteran baculoviruses (alpha- and betabaculoviruses). To determine the role of sf58 in peroral infectivity a deletion mutant was constructed using bacmid technology. OBs of the deletion mutant (Sf58null) were not orally infectious for S. frugiperda larvae, whereas Sf58null rescue virus OBs recovered oral infectivity. Sf58null DNA and occlusion derived virions (ODVs) were as infective as SfMNPV bacmid DNA and ODVs in intrahemocelically infected larvae or cell culture, indicating that defects in ODV or OB morphogenesis were not involved in the loss of peroral infectivity. Addition of optical brightener or the presence of the orally infectious SfMNPV-B OBs in mixtures with SfMNPV-G OBs did not recover Sf58null OB infectivity. According to these results sf58 is a new per os infectivity factor present only in lepidopteran baculoviruses.  相似文献   

7.
An insect nucleopolyhedrovirus naturally survives as a mixture of at least nine genotypes. Infection by multiple genotypes results in the production of virus occlusion bodies (OBs) with greater pathogenicity than those of any genotype alone. We tested the hypothesis that each OB contains a genotypically diverse population of virions. Few insects died following inoculation with an experimental two-genotype mixture at a dose of one OB per insect, but a high proportion of multiple infections were observed (50%), which differed significantly from the frequencies predicted by a non-associated transmission model in which genotypes are segregated into distinct OBs. By contrast, insects that consumed multiple OBs experienced higher mortality and infection frequencies did not differ significantly from those of the non-associated model. Inoculation with genotypically complex wild-type OBs indicated that genotypes tend to be transmitted in association, rather than as independent entities, irrespective of dose. To examine the hypothesis that virions may themselves be genotypically heterogeneous, cell culture plaques derived from individual virions were analysed to reveal that one-third of virions was of mixed genotype, irrespective of the genotypic composition of the OBs. We conclude that co-occlusion of genotypically distinct virions in each OB is an adaptive mechanism that favours the maintenance of virus diversity during insect-to-insect transmission.  相似文献   

8.
A Chrysodeixis chalcites single-nucleocapsid nucleopolyhedrovirus wild-type isolate from the Canary Islands, Spain, named ChchSNPV-TF1 (ChchTF1-wt), appears to have great potential as the basis for a biological insecticide for control of the pest. An improved understanding of the genotypic structure of this wild-type strain population should facilitate the selection of genotypes for inclusion in a bioinsecticidal product. Eight genetically distinct genotypes were cloned in vitro: ChchTF1-A to ChchTF1-H. Quantitative real-time PCR (qPCR) analysis confirmed that ChchTF1-A accounted for 36% of the genotypes in the wild-type population. In bioassays, ChchTF1-wt occlusion bodies (OBs) were significantly more pathogenic than any of the component single-genotype OBs, indicating that genotype interactions were likely responsible for the pathogenicity phenotype of wild-type OBs. However, the wild-type population was slower killing and produced higher OB yields than any of the single genotypes alone. These results strongly suggested that the ChchTF1-wt population is structured to maximize its transmission efficiency. Experimental OB mixtures and cooccluded genotype mixtures containing the most abundant and the rarest genotypes, at frequencies similar to those at which they were isolated, revealed a mutualistic interaction that restored the pathogenicity of OBs. In OB and cooccluded mixtures containing only the most abundant genotypes, ChchTF1-ABC, OB pathogenicity was even greater than that of wild-type OBs. The ChchTF1-ABC cooccluded mixture killed larvae 33 h faster than the wild-type population and remained genotypically and biologically stable throughout five successive passages in vivo. In conclusion, the ChchTF1-ABC mixture shows great potential as the active ingredient of a bioinsecticide to control C. chalcites in the Canary Islands.  相似文献   

9.
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus is being studied as a possible biological insecticide. This virus exists as a mixture of complete and deletion genotypes; the latter depend on the former for the production of an essential per os transmission factor (pif1) in coinfected cells. We hypothesized that the virus population was structured to account for the prevalence of pif1 defector genotypes, so that increasing the abundance of pif1 produced by a cooperator genotype in infected cells would favor an increased prevalence of the defector genotype. We tested this hypothesis using recombinant viruses with pif1 expression reprogrammed at its native locus using two exogenous promoters (egt, p10) in the pif2/pif1 intergenic region. Reprogrammed viruses killed their hosts markedly faster than the wild-type and rescue viruses, possibly due to an earlier onset of systemic infection. Group success (transmission) depended on expression of pif1, but overexpression was prejudicial to group-specific transmissibility, both in terms of reduced pathogenicity and reduced production of virus progeny from each infected insect. The presence of pif1-overproducing genotypes in the population was predicted to favor a shift in the prevalence of defector genotypes lacking pif1-expressing capabilities, to compensate for the modification in pif1 availability at the population level. As a result, defectors increased the overall pathogenicity of the virus population by diluting pif1 produced by overexpressing genotypes. These results offer a new and unexpected perspective on cooperative behavior between viral genomes in response to the abundance of an essential public good that is detrimental in excess.  相似文献   

10.
The genetic diversity of pathogens, and interactions between genotypes, can strongly influence pathogen phenotypes such as transmissibility and virulence. For vector-borne pathogens, both mammalian hosts and arthropod vectors may limit pathogen genotypic diversity (number of unique genotypes circulating in an area) by preventing infection or transmission of particular genotypes. Mammalian hosts often act as “ecological filters” for pathogen diversity, where novel variants are frequently eliminated because of stochastic events or fitness costs. However, whether vectors can serve a similar role in limiting pathogen diversity is less clear. Here we show using Francisella novicida and a natural tick vector of Francisella spp. (Dermacentor andersoni), that the tick vector acted as a stronger ecological filter for pathogen diversity compared to the mammalian host. When both mice and ticks were exposed to mixtures of F. novicida genotypes, significantly fewer genotypes co-colonized ticks compared to mice. In both ticks and mice, increased genotypic diversity negatively affected the recovery of available genotypes. Competition among genotypes contributed to the reduction of diversity during infection of the tick midgut, as genotypes not recovered from tick midguts during mixed genotype infections were recovered from tick midguts during individual genotype infection. Mediated by stochastic and selective forces, pathogen genotype diversity was markedly reduced in the tick. We incorporated our experimental results into a model to demonstrate how vector population dynamics, especially vector-to-host ratio, strongly affected pathogen genotypic diversity in a population over time. Understanding pathogen genotypic population dynamics will aid in identification of the variables that most strongly affect pathogen transmission and disease ecology.  相似文献   

11.
A Nicaraguan isolate of Spodoptera frugiperda multiple nucleopolyhedrovirus (SfNIC) survives as a complex mixture of genotypes (named A to I). The speed of kill, time-mortality distribution, and occlusion body (OB) production of single genotypes (A, B and F) and co-occluded mixtures of genotypes, in a 75% + 25% ratio, were compared to determine the contribution of each genotype to the transmissibility of the viral population. Pure genotypes differed markedly in their speed of kill in second instar S. frugiperda. The speed of kill of SfNIC was attenuated compared to that of the dominant genotype B, indicating that interactions involving two or more genotypes likely determine host killing traits in the virus population. Genotypes A, F and defective genotype C, had no significant effects on the distribution of insect deaths over time when present as minority components in mixtures comprising 75% of genotype B. Similarly, the mortality pattern over time of insects infected by genotype F, the fastest-killing genotype tested, was not affected by the presence of genotypes A or C. Semi-quantitative PCR studies indicated that the genetic composition did not differ significantly between SfNIC-infected insects that died soon (67 h) or late (139 h) after inoculation, suggesting that stability in genotypic composition is important for virus survival. Median OB production per insect was correlated with mean time to death so that attenuated speed of kill of SfNIC resulted in high OB yields. We conclude that (i) minority genotypes play a functional role in determining the timing of mortality of infected hosts and (ii) the genotypic structure of the virus population is stably maintained to maximize the likelihood of survival.  相似文献   

12.
A Nicaraguan isolate of a nucleopolyhedrovirus (SfNIC) that attacks the fall armyworm, Spodoptera frugiperda, survives as a mixture of nine genotypes (SfNIC A to I) that all present genomic deletions, except variant B (complete genotype). Sequencing of cloned restriction fragments revealed that genotypic variants lack between 5 and 16 of the open reading frames present in a contiguous sequence of 18 kb of the SfNIC genome. The absence of oral infectivity of SfNIC-C and -D variants is related to the deletion of the pif and/or pif-2 gene, while that of SfNIC-G remains unexplained. The presence of open reading frame 10, homolog of Se030, also appeared to influence pathogenicity in certain variants. Previous studies demonstrated a significant positive interaction between genotypes B and C. We compared the median lethal concentration of single genotypes (A, B, C, D, and F) and co-occluded genotype mixtures (B+A, B+D, B+F, A+C, and F+C in a 3:1 ratio). Mixtures B+A and B+D showed increased pathogenicity, although only B+D restored the activity of the mixture to that of the natural population. Mixtures of two deletion variants (A+C and F+C) did not show interactions in pathogenicity. We conclude that minority genotypes have an important influence on the overall pathogenicity of the population. These results clearly demonstrate the value of retaining genotypic diversity in virus-based bioinsecticides.  相似文献   

13.
Our goal was to improve the biosafety of baculovirus-based technologies by deleting the pif (per os infectivity factor) gene from baculovirus expression vectors. Such a deletion would block transmission in nature without disturbing protein production. A pif deletion mutant of Autographa californica multiplecapsid nucleopolyhedrovirus (AcMNPV) was constructed and its infectivity to two host species was tested by oral or intrahemocoelic inoculation. Virus replication after oral inoculation was monitored using PCR. Oral inoculations with a mixture of the wild type and the pif deletion viruses were carried out. The pif deletion blocked oral infection but it did not hamper infectivity in cell culture. The blockage took place early after inoculation and could not be overcome by mixed inoculations with the wild type. The cat gene was inserted under the control of the polyhedrin promoter in the deletion mutant and the wild type CAT yield was measured in Spodoptera frugiperda insect cells (Sf9) infected with either recombinant. The pif deletion did not hamper CAT production. This deletion significantly improved CAT yields early in the infection. Hence, expression vectors lacking pif may produce higher quality protein. The pif deletion is a simple measure that dramatically reduces the chances of virus spread or gene transfer in nature.  相似文献   

14.
1.  Plant genotypic diversity has important consequences for a variety of ecosystem processes, yet empirical evidence for its effects on productivity, one of the most fundamental of these processes, is lacking. In addition, the performance of insect herbivores in response to high genotypic diversity is unknown, despite previous work demonstrating differential herbivore performance among plant genotypes.
2.  We manipulated genotypic diversity of the annual plant Arabidopsis thaliana in both the presence and absence of the generalist herbivore Trichoplusia ni under semi-natural growth conditions. We used nine genotypes (eight ecotypes and one mutant) of A. thaliana known to differ widely in functional traits. Productivity and insect biomass were measured in monocultures and mixtures of all nine genotypes grown at multiple fertilization levels and planting densities.
3.  In both the absence and presence of herbivores, genotypic diversity increased plant productivity and survival. This effect was, for the most part, independent of fertility or density. Sampling or selection effects did not appear to be wholly responsible for these results as all genotypes were maintained in equal proportion and no single genotype became dominant for the duration of the experiment.
4.  High diversity increased T. ni biomass and survival in all treatments. Insect biomass was positively, but not tightly, correlated to plant biomass, indicating that the higher herbivore performance observed in genotypic mixtures was only partially due to higher productivity.
5. Synthesis. Our data support the idea that even within a single plant species, genotypic diversity can exert strong influences on both the producer and herbivore communities. The exact mechanisms responsible for these effects and the relative importance of genotypic diversity in natural communities warrant further investigation.  相似文献   

15.
Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes) and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores, genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lakeshore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27% of the established populations survived in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. In 2014, several small patches of Ranunculus clones were still present, but plants were strongly intermingled, which precluded their assignment to the original treatments. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.  相似文献   

16.
Evidence suggests that midgut trypsins in Aedes aegypti condition the mosquito's ability to become infected with the dengue-2 flavivirus (DEN2). The activity of early trypsin protein peaks approximately 3 h after blood feeding and then drops within a few hours. We use association mapping to test the hypothesis that segregating sites in early trypsin condition midgut susceptibility to DEN2 virus. A total of 1642 females from throughout Mexico and the southern US were fed an artificial blood meal containing DEN2. After 2 weeks, mosquito heads and midguts were tested for DEN2. Mosquitoes with an infected head were classified as susceptible, those without a midgut infection had an infection barrier, and those with an infected gut but no head infection had an escape barrier. The early trypsin gene was amplified in two overlapping pieces from each mosquito and analyzed for single strand conformation polymorphisms (SSCPs). Unique SSCP genotypes were sequenced and 90 segregating sites were found. The dataset was divided into the four geographic regions within which Ae. aegypti is panmictic in Mexico. Heterogeneity chi2 analyses between alleles or genotypes and infection phenotypes demonstrated significant associations but allelic and genotypic effects were inconsistent among geographic regions. No consistent associations were found between segregating sites in early trypsin and susceptibility to DEN2 in Ae. aegypti in Mexico.  相似文献   

17.
We genotyped pooled adult worms of Schistosoma mansoni from infected CF1, C57BL/6, BALB/c, and BALB/c interferon gamma knockout mice in order to establish if mouse strain differences selected for parasite genotypes. We also compared differentiation in eggs collected from liver and intestines to determine if there was differential distribution of parasite strains in the vertebrate host that might account for any genotype selection. We found that mouse strains with differing immune responses did not differ in resistance to infection and did not select for parasite genotypes. Schistosoma mansoni egg allele frequencies were also equally distributed in tissues and the difference between adult and egg allele frequencies was negligible.  相似文献   

18.
Genetic stability in a population of a plant pathogenic fungus over time   总被引:10,自引:1,他引:9  
Collections of the plant pathogenic fungus Mycosphaerella graminicola were made from the same field of wheat over a 3-year period. The field was planted with small plots containing four varieties of wheat grown in pure stand and in all possible two-, three- and four-way mixtures. In each year, the wheat field was recolonized by a local source of inoculum of unknown origin. Allele frequencies at 10 RFLP loci were compared at two different times within a growing season and over the 3-year period. No significant differences in allele frequencies were found for any of the RFLP loci over any of the time periods. DNA fingerprints were used to identify clones produced by asexual reproduction. Genotypic diversity based on the frequency of each clone was compared for each collection. No significant changes in genotypic diversity were found within a year or between years. Identical genotypes were found in the field at different times within a season, but no clones were conserved between years. No clone existed in a high frequency in any year, suggesting that selection for particular asexual lineages was weak. The founding population each year probably originated from wind-borne ascospores of the teleomorph, which may exist as an indigenous population on alternative hosts, such as Poa annua (annual bluegrass).  相似文献   

19.
Game theoretical models predict that plant competition for light leads to reduced productivity of vegetation stands through selection for traits that maximize carbon gains of individuals. Using empirical results from a 5-year competition experiment with 10 genotypes of the clonal plant Potentilla reptans, we tested this prediction by analyzing the effects of the existing leaf area values on the carbon gain of the different genotypes and the consequent whole canopy carbon gain. We focused on specific leaf area (SLA) due to its role in the trade-off between light capture area and photosynthetic capacity per unit area. By combining a canopy model based on measured leaf area and light profiles with a game theoretical approach, we analyzed how changes in the SLA affected genotypic and whole-stand carbon gain. This showed that all genotypes contributed to reduced stand productivity. The dominant genotype maximized its share of total carbon gain, resulting in lower than maximal absolute gain. Other genotypes did not maximize their share. Hypothetical mutants of the dominant genotype were not able to achieve a higher carbon gain. Conversely, in other genotypes, some mutations did result in increased carbon gain. Hence, genotypic differences in the ability to maximize performance may determine genotype frequency. It shows how genotypic selection may result in lower carbon gains of the whole vegetation, and of the individual genotypes it consists of, through similar mechanisms as those that lead to the tragedy of the commons.  相似文献   

20.
In the larvae of the silkworm, Bombyx mori, the regeneration of midgut cells infected with a cytoplasmic polyhedrosis virus (CPV), a flacherie virus (FV), and a small DNA virus (SDV) was studied. Large numbers of newly developed cells appeared in the CPV-infected part of the midgut epithelium just before larval molt, and along with their development, the CPV-infected old columnar cells were discharged into the midgut lumen during the molt. On the other hand, in the uninfected portion of the midgut only a few cells developed, and no columnar cells were discharged. Similarly, the marked replacement of midgut epithelial cells during larval molt was also observed in larvae infected with CPV + FV. In the larvae infected with CPV + SDV, the columnar cells lost their regenerative ability, and because of the exfoliation of infected columnar cells, the midgut epithelium consisted mainly of uninfected goblet cells at a late stage of infection. The degree of epithelial regeneration varied with the silkworm strain and the dosage of the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号