首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To study fuel ethanol fermentation with Kluyveromyces marxianus ATCC8554 from Jerusalem artichoke (Helianthus tuberosus) grown in salina and irrigated with a mixture of seawater and freshwater. Methods and Results: The growth and ethanol fermentation of K. marxianus ATCC8554 were studied using inulin as substrate. The activity of inulinase, which attributes to the hydrolysis of inulin, the main carbohydrate in Jerusalem artichoke, was monitored. The optimum temperatures were 38°C for growth and inulinase production, and 35°C for ethanol fermentation. Aeration was not necessary for ethanol fermentation with the K. marxianus from inulin. Then, the fresh Jerusalem artichoke tubers grown in salina and irrigated with 25% and 50% seawater were further examined for ethanol fermentation with the K. marxianus, and a higher ethanol yield was achieved for the Jerusalem artichoke tuber irrigated with 25% seawater. Furthermore, the dry meal of the Jerusalem artichoke tubers irrigated with 25% seawater was examined for ethanol fermentation at three solid concentrations of 200, 225 and 250 g l?1, and the highest ethanol yield of 0·467, or 91·5% of the theoretical value of 0·511, was achieved for the slurry with a solid concentration of 200 g l?1. Conclusions: Halophilic Jerusalem artichoke can be used for fuel ethanol production. Significance and Impact of the Study: Halophilic Jerusalem artichoke, not competing with grain crops for arable land, is a sustainable feedstock for fuel ethanol production.  相似文献   

2.
Ethanol fermentation from Jerusalem artichoke tubers was performed at elevated temperatures by the consolidated bioprocessing strategy using Saccharomyces cerevisiae MK01 expressing inulinase through cell surface display. No significant difference was observed in yeast growth when temperature was controlled at 38 and 40 °C, respectively, but inulinase activity with yeast cells was substantially enhanced at 40 °C. As a result, enzymatic hydrolysis of inulin was facilitated and ethanol production was improved with 89.3 g/L ethanol produced within 72 h from 198.2 g/L total inulin sugars consumed. Similar results were also observed in ethanol production from Jerusalem artichoke tubers with 85.2 g/L ethanol produced within 72 h from 185.7 g/L total sugars consumed. On the other hand, capital investment on cooling facilities and energy consumption for running the facilities would be saved, since regular cooling water instead of chill water could be used to cool down the fermentation system.  相似文献   

3.
Aims: Developing an innovative process for ethanol fermentation from Jerusalem artichoke tubers under very high gravity (VHG) conditions. Methods and Results: A consolidated bioprocessing (CBP) strategy that integrated inulinase production, saccharification of inulin contained in Jerusalem artichoke tubers and ethanol production from sugars released from inulin by the enzyme was developed with the inulinase‐producing yeast Kluyveromyces marxianus Y179 and fed‐batch operation. The impact of inoculum age, aeration, the supplementation of pectinase and nutrients on the ethanol fermentation performance of the CBP system was studied. Although inulinase activities increased with the extension of the seed incubation time, its contribution to ethanol production was negligible because vigorously growing yeast cells harvested earlier carried out ethanol fermentation more efficiently. Thus, the overnight incubation that has been practised in ethanol production from starch‐based feedstocks is recommended. Aeration facilitated the fermentation process, but compromised ethanol yield because of the negative Crabtree effect of the species, and increases the risk of contamination under industrial conditions. Therefore, nonaeration conditions are preferred for the CBP system. Pectinase supplementation reduced viscosity of the fermentation broth and improved ethanol production performance, particularly under high gravity conditions, but the enzyme cost should be carefully balanced. Medium optimization was performed, and ethanol concentration as high as 94·2 g l?1 was achieved when 0·15 g l?1 K2HPO4 was supplemented, which presents a significant progress in ethanol production from Jerusalem artichoke tubers. Conclusions: A CBP system using K. marxianus is suitable for efficient ethanol production from Jerusalem artichoke tubers under VHG conditions. Significance and Impact of the Study: Jerusalem artichoke tubers are an alternative to grain‐based feedstocks for ethanol production. The high ethanol concentration achieved using K. marxianus with the CBP system not only saves energy consumption for ethanol distillation, but also significantly reduces the amount of waste distillage discharged from the distillation system.  相似文献   

4.
以乙醇耐受力较强的酿酒酵母为受体菌,构建了能够分泌菊粉酶的基因工程菌并进行了菊芋粉的生料发酵。首先,以马克斯克鲁维酵母Kluyveromyces marxianus中的基因组DNA为模板,PCR扩增菊粉酶编码基因inu,分别使用菊粉酶自身启动子和酵母磷酸甘油激酶 (Phosphoglycerate kinase,pgk) 启动子,构建重组表达质粒HO/p-inu和HO/pgk-inu。经NotⅠ线性化后,采用电击法转化酿酒酵母工业菌株Saccharomyces cerevisiae 6525,分别得到含菊  相似文献   

5.
VariousSaccharomyces cerevisiae strains were transformed with a 2 μ-based multicopy expression plasmid, pYIGP, carryingKluyveromyces marxianus inulinase gene under the control ofGAPDH promoter. Among them two strains, SEY2102 and 2805, showed high levels of cell growth and inulinase expression, and were selected to study their fermentation properties on inulin. Jerusalem artichoke inulin was more effective for cell growth (10∼11 g-dry wt./L at 48 hr) and inulinase expression (1.0 units/mL with SEY2102/pYIGP and 2.5 units/mL with 2805/pYIGP) than other inulin sources such as dahlia and chicory. It was also found that maximal ethanol production of 9 g/L was obtained from Jerusalem artichoke inulin at the early stationary phase (around 30 hr), indicating that recombinantS. cerevisiae cells secreting exoinulinase could be used for the simultaneous saccharification of inulin and ethanol fermentation.  相似文献   

6.
Thermotolerant inulin-utilizing yeast strains are desirable for ethanol production from Jerusalem artichoke tubers by consolidated bioprocessing (CBP). To obtain such strains, 21 naturally occurring yeast strains isolated by using an enrichment method and 65 previously isolated Saccharomyces cerevisiae strains were investigated in inulin utilization, extracellular inulinase activity, and ethanol fermentation from inulin and Jerusalem artichoke tuber flour at 40?°C. The strains Kluyveromyces marxianus PT-1 (CGMCC AS2.4515) and S. cerevisiae JZ1C (CGMCC AS2.3878) presented the highest extracellular inulinase activity and ethanol yield in this study. The highest ethanol concentration in Jerusalem artichoke tuber flour fermentation (200?g?L(-1)) at 40?°C achieved by K. marxianus PT-1 and S. cerevisiae JZ1C was 73.6 and 65.2?g?L(-1), which corresponded to the theoretical ethanol yield of 90.0 and 79.7?%, respectively. In the range of 30 to 40?°C, temperature did not have a significant effect on ethanol production for both strains. This study displayed the distinctive superiority of K. marxianus PT-1 and S. cerevisiae JZ1C in the thermotolerance and utilization of inulin-type oligosaccharides reserved in Jerusalem artichoke tubers. It is proposed that both K. marxianus and S. cerevisiae have considerable potential in ethanol production from Jerusalem artichoke tubers by a high temperature CBP.  相似文献   

7.
一步法发酵菊芋生产乙醇   总被引:12,自引:0,他引:12  
利用马克斯克鲁维酵母(Kluyveromyces marxianus)YX01具有菊粉酶生产能力且乙醇发酵性能良好的特点,直接发酵菊粉生成乙醇.在摇瓶中考察了该菌株最适发酵温度,进而在2.5L发酵罐中考察了通气量和底物浓度的影响.实验结果表明:该菌株最适发酵温度为35℃;在通气量为50 mL/min和100 mL/min时菌体生长加快,发酵时间缩短,但在不通气条件下糖醇转化率明显提高;在菊粉浓度235 g/L时,发酵终点乙醇浓度达到92.2 g/L,乙醇对糖的得率为0.436,为理论值的85.5%.在此基础上,使用近海滩涂种植海水灌溉收获的菊芋为底物,以批式补料方式直接发酵菊芋干粉浓度为280 g/L的底物,发酵终点乙醇浓度为84.0 g/L,乙醇对糖的得率为0.405,为理论值的80.0%.这些研究工作,为以菊芋为原料的燃料乙醇技术开发奠定了基础.  相似文献   

8.
马克斯克鲁维酵母能够利用集成生物加工技术发酵菊芋生产乙醇,具有非粮燃料乙醇生产潜力.文中研究了该技术中的两个关键因素(通气量和底物浓度)对于K.marxinaus YX01乙醇发酵过程和菊粉酶活性的影响.研究结果表明,底物浓度对乙醇得率影响不大,底物浓度为250 g/L时,发酵终点乙醇浓度为84.74 g/L,但乙醇得率由低浓度50 g/L的86.4%(理论值),降为84.7%.通气能够加速K.marxinaus YX01的乙醇发酵过程,但降低了乙醇得率,当底物浓度为250 g/L时,乙醇得率由不通气的84.7%降为1.0 vvm时的73.3%.随底物浓度的升高及通气量的降低,K.marxinaus YX01分泌的菊粉酶活力表现出降低的趋势.在不通气及底物浓度为250 g/L时,菊粉酶的活性为6.59 U/mL,而底物浓度50 g/L,通气量1.0 vvm时的酶活力为21.54 U/mL.乙醇发酵过程中的副产物甘油随通气量的降低及底物浓度的升高而增大,而乙酸的浓度随通气量的增大及底物浓度的升高而升高.  相似文献   

9.
The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 strain was overexpressed by using GAL10 promotor in a △gal80 strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to mating factor alpha signal sequence for secretory expression. Use of the △gal80 strain allowed the galactose-free induction of inulinase expression using a glucose-only medium. Shake flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the △gal80 strain improved the expression of inulinase in the recombinant S. cerevisiae in both the aerobic and the anaerobic condition by about 2.9- and 1.7-fold, respectively. 5 L fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at OD600 of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5L scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and the pH was controlled at 5.0. The temperature was maintained at 30degrees C and 37degrees C, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/L, respectively.  相似文献   

10.
Penicillium subrubescens, a new species efficiently producing inulinase   总被引:1,自引:0,他引:1  
Inulin is a reserve carbohydrate in about 15 % of the flowering plants and is accumulated in underground tubers of e.g. chicory, dahlia and Jerusalem artichoke. This carbohydrate consists of linear chains of β-(2,1)-linked fructose attached to a sucrose molecule. Inulinases hydrolyse inulin into fructose and glucose. To find efficient inulin degrading fungi, 126 fungal strains from the Fungal Biotechnology Culture Collection (FBCC) at University of Helsinki and 74 freshly isolated strains from soil around Jerusalem artichoke tubers were screened in liquid cultures with inulin as a sole source of carbon or ground Jerusalem artichoke tubers, which contains up to 19 % (fresh weight) inulin. Inulinase and invertase activities were assayed by the dinitrosalicylic acid (DNS) method and a freshly isolated Penicillium strain originating from agricultural soil (FBCC 1632) was the most efficient inulinase producer. When it was cultivated at pH 6 and 28 °C in 2 litre bioreactors using inulin and Jerusalem artichoke as a carbon source, inulinase and invertase activities were on day 4 7.7 and 3.1 U mL?1, respectively. The released sugars analysed by TLC and HPLC showed that considerable amounts of fructose were released while the levels of oligofructans were low, indicating an exoinulinase type of activity. Taxonomic study of the inulinase producing strain showed that this isolate represents a new species belonging in Penicillium section Lanata-divaricata. This new species produces a unique combination of extrolites and is phenotypically and phylogenetically closely related to Penicillium pulvillorum. We propose the name Penicillium subrubescens sp. nov. (CBS 132785T = FBCC 1632T) for this new species.  相似文献   

11.
Summary Production of inulinase in batch fermentation using various carbon sources with Kluyermoyces marxianus was examined. Inulinase synthesis in the culture proceeded parallel to cell growth. Glucose, fructose and sucrose were inferior carbon sources for inulinase broduction. Highest production (212 U/mL) was achieved on inulin based media.  相似文献   

12.
Yarrowia lipolytica ACA-DC 50109 has been reported to be an oleaginous yeast and significant quantities of lipids were accumulated inside the yeast cells. In this study, the INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the expression plasmid pINA1317 and expressed in the cells of the oleaginous yeast. The activity of the inulinase with 6 × His tag secreted by the transformant Z31 obtained was found to be 41.7U mL(-1) after cell growth for 78 h. After optimization of the medium and cultivation conditions for single cell oil production, the transformant could accumulate 46.3% (w/w) oil from inulin in its cells and cell dry weight was 11.6 g L(-1) within 78 h at the flask level. During the 2-L fermentation, the transformant could accumulate 48.3% (w/w) oil from inulin in its cells and cell dry weight was 13.3 g L(-1) within 78 h while the transformant could accumulate 50.6% (w/w) oil from extract of Jerusalem artichoke tubers in its cells and cell dry weight was 14.6 g L(-1) within 78 h. At the end of fermentation, most of the added sugar was utilized by the transformant cells. Over 91.5% of the fatty acids from the transformant cultivated in the extract of Jerusalem artichoke tubercles was C(16:0), C(18:1) and C(18:2), especially C(18:1) (58.5%).  相似文献   

13.
In the present study, after the exo-inulinase gene INU1 from Meyerozyma guilliermondii was optimized according to the codon usage bias of Saccharomyces cerevisiae, both the optimized gene INU1Y and the native gene INU1 were ligated into the homologous integration expression vector pMIRSC11 and expressed in Saccharomyces sp. W0. It was determined that the inulinase activity of the recombinant yeast Y13 with the optimized gene INU1Y was 43.84 U/mL, which was obviously higher than that (31.39 U/mL) produced by the recombinant yeast EX3 with the native gene INU1. Moreover, it was indicated that the recombinant yeast Y13 could produce 126.30 mg/mL ethanol from 300.0 g/L inulin while the recombinant yeast EX3 and Saccharomyces sp. W0 produced 122.75 mg/mL and 114.15 mg/mL ethanol, respectively, under the same conditions. In addition, the ethanol productivity of the recombinant yeast Y13 was 2.25 mg/mL/h within 48 h of the fermentation, which was obviously higher than that of the recombinant yeast EX3 (1.97 mg/mL/h) and Saccharomyces sp. W0 (1.77 mg/mL/h) within the same period. The results demonstrated that the recombinant yeast Y13 had higher ethanol production and productivity than the recombinant yeast EX3 and Saccharomyces sp. W0. Therefore, it was concluded that the codon optimization of the exo-inulinase gene from M. guilliermondii effectively enhanced inulinase activity and improved ethanol production from inulin by Saccharomyces sp. W0 carrying the optimized inulinase gene.  相似文献   

14.
To improve inulin utilization and ethanol fermentation, exoinulinase genes from the yeast Kluyveromyces marxianus and the recently identified yeast, Candida kutaonensis, were expressed in Saccharomyces cerevisiae. S. cerevisiae harboring the exoinulinase gene from C. kutaonensis gave higher ethanol yield and productivity from both inulin (0.38 vs. 0.34 g/g and 1.35 vs. 1.22 g l?1 h?1) and Jerusalem artichoke tuber flour (0.47 vs. 0.46 g/g and 1.62 vs. 1.54 g l?1 h?1) compared with the strain expressing the exoinulinase gene from K. marxianus. Thus, the exoinulinase gene from C. kutaonensis is advantageous for engineering S. cerevisiae to improve ethanol fermentation from inulin sources.  相似文献   

15.
菊芋含有大量的菊粉多糖,且种植简单、产量高,是极具开发价值的替代玉米等粮食作物生产燃料乙醇的原料。文中研究了鹰嘴豆孢克鲁维酵母Y179利用菊芋原料同步糖化与发酵生产乙醇。鹰嘴豆孢克鲁维酵母Y179具有高效分泌菊粉酶的能力,摇瓶试验显示Y179酵母能够利用完全由菊芋原料配制而成的培养基良好生长并发酵产生乙醇。通气及温度对乙醇产量影响明显,相对厌氧环境对Y179酵母发酵产乙醇具有促进作用,30℃发酵温度相对37℃和42℃更有利于乙醇产量提高。种子液培养时间及接种量对乙醇产量影响较小。在5 L发酵罐中以10%(V/V)量接入预培养36 h的Y179种子液,发酵液完全由菊芋干粉配制而成,总糖含量22%(W/V),30℃不通气,300 r/min搅拌,发酵144 h时,乙醇浓度达到12.3%(V/V),糖醇转化效率86.9%,糖利用率大于93.6%。初步研究结果显示鹰嘴豆孢克鲁维酵母Y179在利用菊芋原料生产乙醇方面具有良好应用前景。  相似文献   

16.
Zhao CH  Chi Z  Zhang F  Guo FJ  Li M  Song WB  Chi ZM 《Bioresource technology》2011,102(10):6128-6133
In this study, it was found that the immobilized inulinase-producing cells of Pichia guilliermondii M-30 could produce 169.3 U/ml of inulinase activity while the free cells of the same yeast strain only produced 124.3 U/ml of inulinase activity within 48 h. When the immobilized inulinase-producing yeast cells were co-cultivated with the free cells of Rhodotorula mucilaginosa TJY15a, R. mucilaginosa TJY15a could accumulate 53.2% oil from inulin in its cells and cell dry weight reached 12.2 g/l. Under the similar conditions, R. mucilaginosa TJY15a could accumulate 55.4% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 12.8 g/l within 48 h. When the co-cultures were grown in 2 l fermentor, R. mucilaginosa TJY15a could accumulate 56.6% (w/w) oil from the extract of Jerusalem artichoke tubers in its cells and cell dry weight reached 19.6 g/l within 48 h. Over 90.0% of the fatty acids from the yeast strain TJY15a grown in the extract of Jerusalem artichoke tubers was C16:0, C18:1 and C18:2, especially C18:1 (50.6%).  相似文献   

17.
Summary Inulinase activity produced by a mixed culture of Aspergillus niger and Kluyveromyces marxianus growing on Jerusalem artichoke powder was investigated. Inulinase produced by this mixed culture had a higher invertase-type activity than inulinase from respective monocultures. When hydrolysis was carried out at 50°C with Jerusalem artichoke exctract (total sugar 16% w/v) at pH 5.0, 90% hydrolysis was achieved after 4 h with 5% v/v of crude cell free enzyme preparation.  相似文献   

18.
为获得高产菊粉酶的黑曲霉菌株,以Aspergillus niger YH-1为出发菌株,经过亚硝基胍(NTG)诱变,以高温高菊芋粉相结合的方式进行梯度驯化,选育出一株产菊粉酶菌株YH-3,并运用响应面实验方法对该菌株的培养基进行优化。确定了最佳培养基组成:菊芋粉25.2 g/L、豆饼粉40 g/L、蔗糖酯4.9 g/L、NaCl 5.5 g/L。发现内切菊粉酶活力(I)由60.9 U/mL提高到165.0 U/mL,比出发菌株提高了1.7倍。研究证明蔗糖酯对于黑曲霉YH-3发酵产菊粉酶是一种有效的促进剂。  相似文献   

19.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.  相似文献   

20.
Inulinase is an important enzyme used in the high fructose syrup and other related industries. A more cost-effective approach is required for producing highly active inulinase. In this study, the gene encoding inulinase of the yeast Kluyveromyces marxianus CBS 6556 was expressed in methylotrophic host Pichia pastoris and secretory production of recombinant inulinase (rKmINU) in the yeast under methanol induction was achieved. The purified rKmINU showed a specific activity of 2714 U/mg, which is over 12-fold higher than those of other inulinases described previously. It displayed excellent stability from 30 to 50 °C and pH 3.0-5.0, and the half-life of rKmINU was over 96 h under these conditions. Moreover, rKmINU saccharified Jerusalem artichoke tuber juice effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号