首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Histology, physiological regeneration, and degradation of the taenioglossan prosobranch radula and its concomitant epithelia were studied by light and electron microscopy (TEM, SEM), electron microprobe analysis, and autoradiography. Taenioglossa have seven multicellular odontoblastic cushions which produce the tooth matrix by apocrine secretion; many long microvilli are also incorporated. In contrast to pulmonates, the odontoblasts of prosobranchs are capable of division, and their mitoses contribute to the expansion of the cushions, but presumably also to the displacement of degenerating odontoblasts. The seven cushions are isolated from each other by separation cells. The radular membrane is produced from microvilli of membranoblasts and a substance secreted at the base of microvilli.Strands of the supraradular epithelium subsequently move in between the teeth and finally enclose them completely. They effect the hardening and mineralization of the teeth. The strands move together with the radula towards the anterior and are extruded at the opening of the radular sheath; their degeneration, however, has already started in the middle section of the sheath. Epithelial cells are produced by two completely separated mitotic centres which lie dorsolaterally at the end of the sheath.In the subradular epithelium, mitotic activity is scattered over the posterior half of the sheath but is not found in the region where the supramedian radula tensor muscle is inserted. The epithelial cells move forward, but at a much lower rate than the radula. At the opening of the sheath the subradular membrane is generated, while cells of the subradular epithelium lying between the lamellae of the subradular membrane are extruded.The subradular membrane is limited to the functional part of the radula. It is situated on the distal radular epithelium, which is obviously not a continuation of the subradular epithelium. In test animals treated with tritiated thymidine, there is a very strong stationary centre of labeled cells at the beginning of the epithelium, but so far no mitoses have been found in this centre and the labeled cells do not move on continually. In the middle of the distal epithelium mitoses do occur, and the labeled cells permit the assumption that these cells do not migrate at all to the anterior end. At least in Prosobranchia, the distal radular epithelium does not transport the radula to its degradation zone. The transport mechanism for the radula is still unknown.  相似文献   

2.
Summary The continuous renewal of the pulmonate radula and the histology and regeneration of its concomitant epithelia were studied by light and electron microscopy, autoradiography and electron microprobe analysis. The two species investigated show histological differences and the results were compared with those of a preceding study on a prosobranch radula. The radula is an intricate cuticular structure of the foregut. Only the fully grown part, which is active during feeding, lies in the buccal cavity while it is constantly renewed by the coordinated cooperation of specialized cells forming the radular sheath. The end of the sheath is occupied by cells which produce the organic matrix of the radula. In taeniogloss prosobranchs, seven multicellular cushions of small odontoblasts lie at the end of the sheath and produce the seven teeth of each cross-row. In pulmonates, the multidenticular radula is generated by numerous groups of a few voluminuous cells. Despite these histological differences, prosobranchs and pulmonates generate the radula matrix by microvilli, cytoplasmatic protrusions and apocrine secretions. The epithelia of the radular sheath contribute to the transport, tanning and mineralization of the radula. The concomitant epithelia are replaced in limited proliferation zones at the end of the radular sheath and their cells migrate anteriorly to the buccal cavity. The ultrastructure of the sheath cells and the alterations which they undergo in connection with their functions are discussed. The proliferation zone of the superior epithelium is strictly confined and the cells move together with the radula forward. In prosobranchs, the cells of the superior epithelium begin to degenerate in the middle of the radular sheath and the entire epithelium is simply extruded into the buccal cavity. In pulmonates, the opening of the radular sheath is closed by the cuticular collostylar hood which is generated by a distinct epithelium which is proved to be stationary. When leaving the proliferation zone, the superior epithelium differentiates into supporting cells and mineralizing cells; the latter cause the hardening of the radular teeth and already degenerate in the middle of the sheath. The whole superior epithelium degenerates at the border to the collostylar hood-epithelium. In Lymnaea the degeneration zone is strictly confined whereas in Cepaea the collostylar hood and its generating epithelium extend into the radular sheath and the degeneration zone ranges over a distance of 3–5 rows of teeth. The proliferation zone of the inferior epithelium extends over the posterior half of the radular sheath, but the replacement rate is much lower than in the superior epithelium. Although the inferior epithelium carries the radula, it migrates slower than the radula. Obviously the radula has to be transported actively by apical protrusions of the cells, which penetrate into the radular membrane. At the opening of the radular sheath the inferior epithelium generates the adhesive layer and degenerates. During feeding, the adhesive layer has to maintain the firm mechanical connection between radula and distal radular epithelium. Autoradiographic experiments demonstrate that the distal radular epithelium is stationary. Nevertheless, the radula is known to advance to its degeneration zone. Special attention is paid to this problem. We strongly suspect that the transport of the adhesive layer and the radula is based on pseudopodial movements of apical protrusions characteristic for the distal radular epithelium. These protrusions interdigitate with the lower face of the adhesive layer. The mechanical connection has to be maintained and so the respective structures (tonofilaments and hemi-desmosomes) have to be continually renewed. This needs a high amount of energy and obviously results in the conspicuous concentration of mitochondria near the apical surface.Abbreviations al adhesive layer - ax axon - bc buccal cavity - bce buccal cavity epithelium - bl basal layer - bla basal labyrinth - bm basal membrane - bp basal plate - bpc basal plate cell - c cilia - ch collostylar hood - che collostylar hood-epithelium - cl cuticular layer - col collostyle - cr cell remnant - cts connective tissue sheath - d desmosome - dl upper layer - dre distal radular epithelium - dz degeneration zone - fe front edge - g granula - gol dictyosome - hd hemidesmosome - hl haemolymph - ie inferior epithelium - j jaw - ma tooth matrix - mc mineralizing cell - mem membranoblast - mfb microfibrills - mfl microfilaments - mgb multigranular body - mi mitochondria - mit mitosis - ml middle layer - mt microtubuli - mv microvilli - mw membrane whirl - n nucleus - nc necrotic cluster - nf nerve fibres - nsg neurosecretory granula - o odontophor - od odontoblast - odg odontoblast group - pod pre-odontoblast - rb residual body - rer rough endoplasmatic reticulum - rm radular membrane - rt radula teeth - sc supporting cell - se superior epithelium - sj septate junction - sro subradular organ - ss secretion substance - tf tonofilaments - tsm supramedian tensor muscle - tw terminal web - v vacuole - ves vesicle  相似文献   

3.
Gastropoda is morphologically highly variable and broadly distributed group of mollusks. Due to the high morphological and functional diversity of the feeding apparatus gastropods follow a broad range of feeding strategies: from detritivory to highly specialized predation. The feeding apparatus includes the buccal armaments: jaw(s) and radula. The radula comprises a chitinous ribbon with teeth arranged in transverse and longitudinal rows. A unique characteristic of the radula is its continuous renewal during the entire life of a mollusk. The teeth and the membrane are continuously synthesized in the blind end of the radular sac and are shifted forward to the working zone, while the teeth harden and are mineralized on the way. Despite the similarity of the general mechanism of the radula formation in gastropods, some phylogenetically determined features can be identified in different phylogenetic lineages. These mainly concern shape, size, and number of the odontoblasts forming a single tooth. The radular morphology depends on the shape of the formation zone and the morphology of the subradular epithelium. The radula first appears at the pre- and posttorsional veliger stages as an invagination of the buccal epithelium of the larval anterior gut. The larval radular sac is lined with uniform undifferentiated cells. Each major phylogenetic lineage is characterized by a specific larval radula type. Thus, the docoglossan radula of Patellogastropoda is characterized by initially three and then five teeth in a transverse row. The larval rhipidoglossan radula has seven teeth in a row with differentiation into central, lateral, and marginal teeth and later is transformed into the adult radula morphology by the addition of lateral and especially marginal teeth. The taenioglossan radula of Caenogastropoda is nearly immediately formed in adult configuration with seven teeth in a row.  相似文献   

4.
The radula is the basic feeding structure in gastropod molluscs and exhibits great morphological diversity that reflects the exceptional anatomical and ecological diversity occurring in these animals. This uniquely molluscan structure is formed in the blind end of the radular sac by specialized cells (membranoblasts and odontoblasts). Secretion type, and the number and shape of the odontoblasts that form each tooth characterize the mode of radula formation. These characteristics vary in different groups of gastropods. Elucidation of this diversity is key to identifying the main patterns of radula formation in Gastropoda. Of particular interest would be a phylogenetically closely related group that is characterized by high variability of the radula. One such group is the large monophyletic superfamily Conoidea, the radula of which is highly variable and may consist of the radular membrane with five teeth per row, or the radular membrane with only two or three teeth per row, or even just two harpoon-like teeth per row without a radular membrane. We studied the radulae of two species of Conoidea (Clavus maestratii Kilburn, Fedosov & Kantor, 2014 [Drilliidae] and, Lophiotoma acuta (Perry, 1811) [Turridae]) using light and electron microscopy. Based on these data and previous studies, we identify the general patterns of the radula formation for all Conoidea: the dorsolateral position of two groups of odontoblasts, uniform size, and shape of odontoblasts, folding of the radula in the radular sac regardless of the radula configuration. The morphology of the subradular epithelium is most likely adaptive to the radula type.  相似文献   

5.
As the original molluscan radula is not known from direct observation, we consider what the form of the original radula may have been from evidence provided by neomenioid Aplacophora (Solenogastres), Gastropoda, Polyplacophora, and the Cambrian fossil Wiwaxia corrugata (Matthews). Conclusions are based on direct observation of radula morphology and its accessory structures (salivary gland ducts, radular sac, anteroventral radular pocket) in 25 species and 16 genera of Aplacophora; radula morphogenesis in Aplacophora; earliest tooth formation in Gastropoda (14 species among Prosobranchia, Opisthobranchia, and Pulmonata); earliest tooth formation in four species of Polyplacophora; and the morphology of the feeding apparatus in W. corrugata. The existence of a true radula membrane and of membranoblasts and odontoblasts in neomenioids indicates that morphogenesis of the aplacophoran radula is homologous to that in other radulate Mollusca. We conclude from p redness of salivary gland ducts, a divided radular sac, and a pair of anteroventral pockets that the plesiomorphic state in neomenioids is bipartite, formed of denticulate bars that are distichous (two teeth per row) on a partially divided or fused radula membrane with the largest denticles lateral, as occurs in the genus Helicoradomenia. The tooth morphology in Helicoradomenia is similar to the feeding apparatus in W. corrugata. We show that distichy also occurs during early development in several species of gastropods and polyplacophorans. Through the rejection of the null hypothesis that the earliest radula was unipartite and had no radula membrane, we conclude that the original molluscan radula was similar to the radula found in Helicoradomena species.  相似文献   

6.
A radular mechanosensory neuron, RM, was identified in the buccal ganglia of Incilaria fruhstorferi. Fine neurites ramified bilaterally in the buccal ganglia, and main neurites entered the subradular epithelium via buccal nerve 3 (n3). When the radula was distorted by bending, RM produced an afferent spike which was preceded by an axonic spike recorded at n3. The response of RM to radular distortion was observed even in the absence of Ca2+, which drastically suppressed chemical synaptic interactions. Therefore, RM was concluded to be a primary radular mechanoreceptor.During rhythmic buccal motor activity induced by food or electrical stimulation of the cerebrobuccal connective, RM received excitatory input during the radular retraction phase. In the isolated buccal ganglia connected to the radula via n3s, the afferent spike, which had been evoked by electrical stimulation of the subradular epithelium, was broadened with the phasic excitatory input. Since the afferent spike was also broadened by current injection into the soma, depolarization due to the phasic input may have produced the spike broadening.Spike broadening was also observed during repetitive firing evoked by current injection. The amplitude of the excitatory postsynaptic potential in a follower neuron increased depending on the spike broadening of RM.Abbreviations CBC cerebrobuccal connective - EPSP excitatory postsynaptic potential - n1,n3 buccal nerves 1 and 3 - RBMA rhythmic buccal motor activity - RM radular mechanosensory neuron - SMT supramedian radular tensor neuron  相似文献   

7.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

8.
The radular teeth are secreted at the posterior end of the radular gland and move slowly towards the buccal cavity where they start to function. Helix pomatia and Limax flavus were examined to determine whether the newly formed teeth already show their definite species specific shape, or whether they are gradually finished and moulded in the radular gland. Scanning electron micrographs of Helix pomatia show that teeth are secreted in the odontoblast region in their final form. Their surface is still uneven at the outset; the same is true for the newest teeth of Limax flavus. Older teeth ready for use have a smooth surface. This change seems to be brought about by secretory activity of the superior epithelium of the radular sac. Air-dried radulae, previously isolated by KOH maceration, show considerable artefacts at their posterior end. Maceration leads to shrinking of the newest teeth, but does not change their contours. The newly secreted but as yet unhardened teeth become greatly deformed during the drying process.  相似文献   

9.
Radula morphology, tooth formation and chitin localization areinvestigated in four genera of Solenogas-tres and one genusof Caudofoveata using transmission electron microscopy. Radulateeth are secreted by groups of odontoblasts in the radula sheath.Tooth shape is determined by the arrangement of the odontoblastsand preformed by microvilli. Chitin is produced in the odontoblastsand is present in the teeth as well as in the basal materialof Solenogastres and in the radula membrane of Caudofoveata.Because of its development pattern and its ultrastructural morphologythe basal material is confirmed as being identical with theradula membrane. Mitotic activity in the basal epithelium isthought to support the forward movement of the radula. (Received 18 April 1991; accepted 12 December 1991)  相似文献   

10.
The ultrastructural organization of the proboscis in two species of free-living Platyhelminthes, Psammorhynchus tubulipenis and Cytocystis clitellatus is very alike but differs from previously described species. Both sheath and cone epithelium are composed of two circumferential belts. Only the basal cone epithelium is syncytial, while no nuclei were found in the distal belt of the sheath epithelium. The sheath epithelium is characterized by numerous infoldings of the basal plasma membrane. The nuclei present in the bulb belong to the proximal belt of the sheath epithelium and the apical cone epithelium. Nuclei of the basal cone epithelium are located insunk behind the proboscis bulb. The insunk cell parts pierce the septum of the bulb laterally near the proximal end. Different types of gland necks and sensory cells pierce the epithelia. Associated with the distal belt of the sheath epithelium, two sensory organs are found, containing multiciliary receptors with modified axonemata. Differences in organization of the proboscis musculature are described and compared with the organization in other species. The systematic position of both species is discussed in the light of the new findings.  相似文献   

11.
显微观察了瘤背石磺(Onchidiumstruma)和石磺(O. verruculatum)齿舌的形态结构。运用差异系数法对两种石磺齿舌参数进行比较分析。利用SPSS10.0对瘤背石磺、石磺齿舌参数(齿舌长、齿舌头宽、齿舌中宽、齿舌尾宽、横列数、每排最少齿片数和每排最多齿片数)与个体参数(体长、体宽、体高、足长、足宽和体重)作回归分析。结果表明,两种石磺齿舌都很发达,外观呈长统靴状;齿片排成许多横列,每一横列均有中央齿一枚,侧齿若干无缘齿;两种石磺的齿舌头宽、齿舌中宽和齿舌尾宽差异极显著,但差异系数小于1.28,认为两种石磺的齿片形态存在明显的种间差异,但齿舌参数不适合作为石磺属贝类的分类依据;瘤背石磺的体宽和石磺的体重在评估各自齿舌生物学性状方面起到比较重要的作用。  相似文献   

12.
以红条毛肤石鳖Acanthochiton rubrolineatus(Lischke)齿舌为材料,通过切片和酶组织化学技术,在光镜和电镜下对齿舌主侧齿的微结构及高铁还原酶的存在进行观察,从微观角度了解齿舌主侧齿齿尖的矿化机理。结果显示,成熟主侧齿由齿尖和齿基组成。齿尖结构由外至内分为三层,最外层为磁铁矿层,前后齿面磁铁矿层的厚度不等,后齿面约50μm,前齿面约5-10μm。向内依次为棕红色的纤铁矿层,厚约10μm,及略显黄色的有机基质层,有机基质层占据着齿尖内部的大部分结构。高分辨透射电镜下显示磁铁矿由条状四氧化三铁颗粒组成,长约2-3μm,宽约100-150nm。齿舌的矿化是一个连续过程,不同部段处于不同的矿化阶段,齿舌囊上皮细胞沿囊腔分布,并形成齿片。未矿化的新生主侧齿齿尖中存在由有机基质构成的网状结构。随矿化的进行,有机基质内出现矿物颗粒。初始矿化的齿尖外表面有一个细胞微突层,微突的另一端为囊上皮细胞,矿物质经由微突层达齿尖并沉积于有机基质中,齿尖随之矿化并成熟。初始矿化齿尖的外围有大量的三价铁化物颗粒,稍成熟的齿尖外围同时还出现二价铁化物。新生或初始矿化主侧齿齿尖外围的囊上皮细胞中有大量球形类似于铁蛋白聚集体的内容物,直径0.6-0.8μm,球体由膜包围。齿舌囊上皮组织中存在三价高铁还原酶,此酶分布于上皮细胞的膜表面,可能与齿尖表面磁铁矿的生成有一定的关系。    相似文献   

13.
Odontophoral cartilages are located in the molluscan buccal mass and support the movement of the radula during feeding. The structural diversity of odontophoral cartilages is currently known only from limited taxa, but this information is important for interpreting phylogeny and for understanding the biomechanical operation of the buccal mass. Caenogastropods exhibit a wide variety of feeding strategies, but there is little comparative information on cartilage morphology within this group. The morphology of caenogastropod odontophoral cartilages is currently known only from dissection and histology, although preliminary results suggest that they may be structurally diverse. A comparative morphological survey of 18 caenogastropods and three noncaenogastropods has been conducted, sampling most major caenogastropod superfamilies. Three‐dimensional models of the odontophoral cartilages were generated using X‐ray microscopy (micro‐CT) and reconstruction by image segmentation. Considerable morphological diversity of the odontophoral cartilages was found within Caenogastropoda, including the presence of thin cartilaginous appendages, asymmetrically overlapping cartilages, and reflexed cartilage margins. Many basal caenogastropod taxa possess previously unidentified cartilaginous support structures below the radula (subradular cartilages), which may be homologous to the dorsal cartilages of other gastropods. As subradular cartilages were absent in carnivorous caenogastropods, adaptation to trophic specialization is likely. However, incongruence with specific feeding strategies or body size suggests that the morphology of odontophoral cartilages is constrained by phylogeny, representing a new source of morphological characters to improve the phylogenetic resolution of this group. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
15.
Radular teeth of 22 Indo-Pacific species of the genus Conus(Neogastropoda: Toxoglossa) were compared. On morphologicalfeatures all can be related to one of three known feeding modes:piscivorous, vermivorous and molluscivorous. Observations arereported on the radular teeth of six piscivores, thirteen vermivoresand three molluscivores. The radular teeth of piscivores areof two general types. In the first, two barbs and a posteriorly-directedprocess with a recurved tip are found at the anterior end. Inthe second, two barbs are located at the anterior end and theshaft is serrated for most of its length. An enlarged posteriorregion (terminal knob) is present in the first and absent inthe second. Molluscivores possess radular teeth with two anteriorbarbs and in some species a serrated shaft or terminal knob.The radular teeth of vermivores, which show much greater interspecificvariation than those of piscivores or molluscivores, are characterizedby one or two anterior barbs and in most species a serratedregion near the apex. A forwardly-projecting cone (basal spur)is usually located on the terminal knob. Piscivores and molluscivoreslack such basal spurs. The radular teeth of Conus are used toconvey a potent venom and hold prey firmly during feeding. Previouslyundescribed morphological features are noted on the teeth ofC. obscurus and C. lividus. Figured here for the first timeare the radular teeth of C. abbreviatus, C. aureus, C. catus,C. litoglyphus, C. pennaceus, C. rattus and C. sponsalis. *Present address: Department of Paleontology, University ofCalifornia, Berkeley, California 94720, U.S.A. (Received 2 April 1979;  相似文献   

16.
The Buccinum radula is of the rachiglossate type with two outer rows of fierce hook-like attack teeth and a medial row of straight sharp-pointed shredding teeth. Individual cells of the radular retractor muscle are 10–12 m in diameter and separated at the closest by gaps of only 40 nm, providing areas of potential electrical contact. The cell membranes are heavily invested with long finger-like invaginations, associated with sarcoplasmic reticular cisternae, and surface caveolae; the latter are associated with the numerous dense body membrane attachment plaques found in this muscle. The radular retractor muscle possesses a significant sarcoplasmic reticulum of peripheral cisternae and deeper vesicles associated with mitochondria. The surface caveolae may result from myofilament force exerted via attachment plaques at the cell membrane, while deeper invaginations may constitute a rudimentary transverse tubular system to relay surface depolarization to associated sarcoplasmic reticular cisternae inducing calcium release to effect excitation-contraction coupling. The radular retractor muscle possesses the usual thick paramyosin and thin actin myofilaments, the latter associated with dense bodies and attachment plaques presumably to transduce force to the cell membrane. The mitochondria are unusually large and packed into dense central clusters surrounded by large deposits of glycogen granules. The nerve endings on the radular retractor muscle fibres show four different types of transmitter vesicle, presumably related to the four kinds of agonist action in this muscle, cholinergic, serotonergic, peptidergic and purinergic. All nerve endings have mixed vesicle populations, clear evidence of co-transmission. In this muscle we see a modification of usual smooth muscle structure to effect fast sustained contractions, an ultrastructural configuration functionally designed for the muscle's central role in the feeding cycle.Abbreviations ABRM anterior byssus retractor muscle - EC coupling excitation-contraction coupling - RP radular protractor muscle - RR radular retractor muscle - SR sarcoplasmic reticulum - T-system transverse tubular system  相似文献   

17.
The radular morphology of the patellid species Testudinalia testudinalis (O. F. Müller, 1776) from the White Sea was studied using light, electron, and confocal microscopy. The radula is of the docoglossan type with four teeth per row and consisting of six zones. We characterize teeth formation in T. testidinalis as follows: one tooth is formed by numerous and extremely narrow odontoblasts through apocrine secretion; this initially formed tooth consists of numerous vesicles; the synthetic apparatus of the odontoblasts is localized in the apical and central parts of the cells throughout the cytoplasm and is penetrated by microtubules which are involved in the transport of the synthesized products to the apical part of the odontoblast; the newly formed teeth consist of unpolymerized chitin. Mitotic activity is located in the lateral parts of the formation zone. The first four rows contain an irregular arrangement of teeth, but the radular teeth are regularly arranged after the fifth row. The irregularly arranged teeth early on could be a consequence of the asynchronous formation of teeth and the distance between the odontoblasts and the membranoblasts. The morphological data obtained significantly expands our knowledge of the morphological diversity of the radula formation in Gastropoda.  相似文献   

18.
The brooding gastropod Crepipatella dilatata can feed by scraping the substrate with the radula and by suspension-feeding, which also requires use of the radula. There is a “division of labour” for the radula among three discrete tasks associated with feeding: (1) removing mucous balls from the food pouch; (2) transferring the mucous cord from the neck channel to the mouth (both components of suspension-feeding); (3) scraping the substrate. We hypothesised that the proportion of time used for each feeding activity varies according to environmental conditions. Total radular activity in females was greatest at high tide and in summer. The rate of radular extrusion for ingesting the mucous cord varied seasonally and between brooding and non-brooding females. Non-brooding females exhibited higher rates of radular extrusion for ingesting the mucous cord and for scraping the substrate than did brooders. In females, radular activity in removing the mucous ball from the food pouch was strongly influenced by the tidal cycle during winter, reaching minimum values at low tide. Differences were recorded in substrate scraping among seasons and within tidal cycles, and among males, brooding females and non-brooding females. Brooding females displayed less rasping than non-brooders, since the area available for grazing was restricted by the egg mass. Throughout the year, including low salinity periods, males allocated a greater proportion of total radular activity to rasping than to removing the mucous ball or ingesting the mucous cord. The feeding behaviour of both males and females is modulated by salinity, but the principal determinants of radular activity are the mode of reproduction (brooding in females) and, in males, motility.  相似文献   

19.
Zusammenfassung Biomphalaria glabrata besitzt eine Prä- und eine Postradulatasche, sowie eine Sperrkutikula. Das Radulapolster besteht nicht aus Knorpel, sondern aus großen Zellen, die durch zahlreiche Vesikel, Mitochondrien, sowie durch peripher liegende Muskelfasern gekennzeichnet sind, während andere Zellen große Mengen Glykogen speichern. Die Odontoblasten sind charakterisiert durch ungewöhnlich lange Mikrovilli, die bis in die neugebildeten Radulazähne ragen. Die Zahnbildung beginnt über den hinteren Odontoblasten, die zunächst nur kurze Mikrovilli aufweisen. Das Aufrichten eines neugebildeten Zahns dürfte dadurch zustande kommen, daß die Mikrovilli länger werden. Zwischen den Mikrovilli befindet sich elektronendichtes Material, in dem Mikrofibrillen entstehen; diese dürften Chitin enthalten. Die Verflechtung der Mikrofibrillenbündel im ausgebildeten Zahn entspricht offensichtlich der komplizierten Anordnung der langen Mikrovilli während der Zahnbildung. Die Mikrovilli werden schließlich in den neugebildeten Zahn und die Radulamembran integriert. Mehrere Odontoblasten sezernieren gemeinsam einen Radulazahn. Die Radulamembran wird vorwiegend oder ausschließlich vom vordersten Odontoblasten sezerniert. Die Zellen des Deckepithels umschließen die Radulazähne; die sogenannte Sekrethöhle dürfte ein Artefakt sein. Zwischen Deckepithel und Zahn befindet sich elektronendichtes Material, das dem Zahn nicht aufgelagert wird, sondern in die Zähne eingelagert werden dürfte. Die Zellen des Basalepithels zeigen starke sekretorische Aktivität; die Sekrete dürften in Radulamembran und -zähne eingelagert werden.
Light and electron microscopic investigations on the radula complex and radula formation ofBiomphalaria glabrata say (=Australorbis gl.) (Gastropoda, Basommatophora)
Summary Biomphalaria (Australorbis) glabrata has a preradular as well as a postradular pocket and a collostyle hood. The odontophore cartilage does not consist of cartilage, but of cells which are characterized by numerous vesicles, mitochondria, and muscle fibres in the periphery; other cells contain large amounts of glycogen. The odontoblasts are characterized by unusually long microvilli which reach into the newly formed radula teeth. The formation of a tooth begins above the posterior odontoblast which has at first only short microvilli. The tooth seems to be raised by the extension of these microvilli. Microfibrils are formed in the electron dense material which is present in the small space between the microvilli; probably these microfibrils contain chitin. Obviously the interlacing of the bundles of microfibrils in a tooth corresponds with the complex arrangement of the long microvilli during formation of the tooth. Finally the microvilli are integrated into the newly formed tooth and radular membrane. Several odontoblasts join to form a single tooth. The radular membrane is secreted mainly or exclusively by the most anterior odontoblast. The cells of the superior epithelium surround the radula teeth. The so-called secretion cavity seems to be an artifact. Electron dense material is present between teeth and superior epithelium which is not apposed to but seems to be integrated into the teeth. The cells of the inferior epithelium show considerable secretory activity; the secretions seem to be incorporated into radular teeth and membrane.
  相似文献   

20.
Dissections were performed to document buccal anatomy in three species of the pulmonate genus Helisoma Swainson, 1840. The 28 muscles which are responsible for radular feeding in these animals are organized in three concentric and integrated envelopes. The deepest of these includes muscles which manipulate the radula about the odontophoral cartilage. Elements of the middle envelope direct movements of the cartilage within the buccal cavity, and muscles of the outer envelope control movements of the buccal mass within the cephalic haemocoel. Motion analysis by videomicrography showed that muscles of the middle and outer envelopes contribute to the action of radular feeding by acting as antagonists to other muscles and to hydrostatic elements of the buccal apparatus. Observations of radular dentition showed that although each of the three species examined has a unique radula, especially with regard to the specific details of tooth shape, all resemble a radula characteristic of the Planorbidae with regard to other, more general, aspects of ribbon architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号