首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Drexler KE 《Biopolymers》2011,96(5):537-544
Methods for facile synthesis of extraordinarily diverse peptide-like oligomers have placed peptoids at the center of a broad and vibrant area of foldamer science and technology. The 7th Peptoid Summit offered a perspective on the current state of peptoid science and technology and on prospects for engineering supramolecular assemblies that rival the complexity of biomolecular systems. Methods for engineering biomolecular systems based on DNA and protein are advancing rapidly, building a technology platform for engineering increasingly large and complex self-assembled nanosystems. A comparative review of the physical basis for DNA, protein, and peptoid engineering indicates that the characteristics of peptoids suit them for a strong role in developing self-assembled nanosystems. Physical parallels between peptoids and proteins indicate that peptoid engineering, like protein engineering, will require specialized software to support design. Access to novel side-chain functionality will enable peptoid designers to exploit novel binding interactions, including many that have been discovered and exploited in crystal engineering, a field that has extensively explored the self-assembly of small organic molecules to form well-ordered structures. Developments in DNA, protein, and inorganic nanotechnologies are converging to provide a technology platform for the design and fabrication of complex, functional, atomically precise nanosystems. Peptoid-based foldamer technologies, can contribute to this convergence, expanding the scope of the emerging field of atomically precise macromolecular nanosystems.  相似文献   

2.
Pilsl LK  Reiser O 《Amino acids》2011,41(3):709-718
Interplay between proteins, nucleic acids, carbohydrates and/or lipids is involved in almost every process in life on earth. As a consequence, a wide range of diseases results from abnormal interactions of such biomolecules. The main motivation of foldamer science is the development of scaffolds that are capable of adopting defined structures, mimicking parts of biological protagonists in their function. Among the most fundamental interactions in living beings are those between proteins, the so called protein–protein interactions (PPIs). Therefore, peptidic foldamers bear the promise to be an important tool for the inhibition of PPIs, as they are structurally most similar to the original proteins. The great number of possible permutations given by the combination of proteinogenic α-amino acid residues along with β-amino acids opens the door for a larger pool of accessible structures with potential applications. Despite the increasing amount of new secondary structure motifs, only few examples for tertiary and quaternary structure design, as well as inhibition of PPIs, have been realized so far. In this review, we summarize the current knowledge and recent progress made in the field of α/β-peptide foldamers beginning from secondary structure design up to highly sophisticated biological applications, such as protein surface recognition and inhibition of HIV cell entry.  相似文献   

3.

Background and Aims

Unnatural self-organizing biomimetic polymers (foldamers) emerged as promising materials for biomolecule recognition and inhibition. Our goal was to construct multivalent foldamer-dendrimer conjugates which wrap the synaptotoxic β-amyloid (Aβ) oligomers with high affinity through their helical foldamer tentacles. Oligomeric Aβ species play pivotal role in Alzheimer''s disease, therefore recognition and direct inhibition of this undruggable target is a great current challenge.

Methods and Results

Short helical β-peptide foldamers with designed secondary structures and side chain chemistry patterns were applied as potential recognition segments and their binding to the target was tested with NMR methods (saturation transfer difference and transferred-nuclear Overhauser effect). Helices exhibiting binding in the µM region were coupled to a tetravalent G0-PAMAM dendrimer. In vitro biophysical (isothermal titration calorimetry, dynamic light scattering, transmission electron microscopy and size-exclusion chromatography) and biochemical tests (ELISA and dot blot) indicated the tight binding between the foldamer conjugates and the Aβ oligomers. Moreover, a selective low nM interaction with the low molecular weight fraction of the Aβ oligomers was found. Ex vivo electrophysiological experiments revealed that the new material rescues the long-term potentiation from the toxic Aβ oligomers in mouse hippocampal slices at submicromolar concentration.

Conclusions

The combination of the foldamer methodology, the fragment-based approach and the multivalent design offers a pathway to unnatural protein mimetics that are capable of specific molecular recognition, and has already resulted in an inhibitor for an extremely difficult target.  相似文献   

4.
By varying the molecular charge, shape and amphiphilicity of a series of conformationally distinct diarylureas it is possible to control the levels of phospholipid membrane lysis using membranes composed of bacterial lipid extracts. From the data obtained, it appears as though the lysis activity observed is not due to charge, conformation or amphiphilicity in isolation, but that surface aggregation, H-bonding and other factors may also play a part. The work provides evidence that this class of foldamer possesses potential for optimisation into new antibacterial agents.  相似文献   

5.
Scale and macroecological patterns in seed dispersal mutualisms   总被引:2,自引:0,他引:2  
Although some studies of seed dispersal mutualisms have documented adaptive relationships between fruits and frugivores, others have shown that adaptive patterns are constrained by phylogenetic, historical or climatic effects. Variable results among studies have thwarted attempts to find a paradigm to unite the field and direct research. Two recent studies in Global Ecology and Biogeography exemplify this dichotomy. One paper reported adaptive relationships between abundances of birds and fruits, while the other study found that bird‐fruit abundance patterns were constrained by climatic effects. Almost paradoxically, both studies were conducted at the same locale. However, they focused on different spatio‐temporal scales. These results are surprisingly consistent with several other recent studies that have taken a macroecological approach. They also indicate that mutualistic relationships between fruits and frugivores are scale dependent. When viewed together, recent work suggests that the conflicting results of previous studies may result from spatio‐temporal variability of mutualistic relationships. This paper briefly reviews the emerging field of seed dispersal macroecology. A growing appreciation for scale appears to be leading the field in a new direction.  相似文献   

6.
The mystery of how a protein sequence specifies a unique structure has intrigued chemists, leading to the design and study of foldamers, non-natural oligomeric molecules that adopt well-defined structures. Recently, the sequence specificity of the various regular repeating structures has been revealed for bioinspired foldamers and such foldamers have been created to adopt helical bundle tertiary structures. One major strategy for the generation of abiotic foldamers has involved molecular design of the monomer geometry. These advances in foldamer research may lead to future applications in biomedical and materials science.  相似文献   

7.
Recent trends in functional food science and the industry in Japan   总被引:2,自引:0,他引:2  
International recognition of functional foods has resulted in the recent global development of this field, which originated in Japan. The national policy on functional foods, in terms of "foods for specified health use", also has been developing and has motivated the food industry to produce a variety of new food items. In Japan as well as in many other countries, academic and industrial scientists have been working in collaboration for the analysis and practical applications of functional food science. Emphasis has been placed on the study of antioxidant and anticarcinogenic food factors as well as pre- and probiotics. This review pinpoints recent trends in the science and industry in this field.  相似文献   

8.
制浆造纸生物技术研究进展   总被引:17,自引:0,他引:17  
制浆造纸工业是国民经济的主要支柱之一,但也是资源消耗和环境污染的大户。近年来,国外用于制浆造纸工业的生物技术研究异常活跃,除废水生物处理外,木聚糖酶助漂、脂肪酶控制树脂、木片真菌预处理和酶法废纸脱墨等工艺已经在生产中得到实际应用,生物制浆、漆酶漂白工艺也已进入中试阶段。结合以草浆为主的特点,我国的制浆造纸生物技术研究也已日趋活跃起来。  相似文献   

9.
Carbohydrate antigens have a central role in the hyperacute rejection of animal-to-human organ grafts (xenotransplantation) and they are emerging in importance in the immunotherapy of cancer. This article traces the historical origins of the discovery of key carbohydrate antigens and explores the future impact of recent technological advances of the field of glycobiology as it relates to xenotransplantation and cancer.  相似文献   

10.
Fatty acids derived from adipose tissue lipolysis, intramyocellular triacylglycerol lipolysis, or de novo lipogenesis serve a variety of functions in skeletal muscle. The two major fates of fatty acids are mitochondrial oxidation to provide energy for the myocyte and storage within a variety of lipids, where they are stored primarily in discrete lipid droplets or serve as important structural components of membranes. In this review, we provide a brief overview of skeletal muscle fatty acid metabolism and highlight recent notable advances in the field. We then 1) discuss how lipids are stored in and mobilized from various subcellular locations to provide adaptive or maladaptive signals in the myocyte and 2) outline how lipid metabolites or metabolic byproducts derived from the actions of triacylglycerol metabolism or β-oxidation act as positive and negative regulators of insulin action. We have placed an emphasis on recent developments in the lipid biology field with respect to understanding skeletal muscle physiology and discuss unanswered questions and technical limitations for assessing lipid signaling in skeletal muscle.  相似文献   

11.
抗肿瘤多肽具有分子质量小、特异性高、免疫原性低、生物利用度高等优点,且易于合成和改造,其在肿瘤治疗领域的应用研究近 年来受到广泛关注。目前,已有多种抗肿瘤多肽及其衍生物上市或进入临床研究,对于肿瘤的临床治疗具有重要价值。综述抗肿瘤多肽在 诱导肿瘤细胞凋亡、抑制肿瘤新生血管生成、抑制肿瘤细胞生长和转移以及用作疫苗和药物载体等方面的研究新进展。  相似文献   

12.
硫化铜是一种二价铜的硫化物,可以作为半导体材料,化学式为CuS,呈黑褐色,溶解度极低。硫化铜纳米粒子(Copper sulfide nanoparticles, CuS NPs)是纳米尺度大小的硫化铜。近年来,CuS NPs因其结构的可塑性,良好的光热稳定性、生物相容性、突出的光热及光声转换性能,成为了当今纳米材料医学领域的研究热点,在肿瘤诊断和治疗领域中引起了广泛关注。CuS NPs本身可通过介质鳌合金属离子合成多功能纳米粒子,实现肿瘤多模式诊断,并且在光热治疗研究中体现出突出的治疗效果。本文综述了近几年CuS NPs在肿瘤诊断与治疗方面的研究进展,总结肿瘤治疗中的应用研究方法,对CuS NPs在生物医学领域应用中存在的问题进行分析,为解决实际操作过程所遇到的问题提供参考。  相似文献   

13.
In recent years dietary interventions have become a promising tool in cancer treatment and have demonstrated a powerful ability to alter metabolism and tumor growth, development, and therapeutic response. However, because the mechanisms underlying dietary therapeutics are poorly understood, they are frequently ignored as a potential line of treatment for cancer. We discuss the proposed mechanisms behind the anticancer effects of various diets and their development for clinical use. This review aims to provide researchers and clinicians in the field of oncology with a complete overview of the contemporary landscape of nutritional interventions and precision nutrition as cancer therapeutics, and offers a perspective on the steps necessary to establish nutritional interventions as a standard line of treatment.  相似文献   

14.
鸟类性别决定机制及性别鉴定的研究进展   总被引:1,自引:1,他引:0  
胡锐颖  李仲逵  丁小燕 《遗传》2005,27(2):297-301
鸟类的性别决定是一个多基因参与的级联调控过程。这一过程受Z染色体连锁的DMRT1基因, W染色体连锁的PKC1W和其它多种因子共同调控。本文综述了性别决定基因及其功能、性别鉴定方法等方面的研究进展。Abstract: Avian sex determination is a multiple gene regulation cascade. Genes such as the Z chromosome-linked DMRT1 gene, W chromosome-linked PKCIW gene and other factors have been demonstrated to be involved in this process. In this paper, we review the recent progress in this field. The investigation of functions of sex determinate genes and methods of sexing birds are discussed here.  相似文献   

15.
The identification and clinical use of more sensitive and specific biomarkers in the field of solid organ transplantation is an urgent need in medicine. Solid organ transplantation has seen improvements in the short-term survival of transplanted organs due to recent advancements in immunosuppressive therapy. However, the currently available methods of allograft monitoring are not optimal. Recent advancements in assaying methods for biomolecules such as genes, mRNA and proteins have helped to identify surrogate biomarkers that can be used to monitor the transplanted organ. These high-throughput 'omic' methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. Still, the progress towards identifying more sensitive and specific biomarkers remains a great deal slower than expected. In this article, we have evaluated the current status of biomarker discovery using proteomics tools in different solid organ transplants in recent years. This article summarizes recent reports and current status, along with the hurdles in efficient biomarker discovery of protein biomarkers using proteomics approaches. Finally, we will touch upon personalized medicine as a future direction for better management of transplanted organs, and provide what we think could be a recipe for success in this field.  相似文献   

16.
The identification and clinical use of more sensitive and specific biomarkers in the field of solid organ transplantation is an urgent need in medicine. Solid organ transplantation has seen improvements in the short-term survival of transplanted organs due to recent advancements in immunosuppressive therapy. However, the currently available methods of allograft monitoring are not optimal. Recent advancements in assaying methods for biomolecules such as genes, mRNA and proteins have helped to identify surrogate biomarkers that can be used to monitor the transplanted organ. These high-throughput ‘omic’ methods can help researchers to significantly speed up the identification and the validation steps, which are crucial factors for biomarker discovery efforts. Still, the progress towards identifying more sensitive and specific biomarkers remains a great deal slower than expected. In this article, we have evaluated the current status of biomarker discovery using proteomics tools in different solid organ transplants in recent years. This article summarizes recent reports and current status, along with the hurdles in efficient biomarker discovery of protein biomarkers using proteomics approaches. Finally, we will touch upon personalized medicine as a future direction for better management of transplanted organs, and provide what we think could be a recipe for success in this field.  相似文献   

17.
Muscle tissue engineering (TE) has not yet been clinically applied because of several problems. However, the field of skeletal muscle TE has been developing tremendously and new approaches and techniques have emerged. This review will highlight recent developments in the field of nanotechnology, especially electrospun nanofibre matrices, as well as potential cell sources for muscle TE. Important developments in cardiac muscle TE and clinical studies on Duchenne muscular dystrophy (DMD) will be included to show their implications on skeletal muscle TE.  相似文献   

18.
19.
The elucidation of the origin and maintenance of sex is a major unsolved problem in evolutionary biology. A number of hypotheses have been elaborated, but the scarcity of empirical data limits further progress. During recent years, the general inclination has changed towards pluralistic models of sex evolution, due partly to an increased diversity of studied organisms. Fungi are among the most promising organisms for testing sexual causation, as demonstrated in recent laboratory experiments. However, reconciling theory and evidence necessitates critical field observations. Here, we report new estimates of the distribution of morphologically sexual and asexual soil microfungi in nature, which indicate a remarkable trend towards increased sexuality with increasing climatic stress.  相似文献   

20.
近年来,纳米材料成为农业领域的一个研究热点,受到了国内外学者的广泛关注。纳米材料基于其尺寸小的特点,可以在穿透植物细胞壁后,通过内吞作用被细胞吸收,进而对植物生长产生影响。纳米材料被广泛应用于植物遗传转化、作物生长发育和植物健康等农作物领域,尤其在遗传转化领域,其可作为转化载体与基因编辑技术综合运用,对作物进行遗传改良。基于此,对纳米材料在植物体内的吸收、转运机制及其在农作物领域的应用进展进行了综述,重点探讨了纳米材料在植物遗传转化方面的研究进展,并对其在农作物领域亟待解决的问题和后续发展方向进行了展望,以期为拓宽纳米材料的应用领域提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号