首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
云南松林的生物量研究   总被引:17,自引:1,他引:16  
本文研究了云南省易门县海拔1600—1700m的云南松中幼龄林分的生物量。云南松林的生物量随林龄的增加而增加。4年生林分的总生物量为9.985吨/公顷,11年生林分为27.874吨/公顷,23年生林分为69.852吨/公顷。乔木层的器官生物量分配比例随林龄而变化。针叶和树皮的分配比例随林龄的增加而迅速下降;干材和根的比例则不断上升,其中以干材增加最快;树枝的分配比例以11年生林分最大,23年生林分次之,4年生林分最小。  相似文献   

2.
The biomass and net primary productivity (NPP) of 5- to 15-year-old Shisham (Dalbergia sissoo Roxb.) forests growing in central Himalaya were estimated. Allometric equations were developed for all above- and below-ground components of trees and shrubs for each stand. Understorey forest floor biomass and litter fall were also estimated in forest stands. The biomass (dry matter), forest floor biomass (standing crop litter), tree litter fall and NPP of trees and shrubs increased with increasing age of the forest stand, whereas the dry matter and herb NPP decreased significantly (P < 0.001) with increasing age of the forest. Total forest biomass and NPP ranged from 58.7 (5-year-old stand) to 136.1 t ha(-1) (15-year-old stand) and 12.6 (5-year-old stand) to 20.3 t ha(-1) year(-1) (15-year-old stand), respectively. Of these values, tree biomass accounted for 85.7 (5-year-old stand) to 90.1% (15-year-old) of total forest biomass, and tree NPP for 72.2 (5-year-old) to 82.3% (15-year-old) of total forest NPP. The biomass accumulation ratio (BAR) of the bole component (bole wood + bole bark) increased with increasing age of the forest stand. The bole BAR was 5.8 (5-year-old stand) to 7.9 (15-year-old stand). However, total BAR of the forest stand ranged from 5.5 (5-year-old) to 7.5 (15-year-old).  相似文献   

3.
Reliable and objective estimations of specific leaf area (SLA) and leaf area index (LAI) are essential for accurate estimates of the canopy carbon gain of trees. The variation in SLA with needle age and position in the crown was investigated for a 73-year-old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Allometric equations describing the projected needle area of the entire crown were developed, and used to estimate stand needle area. SLA (cm2 g−1) as significantly influenced by the position in the crown and by needle age (current-year versus 1-year-old needles). SLA increased significantly from the top to the bottom of the crown, and was significantly higher near the interior of the crown as compared to the crown edge. SLA of current-year needles was significantly higher than that of 1-year-old needles. Allometric relationships of projected needle area with different tree characteristics showed that stem diameter at breast height (DBH), tree height and crown depth were reliable predictors of projected needle area at the tree level. The allometric relationships between DBH and projected needle area at the tree level were used to predict stand-level needle area and estimate LAI. The LAI was 1.06 (m2 m−2) for current-year needles and 0.47 for 1-year-old needles, yielding a total stand LAI of 1.53.  相似文献   

4.
东北地区两种主要造林树种生态系统固碳潜力   总被引:5,自引:0,他引:5  
王春梅  邵彬  王汝南 《生态学报》2010,30(7):1964-1772
自从1980年,我国开展了一系列举世瞩目的造林工程,增加了森林面积3亿hm2。造林后生态系统有机碳库的微小变化都显著影响大气碳库,对全球碳素循环和平衡起着重要的作用。研究了退耕还林不同年限长白落叶松林的植被、凋落物和土壤碳库的变化规律,并且选择可比性较强的退耕还红松林、退耕还草和红松原始林作为参照,分析总结了退耕还林对生态系统储碳能力和碳循环的影响。结果表明,退耕还林后生态系统的植被、凋落物碳储量随退耕还林年限增加而增加:从退耕3a到33a,植被和凋落物碳储量分别从4.134、0Mg/hm2增加到74.11、11.31Mg/hm2。土壤碳储量则是先降低再增加:在还林初期的12a里,土壤碳密度降低到最小量75.87Mg/hm2,随后逐渐恢复和积累,21a后,土壤碳密度恢复到农田的水平84.28Mg/hm2,随后土壤碳密度出现净积累。在长白山地区,退耕3、12、22a和33a长白落叶松、33a红松生态系统的碳储量分别是81.778、114.488、130.004、187.255Mg/hm2和178.580Mg/hm2。长白落叶松的固碳能力随林龄而增加,两种主要造林树种(长白落叶松和红松)的生态系统的固碳潜力没有显著差异。长期来看(如250a),生态系统碳库存的能力非常大(269.57Mg/hm2)。这种状况表明,在长白山地区退耕还林后,生态系统长期来看是一个可观的碳汇。  相似文献   

5.
陈东升  孙晓梅  张守攻 《生态学杂志》2016,27(12):3759-3768
以7、17、30和40年生4个发育阶段(幼龄、中龄、近熟和成熟阶段)的日本落叶松人工林为对象,研究了林龄对生物量、碳储量和养分特征的影响.结果表明: 在单木水平上,不同发育阶段干、枝、皮、叶、根生物量和养分浓度差异显著.随年龄增加,各器官生物量呈增大趋势,N、P、K浓度呈下降趋势,Mg浓度先降后升,Ca浓度持续升高.优势木、平均木和劣势木的各器官生物量之间差异显著,但养分浓度差异不显著,表明竞争对各器官养分浓度影响不大.在林分水平上,总生物量、碳储量和养分储量随林龄增加呈增大趋势,与幼龄林相比,成熟林分别增加217.9%、218.4%和56.4%,表明日本落叶松林生长后期能以较少的养分生产较多的干物质,养分利用效率较高.5种元素的积累量除P和K在近熟林(30年生)略有降低外,其他元素都随林龄增加而增加.N集中在叶中,Ca集中在树干,K和Mg主要集中在根,P在不同器官中的分配较均匀.日本落叶松林分年均生物量积累率、固碳率和养分积累率均随林龄的增加而降低,从幼龄林每年7.16 t·hm-2、3.40 t·hm-2、104.64 kg·hm-2降低到成熟林的3.99 t·hm-2、1.89 t·hm-2、28.64 kg·hm-2,表明日本落叶松林幼、中龄阶段固碳潜力大,但养分消耗也高.  相似文献   

6.
杨丽韫  罗天祥  吴松涛 《生态学报》2007,27(9):3609-3617
以我国东北长白山自然保护区内同一海拔梯度的原始阔叶红松林及其次生林——白桦山杨成熟林和白桦山杨幼林为对象,采用土钻取样法对不同演替阶段细根生物量的变化、细根垂直分布规律及其影响因子进行系统地研究。研究结果表明,在原始阔叶红松林的正向演替过程中,林地细根的总生物量逐渐增加,其中主要乔木细根的生物量逐渐增加,而灌木和草本细根的生物量则逐渐降低。在演替过程中,细根的垂直分布逐渐加深。在长白山地区,3块林地中细根生物量的组成分布受林分植被组成的影响;细根的垂直分布与土壤容重、水分含量以及不同土层中C、N含量存在一定的相关性,但与土壤温度则不存在相关关系。  相似文献   

7.
Annual litter fall, nutrient concentrations in litter components and annual weight of nutrients in litter fall have been estimated for karri forest stands aged 2, 6, 9 and 40 years and in mature forest. The weight of litter falling annually increases with stand age, ranging from 1.13 t/ha in 2-year-otd regeneration to 9.45 t/ha in mature forest. This increase is due mainly to greater amounts of twigs, bark and fruit falling in older stands. Leaf fait is relatively independent of stand age once the canopy of regenerating stands closes and the understorey has developed. Concentrations of N, P, K, S and Mn in karri leaf litter differ significantly between sites and the differences appear to be related to stand age. Highest levels of these elements are found in karri leaf litter from the youngest stand and the concentrations decrease with increasing stand age. The amounts of annual litter fall and of nutrients cycling in litter are among the largest reported for Australian forests. In particular cycling of Ca, K and Mg in mature karri forest is greater than has been reported for any other eucalypt forest. Karri forest understorey plays a key rote in nutrient cycling in these ecosystems, contributing 30–70% of the weight of many of the nutrients in the leaf component of titter. Understorey leaf material is particularly important in the cycling of N, S and the micro-nutrients Cu and Zn.  相似文献   

8.
Summary Tannin, cell wall, and nitrogen composition of green foliage and needle litter of similar-aged Douglas-fir (Pseudotsuga menziesii Mirb. Franco) from two stands differing in density and crown closure were compared. Trees in the closed-canopy stand had a lower basal area growth rate than those in the open-canopy stand. Stands did not differ in wood basal area/ha or forest floor C/N ratios, but the closed-canopy stand had a significantly larger accumulation of forest floor biomass and significantly higher levels of field-extractable nitrogen and nitrogen mineralization rates. Green foliage from trees in the closed-canopy stand had significantly lower nitrogen, astringency, and lignin contents, but higher cellulose concentration than trees in the open-canopy stand. These trends, inconsistent with the inverse relationship often observed between nitrogen and polyphenol contents of foliage, may result from differences in relative resource availability in the two stands. In contrast to green foliage, needle litter from the two stands had comparable contents of nitrogen, cellulose, and lignin, but astringency was significantly higher in litter from the closed-canopy stand. It is suggested that, within the constraints imposed by site conditions, evergreens may alter the tannin composition of senescing foliage, potentially affecting herbivory and decomposition differently.  相似文献   

9.
The pattern of carbon (C) allocation across different stages of stand development of Chinese pine (Pinus tabulaeformis) forests is poorly documented. In order to understand the effects of stand age on the C pool of the Chinese pine forest ecosystem, we have examined the above- and belowground C pools in three differently aged stands of Chinese pine in the northern mountains of Beijing, China, by plot-level inventories and destructive sampling. Our results suggest that tree branch and foliage biomass should be estimated by age-specific equations. Reasonably accurate estimates of tree stem, tree root, aboveground, and total tree biomass in a Chinese pine forest at different development stages were obtained using age-independent allometric equations from tree diameter only. The ratio of belowground to aboveground tree biomass was relatively constant with stand aging, remaining around 21?%. The contribution of aboveground tree biomass C increased from 21?% of the total ecosystem C in a 25-year-old stand to 44?% in a 65-year-old stand, subsequently falling to 41?% in a 105-year-old stand, while the contribution of mineral soil C decreased from 64?% of the total ecosystem C in 25-year-old stand to 38?% in a 65-year-old stand, subsequently increasing to 41?% in a 105-year-old stand. The C stock of the total ecosystem and its aboveground tree, tree root, forest floor, and mineral soil components continuously increased with stand ageing, whereas the C stock of the understory showed a declining trend and contributed little to the total site C pool.  相似文献   

10.
 The nutrient concentrations and contents of needles and shoots of 22-year-old European larch (Larix decidua Mill.) were evaluated with respect to crown position, age of tissues and sampling date during a complete growing season. Concentrations of N, P, K, Ca, Mg and Zn in the needles and of N, P and K in the shoots differed significantly among the dates of sampling. The concentrations of N and Mn in the needles and all nutrients in the shoots (except Mg) also differed significantly with crown position. Maximum needle biomass was observed in the middle crown position (55% of the total) and maximum shoot biomass, in the lower crown position (52% of the total). Maximum needle and shoot nutrient contents were observed in the middle position of the living crown for long shoot, short shoot-1, short shoot-2, short shoot-3 and, short shoot-4 age classes while highest contents for short shoot-5 and short shoot-6 age classes were observed in the lower crown position. Biases up to 42% for Mg in the needles and 200% for K in the shoots were obtained when only long shoot tissues are used for content evaluation. For needles and shoots, Mg and K are more difficult nutrients to evaluate. A sampling methodology is proposed for evaluating nutrient contents of the living crown. Accepted: 10 August 1995  相似文献   

11.
Forest ecosystems play dominant roles in global carbon budget because of the large quantities stored in live biomass, detritus, and soil organic matter. Researchers in various countries have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the relationship between stand age in different components (vegetation, forest floor detritus, and mineral soil) and C storage and sequestration remains poorly understood. In this paper, we assessed an age sequence of 18-, 20-, 25-, 38-, and 42-year-old Pinus tabulaeformis planted by analyzing the vertical distribution of different components biomass with similar site conditions on Mt. Taiyue, Shanxi, China. The results showed that biomass of P. tabulaeformis planted stands was ranged from 88.59 Mg ha?1 for the 25-year-old stand to 231.05 Mg ha?1 for the 42-year-old stand and the major biomass was in the stems. Biomass of the ground vegetation varied from 0.51 to 1.35 Mg C ha?1 between the five stands. The forest floor biomass increased with increasing stand age. The mean C concentration of total tree was 49.94%, which was higher than C concentrations of ground vegetation and forest floor. Different organs of trees C concentration were between 54.14% and 47.74%. C concentrations stored in the mineral soil for each stand experienced decline with increasing soil depth, but were age-independent. Total C storage of five planted forests ranged from 122.15 to 229.85 Mg C ha?1, of which 51.44–68.38% of C storage was in the soil and 28.46–45.21% in vegetation. The study provided not only with an estimation biomass of P. tabulaeformis planted forest in Mt. Taiyue, Shanxi, China, but also with accurately estimating forest C storage at ecosystem scale.  相似文献   

12.
The aim of our study was to investigate long-term effects of wood ash fertilization, given together with nitrogen, on soil chemical properties, soil microbiological processes related to C and N cycling, and tree growth. The study was carried out in a 31-year-old Scots pine stand and in a 45-year-old Norway spruce stand 15 years after application. The treatments were (1) a control with no ash or nutrient addition, (2) wood ash + N (WAN), and (3) a stand-specific fertilization (SSF) formulated on the basis of analyses carried out on needle and soil samples taken from the stand. The SSF treatments included N, Cu and B, and in the spruce stand also P. WAN decreased acidity and increased the extractable Ca, Mg and P concentrations in the organic layer in both stands, but SSF had no effect. The microbial processes reacted more strongly to the treatments in the pine stand, whereas the growth response, although only relatively slight during the third 5-year period after fertilization, was detected only in the spruce stand. WAN increased the NH4-N concentrations in the organic layer compared to the control and SSF treatments on both sites. In the pine stand, amount of N in microbial biomass and both the C and net N mineralization rates were significantly higher in the WAN treatment than in the SSF treatment. On both sites net nitrification was negligible in all treatments. Soil microbial biomass, microbial respiration and N availability have been used as indices for assessing the biological activity and health of soil, and these parameters either increased or were not affected by the WAN treatment. Hence, with regard to these parameters there are justifiable grounds for applying wood ash.  相似文献   

13.
中国东部主要松林营养元素循环的比较研究   总被引:18,自引:0,他引:18       下载免费PDF全文
 中国的松林主要分布在亚热带和温带地区,在亚热带和温带地区东部主要是马尾松林、华山松林、油松林、红松林和樟子松林。松林由于树种、起源和年龄的差别,其生物量的变化幅度较大,在65~200t·hm-2之间(东北地区的原始红松林最高生物量可达360t·hm-2),松林的生物量表现出区域分异的特点。即从南到北随着纬度的增加,林分的生物量有逐渐降低的趋势。松树针叶中5种主要营养元素含量表现为[N]>[K]≥[Ca]>[Mg]≥[P],而且营养元素表现出因种而异,N的含量为华山松≥马尾松>油松≥红松>樟子松,而P和K在油松和红松针叶中含量较高;Ca的含量表现出较大的波动,与其母岩关系密切。松林主要营养元素(N、P、K、Ca、Mg)的积累量中N一般占25%~40%,松林营养元素循环速率受生境,树种、年龄的影响,但总的来说,亚热带地区松林营养元素的循环速率高于温带地区松林。  相似文献   

14.
This study examined the biomass and carbon pools of the main ecosystem components in an age sequence of five Korean pine plantation forest stands in central Korea. The C contents in the tree and ground vegetation biomass, coarse woody debris, forest floor, and mineral soil were estimated by analyzing the C concentration of each component. The aboveground and total tree biomass increased with increasing stand age. The highest C concentration across this chronosequence was found in the tree branch while the lowest C concentration was found in the ground vegetation. The observed C contents for tree components, ground vegetation, and coarse woody debris were generally lower than the predicted C contents estimated from a biomass C factor of 0.5. Forest floor C content was age-independent. Total mineral soil C content appeared to decline initially after establishing Korean pine plantations and recover by the stand age of 35 years. Although aboveground tree biomass C content showed considerable accumulation with increasing age, the relative contribution of below ground C to total ecosystem C content varied substantially. These results suggest that successional development as temporal factor has a key role in estimating the C storage in Korean pine plantation forests.  相似文献   

15.
Exotic pine plantations constitute a significant landscape feature in the North Island of New Zealand but their conservation value for native plant species is not often documented. Pine stem density, height and basal area of nine plantations of Pinus radiata ranging in age from 6 to 67 years in Kinleith Forest was determined. Pines reached heights of 60 m, and stand basal areas up to 183 ± 14 m(2)ha(-1). The abundance of woody shrubs, tree ferns and ground ferns was assessed in each stand. Understorey composition of shrubs and ferns was reflected on the first two axes of DCA ordinations and correlated with the age of the pines. Adventive shrubs predominated in stands < 20 years old. Light-demanding native shrubs with bird dispersed fruits predominated in older stands, with more shade-tolerant species in the oldest site. Species richness increased rapidly in the first 11 years, but thereafter more slowly. Twelve native shrub species and 22 ferns were recorded from the most diverse stands. Richness and species composition were related to stand age, and probably also to topographical heterogeneity and aspect. Tree ferns reached densities of 2000—2500 ha(-1) and basal areas of 20—30 m(2)ha(-1) in the older stands. Initially the tree fern population was strongly dominated by Dicksonia squarrosa, which comprised 84% of individuals overall. Five species were present by 29 years. The faster growing Cynthea medullaris and C. smithii achieved greater heights than the Dicksonia spp., and their relative biomass was greatest in the oldest stands.  相似文献   

16.
This paper reports on the tree structure, tree dimension relationships and woody biomass production and removal of a sub-tropical natural forest in the Mamlay watershed of the Sikkim Himalaya. The forest provides fuel, fodder and timber to four villages. Only 11 tree species were found growing in the tree stratum despite the high diversity in the stand (32 tree species). The forest shows good regeneration potential with 5474 seedlings/ha and 1776 saplings/ha, but the population structure revealed a marked paucity of trees of higher diameter classes due to removal of trees of lower diameters. Standing wood biomass of 362 Mg/ha is mainly shared by 4 dominating species in the stand. The boles are removed mainly for timber and fuel purposes and about 22 Mg/ha wood biomass was removed in between 1987–1991. Net Primary productivity of woody biomass of the forest is recorded to be 18 Mg/ha/year. 3.85 Mg/ha of annual woody biomass production was removed in the form of tree boles apart from lopping of branches.  相似文献   

17.
探讨人工林发育过程中土壤温室气体排放及其机制,可为森林温室气体通量估算提供理论依据。采用室内培养方法研究了黑龙江省帽儿山地区不同林龄(15、30和50年生)红松(Pinus koraiensis)和落叶松(Larix gmelinii)人工林土壤温室气体排放/吸收速率及其调控因素。结果表明:30年生红松和落叶松人工林土壤CO2排放速率(红松:(1724.18±98.57)μg C·kg-1·h-1;落叶松:(1306.37±142.27)μg C·kg-1·h-1)和CH4吸收速率(红松:(5.12±0.68)μg C·kg-1·h-1;落叶松:(1.91±0.85)μg C·kg-1·h-1)显著高于15和50年生(P<0.05)。30年生红松人工林土壤N2O排放速率显著高于15和50年生(P<0.05),而落叶松人工林土壤N2O排放速率随林龄增加变化不显著。红松和落叶松人工林土壤N2O排放速率最大值分别为(0.139±0.016)和(0.137±0.056)μg N·kg-1·h-1。红松人工林土壤CO2排放速率均高于同龄落叶松人工林,15和30年生达到显著水平(P<0.05)。红松人工林土壤CH4吸收速率均显著高于同龄落叶松人工林(P<0.05)。红松人工林土壤N2O排放速率与同龄落叶松人工林土壤均无显著差异。混合线性模型分析显示,影响红松和落叶松人工林发育过程中土壤CO2排放速率的主要因素是土壤全碳含量和微生物生物量氮,其中微生物生物量氮受树种和林龄的影响。CH4吸收速率受到微生物生物量碳、溶解性有机碳和溶解性有机氮含量影响,其中微生物生物量碳受树种和林龄调控。N2O排放速率受溶解性有机氮、铵态氮和硝态氮影响,其中溶解性有机氮受林龄影响。综上所述,树种和林龄差异造成的土壤理化性质和微生物生物量碳氮的异质性可在一定程度上解释土壤温室气体排放/吸收速率的差异。  相似文献   

18.
不同林分起源的相容性生物量模型构建   总被引:4,自引:0,他引:4  
目前为止已有不同方法构建生物量相容性模型,但不同林分起源的生物量相容性模型很少报道。针对此问题,以150株南方马尾松(Pinus masson iana)地上生物量数据为例,利用比例平差法和非线性联立方程组法建立不同起源地上生物量以及干材、干皮、树枝和树叶各分项生物量相容的通用性模型。根据分配层次不同,两种方法又各自考虑总量直接控制和分级联合控制两种方案。从直径、树高、地径、枝下高和冠幅5个林分变量中选取不同的变量构建一元、二元和三元生物量模型,并利用加权最小二乘回归法消除生物量模型中存在的异方差性。结果为:比例平差法和非线性联立方程组法都能有效保证各分项生物量总和等于总生物量,模型预测精度满足要求。总体而言,非线性联立方程组方法比比例平差方法精度高,同时两种方法中总量直接控制法比分级联合控制法预测效果好;各分项生物量模型本身作为权函数能有效消除异方差;各分项对应的三元生物量模型预测精度最高,其次是二元生物量模型,最低是一元生物量模型,但这些差异不是很大。总之,为权衡考虑模型预测精度和调查成本,建议把直径和树高作为协变量利用总量直接控制非线性联立方程组法对不同起源生物量建模。  相似文献   

19.
Pinus tabulaeformis Carr. forest, the dominant community in Ziwuling Mountain lying in the hilly loess region, was studied for its nutrient distributions and bio-cycle characteristics in both natural and artificial forms. The results showed that the changes in the nutrient contents for different components in the same Pinus tabulaeformis Carr. forest stood in the order of needles > branches > bark > roots > bole. The aboveground nutrient elements in needles, branches, bark bole and litterfalls stood in the order of Ca > N > K > Mg > P, but the nutrients stored in the soil stood in the order of Ca > K > Mg > N > P. The accumulated amounts of nutrients increased first and then decreased with the increased age of the forest. The nutrient amounts reached their maximum when the stand was 30 years old, and decreased greatly when it was 50 years old. The 30-year-old artificial Pinus tabulaeformis Carr. forest had the highest annual accumulated amount of nutrients, and different stands stood in the order of II > III > IV > I. Comparatively, annual accumulated nutrients in different components stood in the order of needles > branches > roots > bark > bole. It was also suggested that the amounts of nutrients annually taken in from and retained in the natural Pinus tabulaeformis Carr. forest were significantly higher than those in artificial forests. The coefficients of nutrient use in various Pinus tabulaeformis Carr. stands stood in the order of Ca > Mg > N > K > P, but the nutrient use efficiency (NUE) of the same element decreased with increased age of the forest. There were no differences in the utilization coefficient and the turnover period of nutrients in both natural and artificial matured Pinus tabulaeformis Carr. forests.  相似文献   

20.
Pinus tabulaeformis Carr. forest, the dominant community in Ziwuling Mountain lying in the hilly loess region, was studied for its nutrient distributions and bio-cycle characteristics in both natural and artificial forms. The results showed that the changes in the nutrient contents for different components in the same Pinus tabulaeformis Carr. forest stood in the order of needles > branches > bark > roots > bole. The aboveground nutrient elements in needles, branches, bark bole and litterfalls stood in the order of Ca > N > K > Mg > P, but the nutrients stored in the soil stood in the order of Ca > K > Mg > N > P. The accumulated amounts of nutrients increased first and then decreased with the increased age of the forest. The nutrient amounts reached their maximum when the stand was 30 years old, and decreased greatly when it was 50 years old. The 30-year-old artificial Pinus tabulaeformis Carr. forest had the highest annual accumulated amount of nutrients, and different stands stood in the order of II > III > IV > I. Comparatively, annual accumulated nutrients in different components stood in the order of needles > branches > roots > bark > bole. It was also suggested that the amounts of nutrients annually taken in from and retained in the natural Pinus tabulaeformis Carr. forest were significantly higher than those in artificial forests. The coefficients of nutrient use in various Pinus tabulaeformis Carr. stands stood in the order of Ca > Mg > N > K > P, but the nutrient use efficiency (NUE) of the same element decreased with increased age of the forest. There were no differences in the utilization coefficient and the turnover period of nutrients in both natural and artificial matured Pinus tabulaeformis Carr. forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号