首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A late-flowering mutant was isolated from rice T-DNA-tagging lines. T-DNA had been integrated into the K-box region of Oryza sativa MADS50 (OsMADS50), which shares 50.6% amino acid identity with the Arabidopsis MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20). While overexpression of OsMADS50 caused extremely early flowering at the callus stage, OsMADS50 RNAi plants exhibited phenotypes of late flowering and an increase in the number of elongated internodes. This confirmed that the phenotypes observed in the knockout (KO) plants are because of the mutation in OsMADS50. RT-PCR analyses of the OsMADS50 KO and ubiquitin (ubi):OsMADS50 plants showed that OsMADS50 is an upstream regulator of OsMADS1, OsMADS14, OsMADS15, OsMADS18, and Hd (Heading date)3a, but works either parallel with or downstream of Hd1 and O. sativa GIGANTEA (OsGI). These results suggest that OsMADS50 is an important flowering activator that controls various floral regulators in rice.  相似文献   

2.
3.
Jeon JS  Jang S  Lee S  Nam J  Kim C  Lee SH  Chung YY  Kim SR  Lee YH  Cho YG  An G 《The Plant cell》2000,12(6):871-885
Rice contains several MADS box genes. It has been demonstrated previously that one of these genes, OsMADS1 (for Oryza sativa MADS box gene1), is expressed preferentially in flowers and causes early flowering when ectopically expressed in tobacco plants. In this study, we demonstrated that ectopic expression of OsMADS1 in rice also results in early flowering. To further investigate the role of OsMADS1 during rice flower development, we generated transgenic rice plants expressing altered OsMADS1 genes that contain missense mutations in the MADS domain. There was no visible alteration in the transgenic plants during the vegetative stage. However, transgenic panicles typically exhibited phenotypic alterations, including spikelets consisting of elongated leafy paleae and lemmas that exhibit a feature of open hull, two pairs of leafy palea-like and lemma-like lodicules, a decrease in stamen number, and an increase in the number of carpels. In addition, some spikelets generated an additional floret from the same rachilla. These characteristics are very similar to those of leafy hull sterile1 (lhs1). The map position of OsMADS1 is closely linked to that of lhs1 on chromosome 3. Examination of lhs1 revealed that it contains two missense mutations in the OsMADS1 MADS domain. A genetic complementation experiment showed that the 11.9-kb genomic DNA fragment containing the wild-type OsMADS1 gene rescued the mutant phenotypes. In addition, ectopic expression of the OsMADS1 gene isolated from the lhs1 line resulted in lhs1-conferred phenotypes. These lines of evidence demonstrate that OsMADS1 is the lhs1 gene.  相似文献   

4.
5.
Characterization of tobacco MADS-box genes involved in floral initiation   总被引:9,自引:0,他引:9  
Jang S  An K  Lee S  An G 《Plant & cell physiology》2002,43(2):230-238
  相似文献   

6.
7.
8.
Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference   总被引:22,自引:0,他引:22  
Xiao H  Wang Y  Liu D  Wang W  Li X  Zhao X  Xu J  Zhai W  Zhu L 《Plant molecular biology》2003,52(5):957-966
  相似文献   

9.
Most short vegetative phase (SVP)-group MADS-box genes control meristem identity and flowering time. Among the three SVP-group genes in rice, OsMADS47 has been reported as a negative regulator of brassinosteroid (BR) responses. Here, we investigated the functional roles of two close homologs, OsMADS22 and OsMADS55, by generating single, double and triple RNAi lines and overexpression lines. Analyses of the plants showed that their roles in regulating meristem identity are well conserved; however, the involvement of these genes in determining flowering time has diversified. Most importantly, OsMADS55 works as a major negative regulator of BR responses, and OsMADS22 functions to support OsMADS55. Whereas single OsMADS55 RNAi plants display weak BR responses in the lamina joint (LJ), OsMADS22 - OsMADS55 double and OsMADS22 - OsMADS47 - OsMADS55 triple RNAi plants manifest dramatic BR responses with regard to LJ inclination, coleoptile elongation and senescence. Stem elongation is also notably reduced in the double and triple RNAi plants, probably because of BR oversensitivity. Expression analyses indicate the diversified roles in age-dependent BR responses. Altogether, our study demonstrates that all three rice SVP-group genes work as negative regulators of BR responses, but that their spatial and temporal roles are diversified.  相似文献   

10.
Leafy (LFY) and LFY-like genes control the initiation of floral meristems and regulate MADS-box genes in higher plants. The Cucumber-FLO-LFY (CFL) gene, a LFY homolog in Cucumis sativus L. is expressed in the primordia, floral primordia, and each whirl of floral organs during the early stage of flower development. In this study, functions of CFL in flower development were investigated by overexpressing the CFL gene in gloxinia (Sinningia speciosa). Our results show that constitutive CFL overexpression significantly promote early flowering without gibberellin (GA(3)) supplement, suggesting that CFL can serve functionally as a LFY homolog in gloxinia. Moreover, GA(3) and abscisic acid (ABA) treatments could modulate the expression of MADS-box genes in opposite directions. GA(3) resembles the overexpression of CFL in the expression of MADS-box genes and the regeneration of floral buds, but ABA inhibits the expression of MADS-box genes and flower development. These results suggest that CFL and downstream MADS-box genes involved in flower development are regulated by GA(3) and ABA.  相似文献   

11.
12.
Characterization of MADS box genes from hot pepper.   总被引:1,自引:0,他引:1  
  相似文献   

13.
The timing of flowering is important for the reproductive success of plants. Here we describe the identification and characterization of a new MADS-box gene, FLOWERING LOCUS M (FLM), which is involved in the transition from vegetative to reproductive development. FLM is similar in amino-acid sequence to FLC, another MADS-box gene involved in flowering-time control. flm mutants are early flowering in both inductive and non-inductive photoperiods, and flowering time is sensitive to FLM dosage. FLM overexpression produces late-flowering plants. Thus FLM acts as an inhibitor of flowering. FLM is expressed in areas of cell division such as root and shoot apical regions and leaf primordia.  相似文献   

14.
15.
Lee S  Jeon JS  An K  Moon YH  Lee S  Chung YY  An G 《Planta》2003,217(6):904-911
We used a transgenic approach and yeast two-hybrid experiments to study the role of the rice ( Oryza sativa L.) B-function MADS-box gene, OsMADS16. Transgenic rice plants were generated that ectopically expressed OsMADS16 under the control of the maize ( Zea mays L.) ubiquitin1 promoter. Microscopic observations revealed that the innermost-whorl carpels had been replaced by stamen-like organs, which resembled the flowers of the previously described Arabidopsis thaliana (L.) Heynh. mutation superman as well as those ectopically expressing the AP3 gene. These results indicate that expression of OsMADS16 in the innermost whorl induces stamen development. Occasionally, carpels had completely disappeared. In addition, ectopic expression of OsMADS16 enhanced expression of OsMADS4, another B-function gene, causing superman phenotypes. In the yeast two-hybrid system, OsMADS16 did not form a homodimer but, rather, the protein interacted with OsMADS4. OsMADS16 also interacted with OsMADS6 and OSMADS8, both of which are homologous to SEPALLATA proteins required for the proper function of class-B and class-C genes in Arabidopsis. Based on the gene expression pattern and our yeast two-hybrid data, we discuss a quartet model of MADS-domain protein interactions in the lodicule and stamen whorls of rice florets.  相似文献   

16.
17.
We report the cDNA sequence and gene expression patterns of OsMADS22, a novel member of the STMADS11-like family of MADS-box genes, from rice. In contrast to previously reported STMADS11-like genes, whose expression is detected in vegetative tissues, OsMADS22 is mainly expressed during embryogenesis and flower development. In situ hybridization analysis revealed that OsMADS22 expression is localized in the L1 layer of embryos and in developing stamen primordia. Ectopic expression of OsMADS22 in transgenic rice plants resulted in aberrant floral morphogenesis, characterized by a disorganized palea, an elongated glume, and a two-floret spikelet. The results are discussed in terms of rice spikelet development and a novel non-vegetative role for a STMADS11-like gene.  相似文献   

18.
Further characterization of a rice AGL12 group MADS-box gene, OsMADS26   总被引:1,自引:0,他引:1  
Lee S  Woo YM  Ryu SI  Shin YD  Kim WT  Park KY  Lee IJ  An G 《Plant physiology》2008,147(1):156-168
  相似文献   

19.
20.
An X  Ye M  Wang D  Wang Z  Cao G  Zheng H  Zhang Z 《Biotechnology letters》2011,33(6):1239-1247
A MADS-box gene, designated PtAP3, was isolated from a floral bud cDNA library derived from Populus tomentosa. Analysis by multiple alignments of both nucleotide and amino acid sequences, together with phylogenetic analysis, revealed that PtAP3 is an ortholog of Arabidopsis AP3. Analysis of RNA extracts from vegetative and reproductive tissues of P. tomentosa by RT-PCR indicated that PtAP3 is expressed in roots, stems, leaves and vegetative and floral buds. Notably, the expression of PtAP3 fluctuated during floral bud development between September and February with differences between male and female buds. In the former, a gradual down-regulation during this period, interrupted by a slight up-regulation in December, was followed by a sharper up-regulation on February. In developing female floral buds, expression was stable from September to November, sharply up-regulated in December, and then gradually down-regulated until February. The functional role of PtAP3 was investigated in transgenic tobacco plants. Of 25 transformants, nine displayed an earlier flowering phenotype compared with the wild type plants. Furthermore, transgenic tobacco had faster growth and more leaves than untransformed controls. The traits proved to be heritable between the T0 and T1 generations. Our results demonstrate a regulatory role of the PtAP3 gene during plant flowering and growth and suggest that the gene may be an interesting target for genetic modification to induce early flowering in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号